

Lecture Notes in Computer Science 4591
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jim Davies Jeremy Gibbons (Eds.)

Integrated
Formal Methods

6th International Conference, IFM 2007
Oxford, UK, July 2-5, 2007
Proceedings

13

Volume Editors

Jim Davies
Oxford University Computing Laboratory
Wolfson Building
Oxford OX1 3QD, UK
E-mail: Jim.Davies@camlab.ox.ac.uk

Jeremy Gibbons
Oxford University Computing Laboratory
Wolfson Building
Oxford OX1 3QD, UK
E-mail: jeremy.gibbons@comlab.ox.ac.uk

Library of Congress Control Number: 2007928796

CR Subject Classification (1998): F.3, D.3, D.2, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-73209-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73209-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12080328 06/3180 5 4 3 2 1 0

Preface

The design and analysis of computing systems presents a significant challenge:
systems need to be understood at many different levels of abstraction, and exam-
ined from many different perspectives. Formal methods—languages, tools, and
techniques with a sound, mathematical basis—can be used to develop a thorough
understanding and to support rigorous examination.

Further research into effective integration is required if these methods are
to have a significant impact outside academia. The Integrated Formal Methods
(IFM) series of conferences seeks to promote this research, to bring together the
researchers carrying it out, and to disseminate the results of this research among
the wider academic and industrial community.

Earlier meetings in the series were held at: York (1999); Dagstuhl (2000);
Turku (2002); Kent (2004); Eindhoven (2005). IFM 2007 was the largest to date,
with 32 technical papers (from 85 submissions), 3 invited talks, 3 workshops, and
a tutorial. The success of the series reflects the enthusiasm and efforts of the IFM
community, and the organizers would like to thank the speakers, the committee,
and the reviewers for their contributions.

April 2007 Jim Davies
Jeremy Gibbons

Organization

Chair
Jim Davies

Co-chairs
Jin Song Dong, Jeremy Gibbons, Judi Romijn, Wolfram Schulte

Workshops and Tutorials
Richard Paige

Local Arrangements
Jackie Jordan, James Welch

Special Sessions
Yifeng Chen, Eerke Boiten, Phil Brooke, John Derrick, Graeme Smith

Programme Committee
Didier Bert, Eerke Boiten, Jonathan Bowen, Phil Brooke, Michael Butler,
Yifeng Chen, Paul Curzon, Jim Davies, John Derrick, Jin Song Dong,
Steve Dunne, Andy Galloway, Chris George, Jeremy Gibbons,
Wolfgang Grieskamp, Henri Habrias, Maritta Heisel, Soon-Kyeong Kim,
Michel Lemoine, Shaoying Liu, Dominique Mery, Stephan Merz,
Colin O’Halloran, Richard Paige, Luigia Petre, Jaco van de Pol,
Judi Romijn, Thomas Santen, Steve Schneider, Wolfram Schulte,
Kaisa Sere, Jane Sinclair, Graeme Smith, Bill Stoddart, Kenji Taguchi,
Helen Treharne, Heike Wehrheim, Kirsten Winter, Jim Woodcock

Additional Reviewers
Pascal Andre, Christian Attiogbé, Pavel Avgustinov, Luis Barbosa,
Alessandra Cavarra, Orieta Celiku, Yuting Chen, Chunqing Chen,
John Colley, Robert Colvin, Neil Evans, Yuan Fang Li, Berndt Farwer,
Diego Garbervetsky, Lars Grunske, Stefan Hallerstede, Dubravka Ilic,
Yoshinao Isobe, Jon Jacky, Ehtesham Jam, Linas Laibinis, Antonia Lopes,
Eduardo Lopez-Ruiz, Hidehiko Masuhara, Tim McComb, Larissa Meinicke,
Bernhard Moeller, Leonardo de Moura, Ivan Porres, Viorel Preoteasa,
Franco Raimondi, Jean-Luc Richier, Rimvydas Ruksenas, Ondrej Rypacek,
Holger Schmidt, Cristina Seceleanu, Paul Strooper, Georg Struth, Jun Sun,
Jörn Guy Süß, Yoshinori Tanabe, Nikolai Tillmann, Jan Tobias Muehlberg,
Niki Trigoni, Margus Veanes, Meng Wang, Geoffrey Watson, James Welch,
Luke Wildman, Divakar Yadav, Lu Yan, Huibiao Zhu

Table of Contents

Verifying Temporal Properties of CommUnity Designs 1
Nazareno Aguirre, Germán Regis, and Tom Maibaum

Precise Scenarios – A Customer-Friendly Foundation for Formal
Specifications . 21

Oliver Au, Roger Stone, and John Cooke

Automated Verification of Security Policies in Mobile Code 37
Chiara Braghin, Natasha Sharygina, and Katerina Barone-Adesi

Slicing Concurrent Real-Time System Specications for Verification 54
Ingo Brückner

Slotted-Circus: A UTP-Family of Reactive Theories 75
Andrew Butterfield, Adnan Sherif, and Jim Woodcock

Bug Hunting with False Negatives . 98
Jens Calamé, Natalia Ioustinova, Jaco van de Pol and
Natalia Sidorova

Behavioural Specifications from Class Models . 118
Alessandra Cavarra and James Welch

Inheriting Laws for Processes with States . 138
Yifeng Chen

Probabilistic Timed Behavior Trees . 156
Robert Colvin, Lars Grunske, and Kirsten Winter

Guiding the Correction of Parameterized Specifications 176
Jean-François Couchot and Frédéric Dadeau

Proving Linearizability Via Non-atomic Refinement 195
John Derrick, Gerhard Schellhorn, and Heike Wehrheim

Lifting General Correctness into Partial Correctness is ok 215
Steve Dunne and Andy Galloway

Verifying CSP-OZ-DC Specifications with Complex Data Types and
Timing Parameters . 233

Johannes Faber, Swen Jacobs, and Viorica Sofronie-Stokkermans

Modelling and Verification of the LMAC Protocol for Wireless Sensor
Networks . 253

Ansgar Fehnker, Lodewijk van Hoesel, and Angelika Mader

VIII Table of Contents

Finding State Solutions to Temporal Logic Queries 273
Mihaela Gheorghiu, Arie Gurfinkel, and Marsha Chechik

Qualitative Probabilistic Modelling in Event-B . 293
Stefan Hallerstede and Thai Son Hoang

Verifying Smart Card Applications: An ASM Approach 313
Dominik Haneberg, Holger Grandy, Wolfgang Reif, and
Gerhard Schellhorn

Verification of Probabilistic Properties in HOL Using the Cumulative
Distribution Function . 333

Osman Hasan and Sofiène Tahar

UTP Semantics for Web Services . 353
He Jifeng

Combining Mobility with State . 373
Damien Karkinsky, Steve Schneider, and Helen Treharne

Algebraic Approaches to Formal Analysis of the Mondex Electronic
Purse System . 393

Weiqiang Kong, Kazuhiro Ogata, and Kokichi Futatsugi

Capturing Conflict and Confusion in CSP . 413
Christie Marr (née Bolton)

A Stepwise Development Process for Reasoning About the Reliability
of Real-Time Systems . 439

Larissa Meinicke and Graeme Smith

Decomposing Integrated Specifications for Verification 459
Björn Metzler

Validating Z Specifications Using the ProB Animator and Model
Checker . 480

Daniel Plagge and Michael Leuschel

Verification of Multi-agent Negotiations Using the Alloy Analyzer 501
Rodion Podorozhny, Sarfraz Khurshid, Dewayne Perry, and
Xiaoqin Zhang

Integrated Static Analysis for Linux Device Driver Verification 518
Hendrik Post and Wolfgang Küchlin

Integrating Verification, Testing, and Learning for Cryptographic
Protocols . 538

Martijn Oostdijk, Vlad Rusu, Jan Tretmans, R.G. de Vries, and
T.A.C. Willemse

Table of Contents IX

Translating FSP into LOTOS and Networks of Automata 558
Gwen Salaün, Jeff Kramer, Frédéric Lang, and Jeff Magee

Common Semantics for Use Cases and Task Models 579
Daniel Sinnig, Patrice Chalin, and Ferhat Khendek

Unifying Theories of Objects . 599
Michael Anthony Smith and Jeremy Gibbons

Non-interference Properties for Data-Type Reduction of Communicating
Systems . 619

Tobe Toben

Co-simulation of Distributed Embedded Real-Time Control Systems 639
Marcel Verhoef, Peter Visser, Jozef Hooman, and Jan Broenink

Author Index . 659

Verifying Temporal Properties of CommUnity

Designs

Nazareno Aguirre1, Germán Regis1, and Tom Maibaum2

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto
and CONICET, Ruta 36 Km. 601, Ŕıo Cuarto (5800), Córdoba, Argentina

{naguirre,gregis}@dc.exa.unrc.edu.ar
2 Department of Computing & Software, McMaster University,

1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1
tom@maibaum.org

Abstract. We study the use of some verification techniques for reason-
ing about temporal properties of CommUnity designs. We concentrate on
the verification of temporal properties in the context of branching-time
temporal logic using the SMV tool.

We also discuss ways of modularising the temporal reasoning, by ex-
ploiting the various kinds of morphisms between designs available in
CommUnity. Moreover, we combine SMV verification with some abstract
interpretation mechanisms to overcome a limitation, with respect to the
use of structure for simplification of verification, of CommUnity’s refine-
ment morphisms, the lack of support for data refinement.

1 Introduction

The constant increase in the complexity of software systems demands a continu-
ous search for more and better modularisation mechanisms in software develop-
ment processes, covering not only implementation, but also earlier stages, such
as analysis and design. Indeed, many new modularisation mechanisms influence
not only programming language constructs, but also their associated development
methodologies. Modularisation mechanisms are also of a crucial importance for
formal methods, and in particular for formal specification. Appropriate modular-
isation mechanisms allow us to structure our specifications, dividing the usually
large specifications (due to the degree of detail that formal models demand) into
manageable parts. Also, many modern software systems have an inherent struc-
tural nature, and for these, structured specifications are better suited. Finally,
and more importantly for this paper, modularisation mechanisms allow us to ap-
ply some modularity principles to analyses of properties, taking advantage of the
structure of the design itself, and making some automated and semi-automated
verification techniques scale up and be applicable to larger systems specifications.

There exist many formal specification languages which put an emphasis on the
way systems are built out of components (e.g., those reported in [15,6,20,14]),
thus aiding the modularisation of specifications and designs. CommUnity is one
of these languages; it is a formal program design language which puts special em-
phasis on ways of composing specifications of components to form specifications

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 1–20, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 N. Aguirre, G. Regis, and T. Maibaum

of systems [4]. CommUnity is based on Unity [1] and IP [5], and its foundations
lie in the categorical approach to systems design [7]. Its mechanisms for com-
posing specifications have a formal interpretation in terms of category theory
constructs [4]. Moreover, CommUnity’s composition mechanisms combine nicely
with a sophisticated notion of refinement, which involves separate concepts of
action blocking and action progress. CommUnity also has some tool support, the
CommUnity Workbench [23]. The CommUnity Workbench supports the editing,
compilation, colimit generation (as explained below, colimits represent the joint
behaviour of interacting components in CommUnity) and execution of CommU-
nity programs. However, it currently does not support the verification of logical
properties of designs. For this purpose, we propose the use of well known model
checking tools, in order to verify temporal properties of designs. More precisely,
and due to some particular characteristics of CommUnity, we propose the use
of CTL based model checking to analyse temporal properties of CommUnity
designs. We start by defining a translation from CommUnity designs into SMV
specifications in a semantics preserving way; since our goal is to verify temporal
properties of designs, we have to consider a semantics for CommUnity designs
that is more restrictive than (but compatible with) the semantics of open Com-
mUnity designs described in [12]. We then attempt to modularise the verification
activities via the superposition and refinement morphisms available in CommU-
nity, as indicated in [13]. This is very important, since it allows us to exploit the
structure of CommUnity designs for verification, a task that is crucial for the
successful use of model checking and other automated analysis techniques. The
idea is to check properties required of a component from the specification of that
component, thus exponentially reducing the search space associated with these
checks, as compared to the search space associated with the much larger speci-
fication of the system. Although not all properties are necessarily preserved by
including a component in a system, by means of some structuring relationship,
important categories of properties are. Thus economies of scale might be achieved
by using this structuring information to structure verifications. We concentrate
on the information supplied by superposition relationships, used in structuring
designs, but also discuss refinements. Finally, we combine model checking with
predicate abstraction [8] in order to overcome a limitation (with respect to the
modularisation of verification) of CommUnity refinements, namely the lack of
support for data refinement [13].

The paper proceeds as follows. In section 2 we describe CommUnity and the
concepts of designs and programs, including the structuring principles used to
build systems from components. We also summarise the transition systems se-
mantics of designs. Then in section 3, we discuss the verification of CommUnity
designs using SMV, how the required translation is defined, and how the verifi-
cation can be modularised, in some cases, by using the structure defined by the
superposition morphisms used in structuring the design. We also discuss the re-
lationship between refinement morphisms and temporal properties, and describe
how we complement the CTL model checking with predicate abstraction, which
is necessary due to the fact that refinement morphisms do not allow for data

Verifying Temporal Properties of CommUnity Designs 3

refinement. We conclude with a discussion of results and future research. In or-
der to illustrate the main ideas of the paper, we develop a case study based on a
modular specification of a processor with a simple process scheduling mechanism.

2 CommUnity Designs

In this section, we introduce the reader to the CommUnity design language and
its main features, by means of an example. The computational units of a system
are specified in CommUnity through designs. Designs are abstract programs, in
the sense that they describe a class of programs (more precisely, the class of all
the programs one might obtain from the design by refinement), rather than a
single program. In fact, when a design does not admit any further refinement, it
is called a program [22].

Before describing in some detail the refinement and composition mechanisms
of CommUnity, let us describe the main constituents of a CommUnity design.
Assume that we have a fixed set ADT of datatypes, specified as usual via a
first-order specification. A CommUnity design is composed of:

– A set V of channels, typed with sorts in ADT . V is partitioned into three
subsets Vin, Vprv and Vout, corresponding to input, private and output chan-
nels, respectively. Input channels are the ones controlled, from the point of
view of the component, by the environment. Private and output channels are
the local channels of the component. The difference between these is that
output channels can be read by the environment, whereas private channels
cannot.

– A first-order sentence Init(V), describing the initial states of the design1.
– A set Γ of actions, partitioned into private actions Γprv and public actions
Γpub. Each action g ∈ Γ is of the form:

g[D(g)] : L(g), U(g) → R(g)

where D(g) ⊆ Vprv ∪ Vout is the (write) frame of g (the local channels that
g modifies), L(g) and U(g) are two first-order sentences such that U(g) ⇒
L(g), called the lower and upper bound guards, respectively, and R(g) is a
first-order sentence α(V ∪ D(g)′), indicating how the action g modifies the
values of the variables in its frame (D(g) is a set of channels and D(g)′ is the
corresponding set of “primed” versions of the channels in D(g), representing
the new values of the channels after the execution of the action g.)

The two guards L(g) and U(g) associated with an action g are related to re-
finement, in the sense that the actual guard of an action gr implementing the
abstract action g, must lie between L(g) and U(g). As explained in [13], the
negation of L(g) establishes a blocking condition (L(g) can be seen as a lower

1 Some versions of CommUnity, such as the one presented in [13], do not include an
initialisation constraint.

4 N. Aguirre, G. Regis, and T. Maibaum

bound on the actual guard of an action implementing g), whereas U(g) estab-
lishes a progress condition (i.e., an upper bound on the actual guard of an action
implementing g).

Of course, R(g) might not uniquely determine values for the variables D(g)′.
As explained in [13], R(g) is typically composed of a conjunction of implications
pre ⇒ post , where pre is a precondition and post defines a multiple assignment.

To clarify the definition of CommUnity designs, let us suppose that we would
like to model a processor. We will abstract away from the actual code of the
processes, and represent them simply by an ordered pair of non negative integers
(denoted by nat), where the first integer represents a label for identifying the
process and the second one the number of seconds of execution remaining. Then,
a processor is a simple CommUnity design composed of:

– A local channel curr proc:〈nat, nat〉, representing the current process ac-
cessing the processor. We use a dummy value (0, 0) for indicating that the
processor is idle.

– an input channel in proc:〈nat, nat〉, for obtaining a new process (from
the environment, in an abstract sense) to be run by the processor.

– An action load, which loads a new process into the processor (reading the
corresponding values from the input variable in proc).

– An action run, that executes the current process for a second.
– An action kill, that removes the current process, replacing it by the dummy

(0, 0).
– An action switch, which, if the current process is not the dummy (0, 0),

replaces it by the incoming process in proc.

The CommUnity design corresponding to this component is shown in Figure 1.

� �

Design Processor
in

in proc: <nat, nat>
out

curr proc: <nat, nat>
init

curr proc = (0,0)
do

load[curr proc] : in proc. snd > 0 ∧ in proc. fst �= 0 ∧ curr proc=(0,0)
−→ curr proc’=in proc

[] prv run[curr proc] : curr proc. snd > 0, curr proc. snd > 0
−→ curr proc’=(curr proc.fst , curr proc. snd−1)

[] kill [curr proc] : curr proc. fst �= 0, false −→ curr proc’=(0,0)
[] switch[curr proc] : in proc. snd > 0 ∧ in proc. fst �= 0 ∧
curr proc. snd >0, false

−→ curr proc’=in proc
� �

Fig. 1. An abstract CommUnity design for a simple processor

Verifying Temporal Properties of CommUnity Designs 5

In Fig. 1, one can see the different kinds of guards that an action might have.
For instance, action kill has safety and progress guards (curr proc.fst 	= 0
and false, respectively). Since the progress guard for this action is false, the
component is not obliged to execute the action when the environment requires
it to do so.

Another important point to notice in the processor design is the apparent
behaviour of action switch. After a switch, the previous value of curr proc
seems to be missing, since the component does not store it anywhere else, nor
“sends” it to another component. It will become clearer later on that it will
be the responsibility of other components in the architecture to “extract” the
current process and store it when a switch takes place. This is basically due
to the fact that communication between components is achieved by means of
coordination, rather than by explicit invocation.

To complete the picture, let us introduce some further designs. One is a
bounded queue of processes, with the traditional enqueue (enq) and dequeue
(deq) operations, implemented over an array. The other is a process generator, a
design that generates new processes to feed the system. These designs are shown
in Figures 2 and 3, respectively.

� �

Design Process Queue
in

in proc: <nat, nat>
out

out proc: <nat, nat>
local

queue: array(10,<nat, nat>)
low, up, count: nat

init
out proc = (0,0) ∧ ∀ x ∈ [1..10] :

queue[x] = (0,0) ∧ low = 1 ∧ up = 1 ∧ count = 0
do

enq[queue,out proc,count,up] : count<10 ∧ in proc. fst �= 0
−→ queue’[up] = in proc ∧ up’ = (up mod 10)+1 ∧

out proc’ = if(count=0,in proc,queue[low]) ∧ count’=count+1
[] deq[queue,out proc,count,low] : count>0 , count>5

−→ queue’[low] = (0,0) ∧ low’ = (low mod 10)+1 ∧
out proc’ = queue[(low mod 10)+1] ∧count’=count−1

� �

Fig. 2. An abstract CommUnity design for a process queue

the definition of action enq makes use of an if-then-else expression, in the syntax
of the CommUnity Workbench. Notice that the progress guard for action load of
the processor coincides with its blocking guard, which is too weak to guarantee
a scheduling policy. Stronger progress guards for actions related to load will
arise as a result of composing the processor with other components, to achieve

6 N. Aguirre, G. Regis, and T. Maibaum

� �

Design Process Generator
out

out proc: <nat, nat>
local

curr id : nat
init

curr id = 1 ∧ out proc = (0,0)
do

prv gen[out proc] : out proc.fst �= curr id
−→ out proc’. fst = curr id ∧ out proc’. snd > 0

[] send[out proc,curr id] : out proc.fst = curr id
−→ out proc’=(0,0) ∧ curr id ’ = curr id+1

� �

Fig. 3. An abstract CommUnity design for a process generator

a proper scheduling policy. In our case, for example, we require the dequeing of
processes to be ready whenever the number of processes in the queue exceeds
half the queue capacity (see the progress guard of action deq).

2.1 Component Composition

In order to build a system out of the above components, we need a mechanism
for composition. The mechanism for composing designs in Community is based
on action synchronisation and the “connection” of output channels to input
channels (shared memory). Since our intention is to connect both the process
generator and the processor to the queue (since processes to be enqueued might
be generated by the generator, or come from a processor’s currently executing
process being “switched out”), and the queue has a single “incoming interface”,
we have a kind of architectural mismatch. In order to overcome it, we can use a
duplexer, as specified in Figure 4. The duplexer enables us to design a system in
which independent use of the operations of the queue can be made by components
that are clients of the queue. Using this duplexer, we can form the architecture
shown in Figure 5. In Fig. 5, the architecture is shown using the CommUnity
Workbench graphical notation. In this notation, boxes represent designs, with
its channels and actions, and lines represent the interactions (“cables” in the
sense of [13]), indicating how input channels are connected to output channels,
and which actions are synchronised.

2.2 Semantics of Architectures

CommUnity designs have a semantics based on (labelled) transition systems.
Architectural configurations, of the kind shown in Fig. 5, also have a precise
semantics; they are interpreted as categorical diagrams, representing the archi-
tecture [13]. The category has designs as objects and the morphisms are super-
position relationships. A superposition morphism between two designs A and B

Verifying Temporal Properties of CommUnity Designs 7

� �

Design Duplexer
in

in 1 : <nat, nat>
in 2 : <nat, nat>

out
out proc: <nat, nat>

do
read1[out proc] : in 1 �= (0,0) ∧ out proc= (0,0) −→ out proc’=in 1

[] read2[out proc] : in 2 �= (0,0) ∧ out proc= (0,0) −→ out proc’=in 2
[] send: out proc �= (0,0) −→ out proc’=(0,0)

� �

Fig. 4. An abstract CommUnity design for a simple duplexer

Fig. 5. A graphical view of the architecture of the system

indicates, in a formal way, that B contains A, and uses it while respecting the
encapsulation of A (regulative superposition). The interesting fact is that the
joint behaviour of the system can be obtained by taking the colimit of the cate-
gorical diagram corresponding to the architecture [4]. Therefore, one can obtain
a single design (the colimit object), capturing the behaviour of the whole system.

2.3 Semantics for Abstract CommUnity Designs

In [13], the authors state that designs have an operational semantics when they
are closed (i.e., they do not have input channels), the safety and progress guards
for each action coincide, and the assignment for each action fully determines the
value for each v′, where v is in the frame of the action. For abstract CommUnity
designs (i.e., not programs), it is not difficult to define a transition system se-
mantics, by assuming that input channels can change arbitrarily and that, when
no action occurs, the values of the local variables are preserved. This is exactly
the idea followed in the definition of a denotational semantics for abstract Com-
mUnity designs given in [12]. The semantics defined therein is, however, not

8 N. Aguirre, G. Regis, and T. Maibaum

completely adequate for our purposes, since many labelled transition systems
might correspond to an open design. Since we want to verify temporal prop-
erties of designs, we are forced to interpret these, when they are opened, in a
particular way; we have been careful to do so in a way that is compatible with
the semantics of open CommUnity designs given in [12] (i.e., we interpret designs
as particular transition systems within the possible interpretations as described
in [12]). Moreover, when a design is a program, the interpretation coincides with
the operational semantics of these, as described in [13]. The semantics described
below, which is a specialisation of that defined in [12], will allow us to establish
a direct connection between arbitrary CommUnity designs (including programs)
and temporal logic, with the aim of verifying temporal properties of designs.

Let 〈LADT , Φ〉 be a first-order specification of datatypes, UADT a model of
〈LADT , Φ〉 and P = 〈Vf , G〉 a CommUnity design. Then, P defines a transition
system TP = 〈Vf , θ, T 〉 over LADT and UADT , where:

– the set of flexible variables is the set Vf of channels of P ,
– the initialisation condition θ is the initialisation Init of P ,
– for each action g ∈ G, we include a transition tg in T , whose transition

relation is the following:

ρtg : L(g) ∧R(g) ∧ ST (D(g))

where ST (D(g)) is the formula
∧

v∈(Loc(Vf−D(g))(v = v′) (stuttering of the
local variables not in the frame of g),

– T includes a stuttering transition tI ,
– T also includes a local stuttering transition id , whose transition relation is

the following:
ρid :

∧

v∈Loc(Vf)

v = v′

The first two points in the above construction of the transition system TP are
easy to understand. The third point indicates that the actions of P correspond to
transitions of TP , as one might have expected. Notice that both the safety guard
and the precondition for an action g (the first captured by the conjunct L(g)
and the second is embedded in R(g)) are considered in the transition; moreover,
the corresponding assignment has to take place and the values of those local
variables not in the frame of g are required to be preserved. The fourth and
fifth points characterise the steps in which the design P is not actively involved
(computation steps of the environment); note that input channels are allowed to
change in a stuttering step of the design P .

The reader might notice that several constructs of CommUnity designs are
ignored in the above described construction of transition systems. The most no-
table case is that of progress guards. Progress guards are not taken into account
in the construction of transition systems for designs, because they represent
“readiness” constraints which are not part of the transition system definition,
but restrictions on the allowed models. For the particular models that we have
chosen as the interpretations for CommUnity designs, these trivially hold, as

Verifying Temporal Properties of CommUnity Designs 9

long as the progress guards of actions are stronger than the corresponding safety
ones. More precisely, when the progress guard U(g) of an action g holds, g must
be “available” to be executed (more formally, any state s in a computation of a
design P in which U(g) holds must have a tg-successor state s′); since the en-
abling condition for actions, according to our interpretation, is the safety guard,
whenever L(g) is true the action is available, thus guaranteeing that U(g) implies
the availability of g. Clearly, the logical characterisation of progress constraints
requires the use of path quantifiers. The reason for adopting a branching time
temporal logic is to be able to express such constraints. These are useful, since
the user might want to manually strengthen the enabling guards of actions,
which is a sound activity (with respect to [12]) as long as they are not strength-
ened “beyond” the corresponding progress guards. Finally, according to [12],
one must restrict runs of a transition system TP for a design P to strongly fair
runs with respect to private actions, taking as their enabling conditions their
corresponding safety guards.

Notice also that the difference between private and shared actions does not
have an impact in the construction of transition systems for designs. This is due
to the fact that, as explained in [13], the difference between private and shared
actions only has to do with the allowed forms of interaction between designs.

3 Verifying Temporal Properties of Designs

3.1 The SMV System

SMV (Symbolic Model Verifier) is one of the most widely used model checking
tools. Originally developed at Carnegie Mellon [18], SMV was the first model
checking tool that used a symbolic representation of transition systems based on
binary decision diagrams, which allowed for the application of model checking
techniques to larger finite state systems. SMV comprises a modular notation for
describing transition systems, as well as a notation for describing properties of
these, in the CTL temporal logic. We will not give a full description of SMV,
but just a brief overview of the notation, so that the reader not familiar with it
can straightforwardly follow our descriptions.

The SMV description of a system is organised in modules. Each module de-
scribes a portion of a finite state system, and its specification is given in terms
of typed variables, initialisation constraints and a transition relation. More pre-
cisely, a module description starts with declarations, which are essentially given
as a list of typed variables. These types for variables must be bounded. The
variables in declarations can be accompanied by a declaration of new types or
aliases of types, for variable typing. The state space associated with a module
will then be given by all the combinations of values of the corresponding types
for the declared variables. The transition system associated with the system
corresponding to a module is defined in terms of:

– a definition of the initial state, declared as initial values for each of the
declared variables, and

10 N. Aguirre, G. Regis, and T. Maibaum

– a definition of the transition relation, typically given as a “case” expression
for the next value to be assumed for each of the declared variables.

Let us provide, as a simple example, the following module definition, which
corrresponds to a manual translation of the simplest CommUnity design of our
example, the process generator: In our SMV models, MAXINT is a user provided

MODULE Process Generator() {

out proc: array 0..1 of 0.. MAXINT;
curr id : array 0..1 of 0.. MAXINT;

init(out proc):= [0,0];
init(curr id):= 1;

next(curr id):= case {
out proc[0] = curr id: curr id +1; −− action send

out proc[0] ˜= curr id: curr id ; −− action gen

};

next(out proc):= case {
out proc[0] = curr id: [0,0]; −− action send

out proc[0] ˜= curr id: [curr id ,1.. MAXINT]; −− action gen

};
}

positive constant, representing the maximum positive integer we consider. Notice
also that it is possible to represent nondeterministic assignment: in the above
example, the second component of the out proc variable is nondeterministically
assigned a positive value, in the definition of its next value associated with action
gen.

3.2 Translating CommUnity Designs into SMV

We now describe our general characterisation of CommUnity designs in the lan-
guage of the SMV tool. We will illustrate the translation from CommUnity into
SMV by means of a detailed example. It is worth mentioning that we have chosen
Cadence SMV [19] because of its richer language, which allows us to describe
transitions involving structured-typed variables, such as arrays, in a more concise
way.

The translation we describe only involves designs and not architectural con-
figurations. As explained before, any valid configuration is a representation of a
single design (the colimit of the categorical diagram corresponding to the archi-
tecture), so we do not lose generality.

The simplest part is the characterisation of channels. These are simply trans-
lated as variables in SMV, and for obvious reasons we limit ourselves to the types
supported by Cadence SMV. For our simple Processor design described before,
the channels are represented as follows:

Verifying Temporal Properties of CommUnity Designs 11

in proc : array 0..1 of 0.. MAXINT; −− Input variable

curr proc : array 0..1 of 0.. MAXINT;

The initialisation of channels is translated into “init” specifications for the
corresponding variables in SMV, as one might expect:

−− Initialisation of variables

init(in proc) := [0.. MAXINT,0..MAXINT]; −−Input variable

init(curr proc):= [0,0];

The slightly more complicated part is the characterisation of actions. These
need to be encoded into the “next” relationships for the variables. Since we need
to simulate a scheduler for actions, which chooses nondeterministically one of
the available actions, we introduce a “random variable”. This variable randomly
takes a numeric value corresponding to an action (including skip) to be executed
in the next step as long as its safety guard is satisfied; if the safety guard of the
chosen action is not true, then the action executed will be skip. For the Processor
design, the scheduling of the actions is represented in the following way:

−− Definition of Scheduler

−− Generation of random values used to schedule actions

init(rnd) := 0;
next(rnd) := 0..4;

init(curr action) := skip;
next(curr action) := case{

rnd = 0 : skip;
rnd = 1 & (next(in proc[1]) > 0 & next(in proc[0]) ˜= 0 &

next(curr proc) = [0,0]) : load;
rnd = 2 & (next(curr proc[1]) > 0): run;
rnd = 3 & true : kill ;
rnd = 4 & (next(in proc[1]) > 0 & next(in proc[0]) ˜= 0 &

next(curr proc[1]) > 0) : switch;
1: skip;

};

A point worth noticing is that the execution of the system in the SMV rep-
resentation of a design P starts with a skip. This simplifies the specification of
the initialisation statement in the translation, since otherwise we would need
to take into account the initialisation constraints in P for the scheduling of the
first action to be executed. Our alternative does not restrict the executions of
the system, which from the second instant onwards will evolve by randomly cho-
sen (available) actions. Notice that safety guards are part of the scheduling. The
assignments of the actions, on the other hand, appear on the “next” definitions
for the channels, which are formed by a “case” expression which depends on the
action executed:

12 N. Aguirre, G. Regis, and T. Maibaum

−− Definition of next value of variables

next(in proc) := [0.. MAXINT,0..MAXINT]; −−Input variable

next(curr):= case{
curr action = skip : curr proc;
curr action = load : in proc;
curr action = run : [curr proc[0], curr proc[1] − 1];
curr action = kill & curr proc[0] = 0 : curr proc;
curr action = kill & curr proc[0] ˜= 0 : [0,0];
curr action = switch : in proc;

};

Notice that, since in proc is an input variable, it can change arbitrarily in each
step.

Finally, we need to represent the constraints corresponding to progress guards
and strong fairness for private actions. These are easily characterised in CTL,
using an ASSUME clause for progress guards constraints and a FAIRNESS clause
for strong fairness on private actions:

−− Fairness for private actions

FAIRNESS
curr action = {run};

−− Specification of progress guards as CTL formulae

ASSUME progress switch;
progress switch : SPEC AG ((curr proc[1] > 4 & in proc ˜= [0,0])

→ EX(curr action = switch));

Notice that progress guards are interpreted as (redundant) ASSUME clauses. If
the user decides to strengthen some guards of actions in order to obtain more re-
strictive interpretations of a design, these must not go beyond the corresponding
progress guards, in order not to make the SMV specification inconsistent.

Now we only need to provide the CTL formulae to be verified. For instance,
we might want to check that if the id of the current process is 0 then it is the
dummy process (i.e., the number of seconds remaining is also 0):

−− Properties to be verified

NoInvalidProccess :SPEC AG (curr proc[1] >0 →curr proc[0]>0);

3.3 Modularising the Verification Through Morphisms

As put forward in [4] and later work, different notions of component relationships
can be captured by morphisms, in the sense of category theory. We now exploit
these morphisms in order to modularise the SMV-based verification, in the way
indicated in [13].

Verifying Temporal Properties of CommUnity Designs 13

Superposition Morphisms. We start by describing how superposition mor-
phisms, which are used in the composition of CommUnity designs, are exploited.
Let us first recall the formal notion of superposition morphism. A superposition
morphism σ : A → B is a pair of mappings 〈σch, σact〉 such that: (i) σch is a
total mapping from channels in A to channels in B, respecting the type and
kind2 of channels (except that input channels can be mapped to input or out-
put channels), (ii) σact is a partial mapping from actions of B to actions of A,
which preserves the kind (shared or private) of actions, does not reduce the write
frame of actions of A, and the lower bound, upper bound and assignment for
each action of A is strengthened in the corresponding actions of B; moreover,
the encapsulation of A must be preserved, meaning that every action of B that
modifies a channel v of ran(σch) must “invoke” an action of A that includes
σ−1

ch (v) in its write frame.
Basically, σch indicates how the channels of A are embedded as channels of

B. The mapping σact, on the other hand, indicates, for each action a of A, all
the actions that use it in B (through σ−1

act(a)).
The main result that enables us to modularise the verification via superposi-

tion morphisms is reported in [12]. Therein, the authors indicate that superpo-
sition morphisms preserve invariants, the effect of actions on channels and the
restrictions to the occurrence of actions. More generally, we can affirm that su-
perposition morphisms preserve safety properties, which is a direct consequence
of the following theorem:

Theorem 1. Let A and B be CommUnity designs, and 〈σch, σact〉 : A → B a
superposition morphism. Let s be a computation of B, according to the above
defined semantics of designs, and defined over an interpretation U for datatypes.
The computation sA, defined as the restriction of states in s to channels in
σch(VA), is a computation of A.

Applied to our example, this means that we can reason locally about safety
properties of the components of a system. We have some examples below in
which we show the improvement that local verification of safety properties for
our case study constitutes. Of course, as is well known, this does not hold for
liveness properties, which are not necessarily preserved by superposition (it is
well known that, when a component is put to interact with others, some of its
liveness properties might be lost).

Notice also that, among all possible interpretations of an open CommUnity
design, we choose the less restrictive one, i.e., that in which the actions are
enabled under the weakest possible conditions. This has as a consequence that
the safety properties of the design that are verified using our SMV translation
are indeed properties of all the valid transition system interpretations (according
to [12]) of the design.

2 By the type of the channel we mean the sort with which it is associated; by the kind
of a channel we mean its “input”, “output” or “private” constraint.

14 N. Aguirre, G. Regis, and T. Maibaum

Refinement Morphisms. An important relationship between designs is re-
finement. Refinement, besides relating abstract designs with more concrete “im-
plementations”, is also useful for characterising parametrisation and parameter
instantiation. In [13], the authors present a characterisation of refinement in
terms of category theory constructions. Essentially, they demonstrate that Com-
mUnity designs and morphisms capturing the notion of refinement constitute a
category. As defined in [13], a refinement σ between designs A and B is a pair
of mappings 〈σch, σact〉, such that (i) σch is a total mapping from channels in
A to channels in B, respecting the type and kind of channels, and injectively
mapping different output and input channels of A to different output and input
channels of B; (ii) σact is a partial mapping from actions of B to actions of A,
which preserves the kind of actions, does not reduce the frame of actions of A,
the lower bound and assignment for each action of A is strengthened in the cor-
responding actions of B; moreover, the upper bound of each action a of A must
be weakened by the disjunction of the upper bounds of all actions in B refining
a, meaning that every action of B that modifies a channel v of ran(σch) must
“invoke” an action of A that includes σ−1

ch (v) in its frame. Also, shared actions
of A must have at least one corresponding action in B, and all new actions of B
do not modify the local channels of A.

Notice that, with respect to the assignment and lower bounds of actions, the
refinement morphisms make them stronger when refining a design. Therefore,
we again can affirm, as for superposition morphisms, that, if σ is a refinement
morphism between designs A and B, then every execution trace of B, restricted
to the channels originating in A, is an execution of A, and therefore safety prop-
erties are preserved along refinement morphisms. Moreover, as shown in [13],
refinement morphisms also preserve properties expressing the readiness of ac-
tions (called co-properties in [13]). This does not mean, however, that refinement
morphisms are theorem preserving morphisms, with respect to the logic CTL.
Many liveness properties expressible in CTL, for example, are not necessarily
preserved along refinement morphisms. Consider, as a trivial example, a design
containing, among other things, a private action a:

� �

Design P
...
out

x : int
...

init
x = 0 ∧ ...

do
prv a[x] : true, false −→ x’ = x + 1
...

� �

where the variable x can only be modified by action a. Consider a refinement of
this design, in which all actions and channels are maintained without modifica-
tions, except for a, which is refined as follows:

Verifying Temporal Properties of CommUnity Designs 15

� �

Design P’
...
out

x : int
...

init
x = 0 ∧ ...

do
prv a[x] : false , false −→ x’ = x + 1
...

� �

It is easy to see that, due to the strong fairness constraints imposed on private
actions, the CTL liveness property AF (x = 1) holds for the original design, but
it does not hold for its described refinement.

One might be interested in exploiting refinement morphisms for simplifying
the verification of properties of designs, since some safety and readiness proper-
ties might be easier to verify in more abstract designs, i.e., designs with fewer
and simpler actions. However, the simplification one might obtain by moving
from a design to more abstract (i.e., less refined) ones is limited, since refine-
ment morphisms do not allow for data refinement (the types of channels must be
preserved by refinement). This means, basically, that the state space of designs
does not change through refinement morphisms. Thus, refinement morphisms
are quite restricted for the simplification of verification, especially in the context
of automated verification, where data abstraction is known to have a big impact
on the verification times. For this reason, we complement below CommUnity’s
morphisms with abstraction mechanisms.

Abstraction. As we mentioned, abstraction is known to have a big impact
in automated verification, especially for model checking [2]. Since refinement
morphisms do not support data refinement, we considered the use of predicate
abstraction [8], as a way of improving the SMV-based verification of CommUnity
designs. Essentially, predicate abstraction consists of, given a (possibly infinite
state) transition system, constructing an abstract version of it, whose abstract
state space is determined by a number of predicates on the original state space.
Basically, the state space of the abstract transition system is composed of equiva-
lence classes of the original states, according to the provided (abstraction) pred-
icates [8]. The more complex part is the construction of abstract transitions
corresponding to the concrete ones, which requires checking to which of the
equivalence class(es) the source and target states of each transition correspond.
This can be computed automatically in many cases, and its complexity (not from
a computational point of view) greatly depends on the provided predicates.

We used predicate abstraction in order to improve the verification for our
example. For instance, we can concentrate on the processor design, and consider
the following predicates to do the abstraction:

– the number of seconds remaining for curr proc is 0,
– the process id for curr proc is 0.

16 N. Aguirre, G. Regis, and T. Maibaum

This leads us to the following four possibilities for curr proc:

– dummy, if the number of seconds remaining is 0 and the process id is 0,
– finished, if the number of seconds remaining is 0 and the process id is not 0,
– unfinished, if the number of seconds remaining is not 0 and the process id is

not 0,
– invalid, otherwise.

We can reproduce this abstraction for the in proc variable, which leads us to a
version of the SMV specification for the processor in which we do not distinguish
the actual values of curr proc and in proc, but only whether their ids and
remaining seconds are nil or not, which obviously makes the transition system
for the design much smaller.

The corresponding abstract version of the SMV Processor module is the fol-
lowing:

typedef PROCCESS {dummy,finished,unfinished,invalid};
MODULE main (){

rnd : 0..4; −− used to schedule actions randomly

curr action : {skip, load, run, kill , switch1 };
−− Definition of the variables

in proc : PROCCESS; −−Input variable

curr proc : PROCCESS;
−− Definition of Scheduler

init(rnd) := 0;
next(rnd) := 0..4;
init(curr action) := skip;
next(curr action) := case{

rnd = 0 : skip;
rnd = 1 & (next(in proc) = unfinished & next(curr proc) = dummy) : load;
rnd = 2 & (next(curr proc) = unfinished) : run;
rnd = 3 & true : kill ;
rnd = 4 & (next(in proc) = unfinished & next(curr proc) = unfinished) :

switch1;
1: skip; };

−− Initialisation of variables

init(in proc) := { dummy,finished,unfinished,invalid};
init(curr proc):= dummy;

−− Definition of next value of variables

next(in proc) := { dummy,finished,unfinished,invalid}; −−Input variable

next(curr proc):= case{
curr action = skip : curr proc;
curr action = load : in proc;
curr action = run : {unfinished , finished } ;
curr action = kill & (curr proc = dummy | curr proc = invalid) : curr proc;
curr action = kill & (curr proc = unfinished | curr proc = finished) : dummy;
curr action = switch1 : in proc; };

−− Fairness for private actions

FAIRNESS curr action = {run};

Verifying Temporal Properties of CommUnity Designs 17

−− Specification of progress guards as CTL formulae

ASSUME progress switch1;
progress switch1 : SPEC AG ((curr p = unfinished & in p ˜= dummy)

→ EX(curr action = switch1));
}

We can verify the property that if the id of the current process is 0 then it is
the dummy process, whose concrete and abstract versions are the following:

NoInvalidProccess :SPEC AG (curr proc[1] >0 →curr proc[0]>0);

NoInvalidProccess :SPEC AG (curr proc ˜= invalid);

The validity of the abstract version of this property implies the validity of
its concrete version [2]. Since this is a safety property, it is guaranteed that it
will also hold for the complete system (since superposition morphisms preserve
safety properties).

A point regarding abstraction and readiness is worth noticing. As indicated
in [2], all CTL formulae not involving existential path quantifiers are preserved
through abstraction. Readiness assertions require existential path quantifiers to
be expressed in CTL, and therefore these (expressing required non determinism
of components) might not be preserved through abstractions.

3.4 Some Sample Properties

To end this section, we provide some sample properties we have been able to
verify using our translation into SMV:

“Variables up and low are always valid positions of queue”

Bounds:SPEC AG(low 2 >= 1 & low 2 <= SIZE & up 2 >= 1 & up 2 <= SIZE);

“Variable count ranges from 0 (empty queue) to SIZE-1 (full queue)”

Count:SPEC AG(count 2 >= 0 & count 2 <= SIZE−1);

“Variable out proc of the duplexer always holds a dummy process or a valid
process (a positive process id and a positive number of seconds)”

NoInvalidDuplexerOut:SPEC AG(out p 0 = [0,0] | (out p 0[0] >0 & out p 0[1] >0))

“All processes held in queue have a positive number of seconds remaining to
be run”

18 N. Aguirre, G. Regis, and T. Maibaum

for (i =1;i<=SIZE;i=i+1){NoFinished[i]:SPEC AG(q 2[i][0] >0 →q 2[i][1]>0);}

“All live processes (in the processor) eventually finish”

for (i =1;i<=MAXINT;i=i+1){Proccessed[i]:
SPEC AG(curr p 3[0]=i & curr p 3[1] >0 →AF (curr p 3[0]=i & curr p 3[1]=0));}

Some of these properties can be verified locally within one component’s design
(for instance, the first two properties above are properties of the queue). This
is so thanks to the fact that safety properties of designs are preserved through
superposition morphisms. Other properties, such as the third one above, are
emergent properties, in the sense of [3], i.e., they are properties of a design that
emerge due to the interaction of it with other designs of the system.

4 Conclusions

We have presented a characterisation of CommUnity designs in SMV, defined
with the aim of verifying temporal properties of these designs. We have experi-
mented with the modularisation of the verification activities in SMV by exploit-
ing Community’s superposition morphisms, in the way indicated in [13]. We
also observed that refinement morphisms, related to abstraction, are not pow-
erful enough with respect to the improvement of automated verification, since
they do not allow for data refinement. In order to overcome this limitation, we
used an abstract interpretation mechanism known as predicate abstraction [8].
We also observed that, although predicate abstraction preserves a wide range
of properties of designs, it does not necessarily preserve readiness properties of
actions, related to the required non determinism of components. We developed a
case study based on a modular specification of a processor with a simple process
scheduling mechanism, and verified several temporal properties, including safety
and liveness properties. Some of these were verified modularly, using abstraction
and superposition morphisms.

We believe that CommUnity is an interesting language that deserves more at-
tention. As we mentioned, it is a language that puts special emphasis on ways of
composing specifications of components via their coordination, and clearly dis-
tinguishes action availability from action readiness. Moreover, there have been
recently some extensions of it in order to capture complex notions such as mo-
bility and dynamic reconfiguration. Of course, having appropriate tool support
would improve the use of the language, and the work we report here is an initial
attempt in this direction.

We are implementing a tool for verifying temporal properties of CommU-
nity designs. This tool is, at the moment, just a compiler that implements the
translation of CommUnity designs into SMV. We are using the colimit genera-
tion procedure available in the CommUnity Workbench, and using a SAT solver
to check the proof obligations associated to the construction of the abstract

Verifying Temporal Properties of CommUnity Designs 19

transition systems related to predicate abstraction. This is done manually, at
the moment, but we plan to incorporate the generation and verification of these
proof obligations to the tool. We also plan to exploit the hierarchical structure of
SMV specifications in our translation (at the moment, our translations generate
unstructured SMV specifications).

As work in progress, we are trying to characterise the abstraction associated
with predicate abstraction in a categorical way (via an appropriate morphism
capturing data refinement). We are also studying the verification of temporal
properties of CommUnity’s dynamic software architectures [22], i.e., architectural
configuration that might change at run time (e.g., via the deletion or creation of
components, and the deletion and creation of connectors between components).
Reasoning about temporal properties of dynamic architectures is notably more
complex, since it is necessary to characterise the architectural configuration of the
system as part of the state of the system. We are also looking at how aspects, in the
sense of [10], can be applied to CommUnity designs. Aspects, as already observed
in [9] and later work, can be implemented via combinations of superimpositions.
In [11], the authors show how several aspects can be successfully characterised and
combined in an organised way in CommUnity, via the use of higher-order archi-
tectural connectors (aspect weaving would correspond to colimit construction).
In fact, we believe that most aspects can be characterised as architectural trans-
formation patterns, replacing some part of a system design, defined by a pattern
of components and connectors, by another pattern of components and connec-
tors. However, for this approach to be powerful enough, we believe it is neces-
sary to use an additional kind of superposition, so called invasive superpositions,
that can break encapsulation and weakens lower and upper guards, and generalise
CommUnity’s designs to allow the design of hierarchical, reconfigurable systems.
Aspect “weaving” would still be realised by the colimit construction.

Acknowledgements

The first author was partially supported by the Argentinian Agency for Scientific
and Technological Promotion (ANPCyT) and the Agencia Córdoba Ciencia, and
his visits to McMaster University that contributed to this work were supported
by McMaster University and the Canada Research Chair programme. The second
author was partially supported by CONICET and the Agencia Córdoba Ciencia.
The third author was partially supported by McMaster University, the Canada
Research Chair programme, and the Natural Sciences and Engineering Council of
Canada.

References

1. Chandy, K., Misra, J.: Parallel Program Design - A Foundation. Addison-Wesley,
Reading (1988)

2. Clarke, E., Grumberg, O., Long, D.: Model Checking and Abstraction. In: ACM
Trans. on Programming Languages and Systems, vol. 16(5), ACM Press, New York
(1994)

20 N. Aguirre, G. Regis, and T. Maibaum

3. Fiadeiro, J.: On the Emergence of Properties in Component-Based Systems. In:
Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, Springer, Heidelberg
(1996)

4. Fiadeiro, J., Maibaum, T.: Categorical Semantics of Parallel Program Design. In:
Science of Computer Programming, vol. 28(2-3), Elsevier, Amsterdam (1997)

5. Francez, N., Forman, I.: Interacting Processes. Addison-Wesley, Reading (1996)
6. Garlan, D., Monroe, R., Wile, D.: ACME: An Architecture Description Interchange

Language. In: Proc. of CASCON’97, Toronto, Ontario (1997)
7. Goguen, J.: Categorical Foundations for General System Theory. In: Advances in

Cybernetics anda Systems Research, Transcripta Books (1973)
8. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,

O. (ed.) CAV 1997. LNCS, vol. 1254, Springer, Heidelberg (1997)
9. Katz, S., Gil, J.: Aspects and Superimpositions. In: Moreira, A.M.D., Demeyer,

S. (eds.) Object-Oriented Technology. ECOOP’99 Workshop Reader. LNCS,
vol. 1743, Springer, Heidelberg (1999)

10. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, Springer, Heidelberg (1997)

11. Lopes, A., Wermelinger, M., Fiadeiro, J.: Higher-Order Architectural Connectors.
ACM Trans. on Software Engineering and Methodology, vol. 12(1). ACM Press,
New York (2003)

12. Lopes, A., Fiadeiro, J.: Using Explicit State to Describe Architectures. In: Finance,
J.-P. (ed.)ETAPS1999andFASE1999.LNCS, vol. 1577, Springer,Heidelberg (1999)

13. Lopes, A., Fiadeiro, J.: Superposition: Composition vs. Refinement of Non-
Deterministic, Action-Based Systems. In: Formal Aspects of Computing, vol. 16(1),
Springer, Heidelberg (2004)

14. Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D., Mann, W.: Specifica-
tion and Analysis of System Architecture Using Rapide. IEEE Trans. on Software
Engineering. IEEE Press, New York (1995)

15. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software
Architectures. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989,
Springer, Heidelberg (1995)

16. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer, Heidelberg (1991)

17. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems - Safety. Springer,
Heidelberg (1995)

18. McMillan, K.: Symbolic Model Checking - An Approach to the State Explosion
Problem, PhD thesis, SCS, Carnegie Mellon University (1992)

19. McMillan, K.: The SMV Language, Cadence Berkeley Labs, Cadence Design Sys-
tems (1998)

20. Medvidovic, N., Oreizy, P., Robbins, J., Taylor, R.: Using Object-Oriented Typing
to Support Architectural Design in the C2 Style. In: Proc. of ACM SIGSOFT ’96,
San Francisco, CA, ACM Press, New York (1996)

21. Wermelinger, M., Lopes, A., Fiadeiro, J.: Superposing Connectors. In: Proc. of the
10th International Workshop on Software Specification and Design, IEEE Press,
Los Alamitos (2000)

22. Wermelinger, M., Lopes, A., Fiadeiro, J.: A Graph Based Architectural
(Re)configuration Language. In: Proc. of ESEC/FSE’01, ACM Press, New York
(2001)

23. Wermelinger, M., Oliveira, C.: The CommUnity Workbench. In: Proc. of ICSE
2002, Orlando (FL), USA, ACM Press, New York (2002)

Precise Scenarios – A Customer-Friendly

Foundation for Formal Specifications

Oliver Au, Roger Stone, and John Cooke

Loughborough University, England
{o.t.s.au,r.g.stone,d.j.cooke}@lboro.ac.uk

Abstract. A formal specification, written in a mathematical notation, is
beyond the comprehension of the average software customer. As a result,
the customer cannot provide useful feedback regarding its correctness
and completeness. To address this problem, we suggest the formalism
expert to work with the customer to create precise scenarios. With only
a few simple Z concepts, a precise scenario describes an operation by its
effects on the system state. The customer would find a concrete precise
scenario easier to understand than its corresponding abstract schema.
The Z expert derives schemas based on the precise scenarios. Precise
scenarios afford user involvement that improves the odds of a formal
specification fully capturing the user requirements.

Keywords: precise scenario, formal method, requirements specification,
use case, Z notation.

1 Introduction

The most important software project success factor is user involvement [1]. Spec-
ifications in mathematical notations are difficult for users to read and provide
meaningful feedback [2]. Thus a formal specification may not truly reflect their
requirements. This could explain the limited adoption of formal methods [3].
We hope to broaden the appeal of formal specification by integrating into it the
intuitive scenarios. The result is increased user involvement in the application
of formal methods.

Use cases and scenarios can involve customers in requirements elicitation.
There should be a use case for each user task. A use case consists of several
scenarios, one scenario for a situation. The most common way to describe the
details of a scenario is by listing a sequence of steps. Each step names an actor
and describes its action in a natural language. Due to the inherited ambiguity,
the scenario descriptions are not a reliable basis for the formal specification.

We propose to describe a scenario by its precise effects on a state. A state is
represented by its actual data expressed in a small subset of the specification lan-
guage Z. For the layman, actual data are easier to understand than their abstract
descriptions. A small number of Z symbols used in the precise scenarios make
them easier to understand than the corresponding schemas. The customers can
participate in the creation of the precise scenarios. But scenarios only partially

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 21–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

22 O. Au, R. Stone, and J. Cooke

describe the infinite behaviour of a software application. A Z expert will need
to generalise the scenarios into schemas that form a complete Z specification.
We could have demonstrated precise scenarios with another state-based specifi-
cation language such as VDM-SL. However we find the schema operators in Z,
for example, conjunction and disjunction, particular useful in the incremental
development of a formal specification.

The idea of creating formal specifications from scenarios is not new. Amyot et
al. express scenarios in Use Case Maps (UCM) and translate them into high-level
LOTOS specifications [4]. Whittle and Schumann create statechart diagrams
from UML sequence diagrams [5]. Uchitel et al. [6] and Damas et al. [7] use
message sequence charts (MSC) to synthesize labeled transition system (LTS).
System behaviour in the above research is limited to sequences of events. Being
based on Z, precise scenarios can represent general computation beyond events.

In another strand of research, Grieskamp and Lepper combine use cases with Z
[8]. Use cases relate operations of a Z specification in actual usage. Test dialogues,
built with nondeterministic choice, repetition and interruption, are executed in
ZETA [9]. In contrast to our research goal, their focus on black-box testing
worsens the accessibility by software customers.

Structured-Object-based-Formal Language (SOFL) integrates structured
methods, object-oriented methods and formal methods. Condition data flow
diagrams are created with structured methods. Details are added with object-
oriented methods. The formal part in VDM only provides partial constraints
to the final specification [10, section 2]. Reviews, inspections and testing take
the place of formal proofs. SOFL may be more appropriately considered a semi-
formal methodology. SOFL overhauls the entire software development life cycle
while precise scenarios only directly affect the specification activities.

Test First Design (TFD) or Test Driven Development (TDD) is a required
practice of Extreme Progamming (XP) [11]. TDD is an iterative development
approach with each iteration consists of five small steps: write a test, make it
compile, run it to see that it fails, modify the code until the test succeeds, and
refactor the code to remove any duplication introduced [12]. Tests, examples
in disguise, are used to guide programming. We use precise scenarios to guide
specification writing.

Framework for Integrated Tests (Fit) is a tool for enhancing collaboration
among customers, programmers and testers [13]. Customers document sample
computations in table form with HTML files. A row on a table, with specific
input and output values, denotes an example. Programmers create classes called
fixture to perform the necessary computing. The customer, programmer or tester
can run the fixture against the table within the framework. It creates a similar
table that highlights unexpected output values. New tests or examples can be
easily added to the table for a rerun. A potential drawback in Fit is that only
simple values are allowed in table cells. Though unnecessary for precise scenarios,
we have presented them in this paper using table form. We allow a table cell to
hold expressive data structures, for example, a set of relations.

Precise Scenarios – A Customer-Friendly Foundation 23

We use a simple ordering problem to demonstrate our approach [14]. Section
2 describes the problem and a representation of the state space in Z. Each of
sections 3 to 6 describes a user task, its precise scenarios and their use in the
derivation of schemas. Section 7 discusses validation, underspecification, over-
specification, nondeterminism, testing and tool support. Our conclusions are
stated in section 8.

2 Ordering Problem and State Space

There are four user tasks in our ordering problem: create a new order, invoice an
order, cancel an order and refill the stock. The following statement introduces
basic types OrderId and Product for the identification of individual orders and
products. Once defined, we can use them in the specification without worrying
about their implementation.

[OrderId ,Product]

When an order is newly created, it will be in the state pending. After the
order has left the warehouse, its state changes to invoiced . These are the only
two order states that concern us regarding the scenarios to be discussed. The
following definition could be modified by adding the new state paid to deal with
payment scenarios in an iterative development process which is beyond the scope
of this paper.

OrderState ::= pending | invoiced

We declare the state space with schema OrderSystem which has four variables,
and after a horizontal dividing line, two invariants.

OrderSystem
stock : bag Product
orders : OrderId �→ bag Product
orderStatus : OrderId �→ OrderState
freeIds : P OrderId

dom orders = dom orderStatus
dom orders

⋂
freeIds = ∅

A bag of Product is equivalent to a partial function from Product to the
set of positive natural numbers N1. We use the function to keep track of a
product’s quantity in stock or in an order. The symbols �→ and P represent partial
function and power set respectively. The keyword dom stands for domain. The
first invariant ensures that an order id in use must appear in both orders and
orderStatus for an order cannot exist without its status. The second invariant
prevents an order id from being used and at the same time available for new
orders. Often, we don’t know all the constraints until we have explored the
scenarios. After an operation, we want to report whether it was successful.

24 O. Au, R. Stone, and J. Cooke

Report ::= OK | no more ids | order not pending
| id not found | not enough stock

In an arbitrary state, we have 5 nuts and 6 bolts in stock. Order 1 was placed
for 2 nuts and 2 bolts. Order 2 was placed for 3 bolts. Order 1 has been invoiced
and order 2 is still pending. Ids 3 and 4 are free for future use. The state could
be expressed with the following values in the variables of schema OrderSystem.

stock = {nut �→ 5, bolt �→ 6}
orders = {1 �→ {nut �→ 2, bolt �→ 2}, 2 �→ {bolt �→ 3}}
orderStatus = {1 �→ invoiced , 2 �→ pending}
freeIds = {3, 4}

3 New Order

The scenario NewOrder documents a successful order creation using four Z con-
cepts. They are input with the symbol ?, output with !, maplet with �→, and set
with { } and commas. The input parameter order? places a new order for 4 nuts
and 4 bolts . Below the table headings are the pre-state followed by the post-state.
In the post-state, the 3-dot symbol . . . is used to denote the unchanged function
stock . Functions orders and orderStatus are extended by a map for OrderId 3.
The element 3 is removed from the set freeIds . The output parameters id ! and
report ! return 3 and OK respectively.

scenario NewOrder
order? = {nuta �→ 4b , boltc �→ 4d}
stock orders orderStatus freeIds
{nut �→ 5, {1 �→ {nut �→ 2, bolt �→ 2}, {1 �→ invoiced , {3e , 4}
bolt �→ 6} 2 �→ {bolt �→ 3}} 2 �→ invoiced}

. . . {1 �→ {nut �→ 2, bolt �→ 2}, {1 �→ invoiced , {4}
2 �→ {bolt �→ 3}, 2 �→ invoiced ,
3e �→ {nuta �→ 4b , boltc �→ 4d}} 3e �→ pending}

id ! = 3e , report ! = OK

Values referred in input/output parameters are subscripted allowing us to
relate them to the state. When two pieces of data have the same subscript, for
example, 3e in the post-state of orders and orderStatus , they must be identical.
If two pieces of data have identical value but different subscripts, for example
4b and 4d , their equality is merely a coincidence. Value 4d could have been 5d
throughout the scenario. The values allowed in a scenario are confined by earlier
declarations in schema OrderSystem. For example, 4b and 4d must be taken from
the set of positive natural numbers N1.

To generalise the above scenario to an operation schema, we need a type for
the new order that maps Product to a positive integer.

Order == {order : bag Product | order 	= ∅}

Precise Scenarios – A Customer-Friendly Foundation 25

The scenario NewOrder can be converted to the equivalent Z schema below.
The declaration part declares the variables, input/output parameters and their
types. The symbol Δ alerts us that the state of OrderSystem is changed by
this operation. The predicate part lists the constraints on the variables and
parameters. The trailing symbol ′ is used to denote a value after the operation.

NewOrderScenario
ΔOrderSystem
order? : Order
id ! : OrderId
report ! : Report

order? = {nuta �→ 4b, boltc �→ 4d}
3e ∈ freeIds
stock ′ = stock
orders ′ = orders ∪ {3e �→ {nuta �→ 4b, boltc �→ 4d}}
orderStatus ′ = orderStatus ∪ {3e �→ pending}
freeIds ′ = freeIds \ {3e}
id ! = 3e

report ! = OK

The first predicate specifies the value of the input parameter order?. The
membership of 3e in set freeIds gives rise to the second predicate. The third
predicate states that stock is unchanged after the operation. The new maplets
for 3e , adding to orders and orderStatus , are captured in the fourth and fifth
predicates. The removal of 3e from the set freeIds is expressed next. The values
for the output parameters are specified by the last two predicates.

Subscripted values, used to represent input/output parameters, are not fixed.
For example, instead of picking 3e in the pre-state, we could have picked 4e . We
may therefore replace the subscripted values with the input/output variables,

NewOrderGeneralised
ΔOrderSystem
order? : Order
id ! : OrderId
report ! : Report

order? = order?
id ! ∈ freeIds
stock ′ = stock
orders ′ = orders ∪ {id ! �→ order?}
orderStatus ′ = orderStatus ∪ {id ! �→ pending}
freeIds ′ = freeIds \ {id !}
id ! = id !
report ! = OK

26 O. Au, R. Stone, and J. Cooke

for example, “3e” with “id !” and “{nuta �→ 4b, boltc �→ 4d}” with “order?”, to
have the generalised schema.

The generalised version of the Z schema can be simplified by removing the
two identity predicates that always evaluate to true.

NewOrder
ΔOrderSystem
order? : Order
id ! : OrderId
report ! : Report

id ! ∈ freeIds
stock ′ = stock
orders ′ = orders ∪ {id ! �→ order?}
orderStatus ′ = orderStatus ∪ {id ! �→ pending}
freeIds ′ = freeIds \ {id !}
report ! = OK

We now turn our attention to an unsuccessful attempt to create a new order. A
separate post-state is not shown in the scenario because the state is unchanged.
No subscripts are used because the input/output parameters do not relate to
any data in the state. The precondition is an empty set freeIds .

scenario NoMoreIdsError
order? = {nut �→ 7}
stock orders orderStatus freeIds
{nut �→ 5, {1 �→ {nut �→ 2, bolt �→ 2}, {1 �→ invoiced , { }
bolt �→ 6} 2 �→ {bolt �→ 3}, 2 �→ invoiced ,

3 �→ {nut �→ 4, bolt �→ 4}, 3 �→ pending,
4 �→ {bolt �→ 8}} 4 �→ pending}

report ! = no more ids

The symbol Ξ indicates that the state OrderSystem is unchanged by the
schema.

NoMoreIdsError
ΞOrderSystem
order? : Order
report ! : Report

freeIds = ∅

report ! = no more ids

Precise Scenarios – A Customer-Friendly Foundation 27

The precondition of NewOrder is that there is some element in freeIds . Con-
versely, the precondition of NoMoreIdsError is that the set freeIds is empty. The
disjunction of the two preconditions is true. Therefore operation NewOrderOp
can handle all situations.

NewOrderOp == NewOrder ∨ NoMoreIdsError

4 Invoice Order

The invoicing operation updates the order status from pending to invoiced and
reduces the stock accordingly. The two preconditions, shown before the table,
require the state to have sufficient stock to fill the order. The two postconditions,
shown after the table, determine the updated stock quantities.

scenario InvoiceOrder
id? = 2a , 4f ≤ 5c, 3h ≤ 9e

stock orders orderStatus freeIds
{nutb �→ 5c, {1 �→ {nut �→ 2}, {1 �→ invoiced , {3, 4}
boltd �→ 9e} 2a �→ {nutb �→ 4f , boltd �→ 3h}} 2a �→ pending}
{nutb �→ 1i , . . . {1 �→ invoiced , . . .
boltd �→ 6j } 2a �→ invoiced}

report ! = OK , 1i = 5c − 4f , 6j = 9e − 3h

The Z mathematical toolkit provides the sub-bag symbol � that concisely ex-
presses multiple ≤ relationships between corresponding quantities in two bags.
Likewise, the bag difference symbol −∪ expresses multiple pairwise subtractions.
The updating of the order status to invoiced is expressed with the override sym-
bol ⊕. Round brackets represent function application, for example, orders(2a)
returns {nutb �→ 4f , boltd �→ 3h}.

InvoiceOrderScenario
ΔOrderSystem
id? : OrderId
report ! : Report

id? = 2a

orders(2a) � stock
orderStatus(2a) = pending
stock ′ = stock −∪ orders(2a)
orders ′ = orders
orderStatus ′ = orderStatus ⊕ {2a �→ invoiced}
freeIds ′ = freeIds
report ! = OK

After substitution and simplification, we have the following Z schema.

28 O. Au, R. Stone, and J. Cooke

InvoiceOrder
ΔOrderSystem
id? : OrderId
report ! : Report

orders(id?) � stock
orderStatus(id?) = pending
stock ′ = stock −∪ orders(id?)
orders ′ = orders
orderStatus ′ = orderStatus ⊕ {id? �→ invoiced}
freeIds ′ = freeIds
report ! = OK

We have three unsuccessful scenarios for this operation. Explanations and
intermediate steps are skimmed here due to their similarities to earlier scenarios.

scenario IdNotFoundError
id? = 3a , 3a 	= 1b , 3a 	= 2c

stock orders orderStatus freeIds
{nut �→ 5, {1 �→ {nut �→ 2, bolt �→ 2}, {1b �→ invoiced , {3, 4}
bolt �→ 9} 2 �→ {bolt �→ 3}} 2c �→ pending}

report ! = id not found

IdNotFoundErrorScenario
ΞState
id? : OrderId
report ! : Report

id? = 3a
3a /∈ {1b, 2c}
report ! = id not found

IdNotFoundError
ΞState
id? : OrderId
report ! : Report

id? /∈ dom orderStatus
report ! = id not found

scenario OrderNotPendingError
id? = 1a , invoicedb 	= pending
stock orders orderStatus freeIds
{nut �→ 5, {1 �→ {nut �→ 2, bolt �→ 2}, {1a �→ invoicedb , {3, 4}
bolt �→ 9} 2 �→ {bolt �→ 3}} 2 �→ pending}

report ! = order not pending

Precise Scenarios – A Customer-Friendly Foundation 29

OrderNotPendingError
ΞState
id? : OrderId
report ! : Report

orderStatus(id?) 	= pending
report ! = order not pending

scenario NotEnoughStockError
id? = 2a , 77c > 9b

stock orders orderStatus freeIds
{nut �→ 5, {1 �→ {nut �→ 2, bolt �→ 2}, {1 �→ invoiced , {3, 4}
boltd �→ 9b} 2a �→ {boltd �→ 77c}} 2 �→ pending}

report ! = not enough stock

NotEnoughStockError
ΞState
id? : OrderId
report ! : Report

¬(orders(id?) � stock)
report ! = not enough stock

We define operation InvoiceOrderOp to deal with all situations. When mul-
tiple errors happen at the same time, the definition is unspecific about which
error report to return. We will discuss nondeterminism in section 7.3.

InvoiceOrderOp == InvoiceOrder ∨ IdNotFoundError ∨
OrderNotPendingError ∨ NotEnoughStockError

5 Cancel Order

A pending order may be cancelled. Its order id is returned to the pool of free
id’s for future use.

scenario CancelOrder
id? = 2a

stock orders orderStatus freeIds
{nut �→ 5, {1 �→ {nut �→ 2, bolt �→ 2}, {1 �→ invoiced , {3, 4}
bolt �→ 6} 2a �→ {bolt �→ 3}} 2a �→ pendingb}

. . . {1 �→ {nut �→ 2, bolt �→ 2}} {1 �→ invoiced} {2a , 3, 4}
report ! = OK

30 O. Au, R. Stone, and J. Cooke

The domain anti-restriction symbol −� is used to remove maplets for order id
2a from orders and orderStatus.

CancelOrderScenario
ΔOrderSystem
id? : OrderId
report ! : Report

id? = 2a

orderStatus(2a) = pending
stock ′ = stock
orders ′ = {2a} −� orders
orderStatus ′ = {2a} −� orderStatus
freeIds ′ = {2a} ∪ freeIds
report ! = OK

We generalise the scenario schema by replacing 2a with id?. After simplifica-
tion, we have schema CancelOrder .

CancelOrder
ΔOrderSystem
id? : OrderId
report ! : Report

orderStatus(id?) = pending
stock ′ = stock
orders ′ = {id?} −� orders
orderStatus ′ = {id?} −� orderStatus
freeIds ′ = {id?} ∪ freeIds
report ! = OK

It is an error trying to cancel an order that does not exist or have already
been invoiced . We can reuse error detecting schemas to handle all situations.

CancelOrderOp == CancelOrder ∨ IdNotFoundError ∨
OrderNotPendingError

6 Enter Stock

Entering stock is the task of replenishing depleted stock. By assuming that there
is always sufficient storage space, we don’t worry about detecting an error for this
task. The postconditions concerning the updated stock quantities are expressed
with the bag addition symbol �.

Precise Scenarios – A Customer-Friendly Foundation 31

scenario EnterStock
newStock? = {nuta �→ 80b, boltc �→ 70d}
stock orders orderStatus freeIds
{nuta �→ 5e , {1 �→ {nut �→ 2, bolt �→ 2}, {1 �→ invoiced , {3, 4}
boltc �→ 9f } 2 �→ {bolt �→ 3}} 2 �→ pending}
{nuta �→ 85g ,
boltc �→ 79h}

report ! = OK , 85g = 5e + 80b, 79h = 9f + 70d

EnterStockScenario
ΔOrderSystem
newStock? : Order
report ! : Report

newStock? = {nuta �→ 80b, boltc �→ 70d}
stock ′ = stock � {nuta �→ 80b , boltc �→ 70d}
orders ′ = orders
orderStatus ′ = orderStatus
freeIds ′ = freeIds
report ! = OK

EnterStock
ΔOrderSystem
newStock? : Order
report ! : Report

stock ′ = stock � newStock?
orders ′ = orders
orderStatus ′ = orderStatus
freeIds ′ = freeIds
report ! = OK

7 Validation

We can apply the values of input parameters and pre-states in a scenario to its
operation schema. If the post-state and output parameters obtained are the same
as in the original scenario, we know that the operation schema works correctly
for the scenario.

Another type of validation we can perform is to apply new input parameters
and pre-state values to an operation schema. This exercise in essence creates
new scenarios. If the customer is satisfied with the newly created post-states
and output parameters, we gain confidence that our Z schemas meet the user
requirements. For instance, we can validate schema InvoiceOrder with the fol-
lowing input parameter and pre-state different from earlier scenarios.

32 O. Au, R. Stone, and J. Cooke

id? = 3
stock = { nut �→ 5, bolt �→ 9}
orders = { 1 �→ {nut �→ 2},

2 �→ {nut �→ 4, bolt �→ 3},
3 �→ {nut �→ 5, bolt �→ 6}}

orderStatus = { 1 �→ invoiced , 2 �→ invoiced , 3 �→ pending}
freeIds = {4}

The first two predicates in schema InvoiceOrder specify its preconditions.
They both evaluate to true with the above data. The next four predicates specify
the resulting values of the four variables. The last predicate specifies the output
parameter. To save space, we only show the evaluation of two predicates.

orders(id?) � stock
orders(3) � {nut �→ 5, bolt �→ 9}
{nut �→ 5, bolt �→ 6} � {nut �→ 5, bolt �→ 9}
true

stock ′ = stock −∪ orders(id?)
stock ′ = {nut �→ 5, bolt �→ 9} −∪ {nut �→ 5, bolt �→ 6}
stock ′ = {bolt �→ 3}

After evaluating the schema predicates, we have a new scenario. Though with-
out subscripts, preconditions and postconditions, there is enough information for
the customer to decide if it matches his or her expectation.

scenario InvoiceOrderNew
id? = 3
stock orders orderStatus ids
{nut �→ 5, {1 �→ {nut �→ 2}, {1 �→ invoiced , {4}
bolt �→ 9} 2 �→ {nut �→ 4, bolt �→ 3} 2 �→ invoiced ,

3 �→ {bolt �→ 5, bolt �→ 6}} 3 �→ pending}
{bolt �→ 3} . . . {1 �→ invoiced , . . .

2 �→ invoiced ,
3 �→ invoiced}

report ! = OK

7.1 Underspecification

Underspecification happens when a required condition is missing. Suppose we
had omitted the following precondition of checking for sufficient stock in schema
InvoiceOrder.

orders(id?) � stock

When we validate the incorrect schema with an excessive ordered quantity,
the operation may still succeed and yield a negative stock quantity which can
easily be spotted by the customer as an error.

Precise Scenarios – A Customer-Friendly Foundation 33

7.2 Overspecification

Overspecification happens when unnecessary conditions are included in a sce-
nario. Recall scenario NewOrder. The quantities of the nuts and bolts in the
input parameter were both 4 by coincidence. In our original scenario, they have
different subscripts b and d to indicate that they need not be the same. Suppose
we had made a mistake by using the same subscript b on both occurrences of 4.
We would have a slightly different scenario.

scenario OverSpecifiedNewOrder
order? = {nuta �→ 4b , boltc �→ 4b}
stock orders orderStatus freeIds
{nut �→ 5, {1 �→ {nut �→ 2, bolt �→ 2}, {1 �→ invoiced , {3e , 4}
bolt �→ 6} 2 �→ {bolt �→ 3}} 2 �→ invoiced}

. . . {1 �→ {nut �→ 2, bolt �→ 2}, {1 �→ invoiced , {4}
2 �→ {bolt �→ 3}, 2 �→ invoiced ,
3e �→ {nuta �→ 4b , boltc �→ 4b}} 3e �→ pending}

id ! = 3e , report ! = OK

The equality implied by the identical subscripts gives rise to the first predicate
in the following schema. When we validate the schema with order? = {nut �→
7, bolt �→ 9}, the new predicate would evaluate to false. Overspecification is
caught when the operation fails on legitimate input and pre-state.

OverSpecifiedNewOrder
ΔOrderSystem
order? : Order
id ! : OrderId
report ! : Report

∀ p, q : Product | p ∈ dom order? ∧ q ∈ dom order? •
order?(p) = order?(q)

id ! ∈ freeIds
stock ′ = stock
orders ′ = orders ∪ {id ! �→ order?}
orderStatus ′ = orderStatus ∪ {id ! �→ pending}
freeIds ′ = freeIds \ {id !}
report ! = OK

7.3 Nondeterminism

Recall that we have defined InvoiceOrderOp to catch errors.

InvoiceOrderOp == InvoiceOrder ∨ IdNotFoundError ∨
OrderNotPendingError ∨ NotEnoughStockError

If the preconditions of OrderNotPendingError and NotEnoughStockError are
true at the same time, which error report are we going to get? In this nondeter-
ministic definition of InvoiceOrderOp, we could get either one. If it is necessary

34 O. Au, R. Stone, and J. Cooke

to distinguish the two errors, we can eliminate nondeterminism by strengthening
their preconditions so that their conjunction is false.

There are times that nondeterminism is a sign of error. In section 7.1, we
discussed a situation where the checking for sufficient stock was omitted from
schema InvoiceOrder . The omission causes nondeterminism between
InvoiceOrder and NotEnoughStockError . Adding back the omitted predicate
strengthens the preconditions of the incorrect version of schema InvoiceOrder .
The conjunction of corrected InvoiceOrder and NotEnoughStockError is false
and thus nondeterminism between them is removed. In general, we can detect
nondeterminism by performing pairwise conjunction on the disjuncts used to
define an operation. A non-false conjunction suggests nondeterminism.

7.4 Testing

The use of precise scenarios for the development and validation of schemas relates
to a software testing technique called equivalence partitioning [15]. The technique
ensures that a scenario is selected from every class of similar situations. For
example, the operation InvoiceOrder can be partitioned into at least two classes
of situations, one for ordered quantities being a sub-bag of stock quantities and
one for otherwise. If necessary, we can divide them into more partitions. For
example, we can add a class of situations where the ordered quantities equal to
the stock quantities.

The research community has long held the attitude that formal methods re-
duce or eliminate the need for testing. But how do we know the formal speci-
fication is complete in the first place? Even for toy problems, it is hard to be
certain that a formal specification is complete. Though the use of precise sce-
narios cannot guarantee completeness, the improved customer involvement will
definitely help.

7.5 Tool Support Required

The success of a methodology relies heavily on the availability of good tools.
There are many tools around, for example, CADiZ [16], CZT (Community Z
Tools) [17] and Z/EVES [18], useful for checking type consistency and proving
theorems of a Z specification. In this paper, we have manually validated operation
schemas against precise scenarios. Existing Z tools can improve the efficiency
and reliability of the manual validation exercise by running an operation schema
through test cases [18, section 3.2.5]. Specific input values are used to see if they
can generate expected values in the state variables.

We need a tool to manage the operation schemas with their related scenarios.
When a scenario is changed, we need to identify the affected operation schema
to see if it still meets the new requirement described in the updated scenario.
Conversely, when we decide to update an operation schema, we need to identify
all the affected scenarios. If too many scenarios are affected, we may be better
off creating a new operation schema than to update an existing one. A tool with
such capabilities does not yet exist.

Precise Scenarios – A Customer-Friendly Foundation 35

8 Conclusions

The Z specification we derived in this paper is almost identical to the one found
in [14]. One notable difference is that our specification catches more errors.
It is premature to conclude how the use of precise scenarios would shape a Z
specification. However we do not seem to have lost any capability to create a
generic Z specification.

Are precise scenarios more comprehensible than Z specifications by customers?
Precise scenarios describe states with actual data; a few simple Z concepts are suf-
ficient. On the other hand Z schemas describe operationswith variables; additional
Z concepts are needed. The example in this paper and our unpublished work on nu-
merical computation, sorting and telephone system confirm that precise scenarios
require fewer simpler concepts to describe than formal specifications. In addition,
biologists and educationists suggest that understanding begins with concrete ex-
amples [19]. Every customer is unique. In the extreme case where the customer is a
Z expert, he or she may actually prefer to reason directly in Z specification. But we
think, as long as precise scenarios are not exceedingly lengthy, customers in general
will have an easier time understanding them than formal specifications. As we con-
tinue to search for a better notation to write precise scenarios and gain experience
in using it on real or toy problems, it will take some time before we learn the true
value of precise scenarios in requirements elicitation.

In a real development project, there will be a great many precise scenarios
because we need a few of them for each operation schema. However we should not
be discouraged to use precise scenarios. With appropriate tool support, they are
no harder to manage than test cases. In fact, the content that goes into a precise
scenario is comparable to what goes into a test case. They differ in the time
of creation and purpose. Precise scenarios are created earlier for requirements
elicitation. They can be reused as test cases to reduce development costs.

Mistakes are not uncommon during the generalisation of precise scenarios to op-
eration schemas. However underspecification and overspecification will be caught
by appropriately written scenarios. The current paper shows only scenarios with
pre- and post-states. Work in progress includes longer scenarios with intermediate
states. We are also working on the use of precise scenarios with other languages.
Eventually, we would like to field-test the approach with suitable tool support.

We propose to use precise scenarios as the foundation for formal specifications
because they are simple enough for the customers to understand and yet precise
enough for the validation of an implementation. While scenarios have been in use
for long, the novelty of precise scenarios is precision without sacrificing simplicity
and generality.

References

1. The Standish Group: The CHAOS Report, 5 (1994)
2. Zimmerman, M.K., Lundqvist, K., Leveson, N.: Investigating the Readability of

State-Based Formal Requirements Specification Languages. ICSE’02: 24th Inter-
national Conference on Software Engineering, May 2002, pp. 33–43 (2002)

36 O. Au, R. Stone, and J. Cooke

3. Glass, R.L.: The Mystery of Formal Methods Disuse. Communications of the
ACM 47(8), 15–17 (2004)

4. Amyot, D., Logrippo, L., Buhr, R.J.A., Gray, T.: Use Case Maps for the Capture
and Validation of Distributed Systems Requirements. RE’99: 4th IEEE Interna-
tional Symposium on Requirements Engineering, June 1999, pp. 44–54 (1999)

5. Whittle, J., Schumann, J.: Generating Statechart Designs from Scenarios. ICSE’00:
22nd International Conference on Software Engineering, June 2000, pp. 314–323
(2000)

6. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios.
IEEE Transactions on Software Engineering 29(2), 99–115 (2003)

7. Damas, C., Lambeau, B., Dupont, P., van Lamsweerde, A.: Generating Annotated
Behaviour Models from End-User Scenarios. IEEE Transactions on Software En-
gineering 31(12), 1056–1073 (2005)

8. Grieskamp, W., Lepper, M.: Using Use Cases. In: Executable, Z., Liu, S., McDer-
mid, J.A., Hinchey, M.G. (eds.) ICFEM 2000: 3rd IEEE International Conference
on Formal Engineering Methods, September 2000, pp. 111–119 (2000)

9. Büssow, R., Grieskamp, W.: A Modular Framework for the Integration of Het-
erogeneous Notations and Tools. In: Araki, K., Galloway, A., Taguchi, K. (eds.)
IFM99: 1st International Conference on Integrated Formal Methods, June 1999,
pp. 211–230 (1999)

10. Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: A Formal Engi-
neering Methodology for Industrial Applications. IEEE Transactions on Software
Engineering 24(1), 24–45 (1998)

11. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading (2000)

12. Beck, K.: Test-Driven Development: By Example, p. 24. Addison-Wesley, Reading
(2003)

13. Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Inte-
grated Tests. Prentice-Hall, Englewood Cliffs (2005)

14. Bowen, J.P.: Chapter 1 - Z. In: Habrias, H., Frappier, M. (eds.) Software Specifi-
cation Methods, ISTE, pp. 3–20 (2006)

15. Sommerville, I.: Software Engineering, 6th edn., pp. 444–447. Addison-Wesley,
Reading (2001)

16. Toyn, I., McDermid, J.A.: CADiZ: An Architecture for Z Tools and its Implemen-
tation. Software – Practice and Experience 25(3), 305–330 (1995)

17. Malik, P., Utting, M.: CZT: A Framework for Z Tools. ZB2005: 4th International
Conference of B and Z Users, April 2005, pp. 65–84 (2005)

18. Saaltink, M.: The Z/EVES 2.0 User’s Guide, ORA Canada, pp. 31–32 (1999)
19. Zull, J.E.: The Art of Changing the Brain, pp. 102–103. Stylus Publishing (2002)

Automated Verification of Security Policies
in Mobile Code�

Chiara Braghin1, Natasha Sharygina2,3, and Katerina Barone-Adesi2

1 DTI, Università Statale di Milano, Crema, Italy
2 Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland

3 School of Computer Science, Carnegie Mellon University, Pittsburgh, USA

Abstract. This paper describes an approach for the automated verification of
mobile programs. Mobile systems are characterized by the explicit notion of lo-
cations (e.g., sites where they run) and the ability to execute at different locations,
yielding a number of security issues. We give formal semantics to mobile systems
as Labeled Kripke Structures, which encapsulate the notion of the location net.
The location net summarizes the hierarchical nesting of threads constituting a
mobile program and enables specifying security policies. We formalize a lan-
guage for specifying security policies and show how mobile programs can be
exhaustively analyzed against any given security policy by using model checking
techniques.

We developed and experimented with a prototype framework for analysis of
mobile code, using the SATABS model checker. Our approach relies on SA-
TABS’s support for unbounded thread creation and enhances it with location net
abstractions, which are essential for verifying large mobile programs. Our exper-
imental results on various benchmarks are encouraging and demonstrate advan-
tages of the model checking-based approach, which combines the validation of
security properties with other checks, such as for buffer overflows.

1 Introduction

Despite the promising applications of mobile code technologies, such as web services
and applet models for smart cards, they have not yet been widely deployed. A major
problem is security: without appropriate security measures, a malicious applet could
mount a variety of attacks against the local computer, such as destroying data (e.g.,
reformatting the disk), modifying sensitive data (e.g., registering a bank transfer via a
home-banking software), divulging personal information over the network, or modify-
ing other programs.

Moreover, programming over a wide area network such as the Internet introduces
new issues to the field of multi-threaded programming and analysis. For example, dur-
ing the execution of a mobile program, a given thread may stop executing at a site, and
continue executing at another site. That is, threads may jump from site to site while re-
taining their conceptual identity. The following issues distinguish mobile systems from
a more general case of multi-threaded programs:

� This work was done when the first author was staying at the Faculty of Informatics, Università
della Svizzera Italiana, Lugano, Switzerland.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 37–53, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

38 C. Braghin, N. Sharygina, and K. Barone-Adesi

– threads may run in different locations (e.g., administrative domains, hosts, physical
locations, etc.);

– communication among threads and threads migration take into account their geo-
graphical distribution (e.g., migration can only occur between directly linked net
locations).

To protect mobile systems against security leaks, security policies are defined, i.e., rules
or conditions that state which actions are permitted and which are prohibited in the sys-
tem. The rules may concern access control or information flow, and are usually verified
on the fly during the system execution. The dynamic approach has several drawbacks:
it slows down the system execution, there is no formal proof that the dynamic checks
are done properly, and the checks are not exhaustive.

This paper describes an approach for modeling and verifying mobile programs. We
give formal semantics to mobile systems as Labeled Kripke Structures (LKSs), which
encapsulate the notion of location and unbounded thread creation typical to mobile
systems. We define the semantics of mobile programs where thread locations are hier-
archically structured, where threads are always confined to locations and where threads
may move within the Internet. The LKS notation allows modeling both data and com-
munication structures of the multi-threaded systems. Consequently, it outperforms the
traditional process algebra approach that captures only the communication behavior.

We formalize a language for specifying general-purpose and application-dependent
security policies, and we show how mobile programs can be statically and exhaustively
analyzed against those security policies by using model checking techniques. A policy
configuration file, specifying what permissions (i.e., which types of system resource
access) to deny, is given as an input to the model checker together with the program
to be verified. To support features of mobile systems, the policy specification language
defines rules for expressing and manipulating the code location.

We implemented a prototype framework for modeling and verifying mobile pro-
grams written in C. In our approach, a mobile program is annotated with information
related to the security policy in such a way that if and when the security policy is vio-
lated, the model checker returns a counter-example that led to such an error. In such a
way, we are able to discover both implementation and malicious errors. Our framework
uses the SATABS model checker [1], which implements a SAT-based counterexample-
guided abstraction refinement framework (CEGAR for short) for ANSI-C programs.

To cope with the computational complexity of verifying mobile programs, we define
projection abstractions. Given a path of a multi-threaded program, one can construct
projections by restricting the path to actions or states satisfying certain conditions. We
exploit the explicit notion of locations and define location-based projections, which
allow efficient verification of location-specific security policies.

In summary, our approach to modeling and verifying mobile programs has several
advantageous features:

– it explicitly models thread location, location distribution and thread moving opera-
tions, which are essential elements of mobile programs;

– it preserves both data and communication structures of mobile systems;
– it defines a specification language for specifying security policies of mobile code;

Automated Verification of Security Policies in Mobile Code 39

– it integrates model checking technologies to support exhaustive analysis of security
policies;

– it defines location-specific abstractions which enable the efficient verification of
large mobile code applications.

We experimented with a number of mobile code benchmarks by verifying various secu-
rity policies. The results of verifying security policies, dealing with both access permis-
sions of system actions and tracing the location net with respect to permissible location
configurations, were encouraging.

2 Related Work

The use of mobile systems raises a number of security issues, including access control
(is the use of the resource permitted?), user authentication (to identify the valid users),
data integrity (to ensure data is delivered intact), data confidentiality (to protect sensitive
data), and auditing (to track uses of mobile resources). All but the first category are
closely coupled with research in cryptography and are outside of the scope of this paper.
Our techniques assume that the appropriate integrity checking and signature validation
are completed before the security access policies are checked.

Trust management systems (TMS) [2] address the access control problem by requir-
ing that security policies are defined explicitly in a specification language, and relying
on an algorithm to determine when a specific request can be allowed. An extensive sur-
vey of trust management systems and various authorization problems can be found in
[3,4,5]. The major difference from our work is that these techniques rely on encryp-
tion techniques or proof-carrying code certification. For example, in the SPKI/SDSI
framework, all principals are represented by their public keys, and access control is
established by checking the validity of the corresponding public keys. In contrast, our
security analysis reduces access control problems to static reachability analysis.

Certified code [6] is a general mechanism for enforcing security properties. In this
paradigm, untrusted mobile code carries annotations that allow a host to verify its trust-
worthiness. Before running the agent, the host checks the annotations and proves that
they imply the host’s security policy. Despite the flexibility of this scheme, so far, compil-
ers that generate certified code have focused on simple type safety properties rather than
more general security policies. The main difficulty is that automated theorem provers are
not powerful enough to infer properties of arbitrary programs and constructing proofs by
hand is prohibitively expensive. Unable to prove security properties statically, real-world
security systems such as the Java Virtual Machine (JVM) have fallen back on run-time
checking. Dynamic security checks are scattered throughout the Java libraries and are
intended to ensure that applets do not access protected resources inappropriately. How-
ever, this situation is unsatisfying for a number of reasons: 1) dynamic checks are not
exhaustive; 2) tests rely on the implementation of monitors which are error-prone; and
3) system execution is delayed during the execution of the monitor.

Modeling of Mobile Systems. The most common approach to modeling mobile pro-
grams is the process algebra-based approach. Various location-aware calculi, with an
explicit notion of location, have arisen in the literature to directly model phenomena

40 C. Braghin, N. Sharygina, and K. Barone-Adesi

such as the distribution of processes within different localities, their migrations, or their
failures [7,8,9,10].

The π calculus [11] is often referred to as mobile because it features the ability to
dynamically create and exchange channel names. While it is a de facto standard for
modeling concurrent systems, the mobility it supports encompasses only part of all the
abstractions meaningful in a distributed system. In fact, it does not directly and explic-
itly model phenomena such as the distribution of processes within different localities,
their migrations, or their failures. Moreover, mobility is not expressed in a sufficiently
explicit manner since it basically allows processes only to change their interconnection
structures, even if dynamically. Indeed, name mobility is often referred to as a model
of labile processes or as link mobility, characterized by a dynamic interaction structure,
and distinguished from calculi of mobile processes which exhibit explicit movement.

Seal [12] is one of the many variants spawned by π calculus. The principal ingredient
added, the seal, is the generalization of the notions of agents and locations. Hierarchi-
cal locations are added to the syntax, and locations influence the possible interaction
among processes. As in the π calculus, interaction takes place over named channels.
Communication is constrained to take place inside a location, or to spread over two lo-
cations that are in a parent-child relationship. Locations are also the unit of movement,
abstracting both the notions of site and agent: a location, together with its contents, can
be sent over a channel, mimicking mobility of active computations.

Djoin [10] extends the π calculus with location, migration, remote communication
and failure. The calculus allows one to express mobile agents roaming on the net, how-
ever, differently from the Mobile Ambient calculus, the details of message routing are
hidden.

The most famous one is the Mobile Ambient calculus [13,7]: this specification lan-
guage provides a very simple framework that encompasses mobile agents, the domains
where agents interact and the mobility of the agents themselves. An ambient is a gen-
eralization of both agent and place notions. Like an agent, an ambient can move across
places (also represented by ambients) where it can interact with other agents. Like a
place, an ambient supports local undirected communication, and can receive messages
(also represented by ambients) from other places [14]. The formal semantics we give to
mobile systems draws many ideas from the ambient calculus.

The disadvantages of process algebra-based approaches, however, is that they model
only limited details of the systems (they are restricted only to communication structures
and do not preserve any information about data). This restricts the set of properties that
can be analyzed to a set of control-specific properties. Additionally, process-algebraic
techniques usually deal with coarse over approximations during the analysis of mobile
systems. Over-approximations are useful to reduce the analysis complexity and guaran-
tee that, if no errors are found in the abstract system, then no errors are present in the
actual system. However, if errors are found, the verification techniques developed for
process algebra fail to guarantee that they are real. In contrast to the process algebraic
approach, our techniques not only model both data and communication structures but
also (in the context of the abstraction-based model checking) simulate the errors on the
actual system and, if the errors are found to be spurious, the approximated programs are

Automated Verification of Security Policies in Mobile Code 41

refined. To the best of our knowledge, there are no abstraction-refinement techniques
that would support the process algebraic analysis techniques.

3 Formal Semantics of Mobile Programs

3.1 Mobile Programs

This section gives the syntax of mobile programs using a C-like programming language
(which we believe is one of the most popular general-purpose languages). We extend
the standard definition of multi-threaded programs with an explicit notion of location
and moving actions1. The syntax of a mobile program is defined using a finite set of
variables (either local to a thread or shared among threads), a finite set of constants,
and a finite set of names, representing constructs for thread synchronization, similar to
the Java wait and notify constructs. It is specified by the following grammar:

LT ::= location-aware threads
| �[[T]] single thread
| LT1 ‖ LT2 parallel composition

T ::= threads
T1 | T2 parallel comp.

| Instr sequential exec.
Instr ::= instructions

Instr1 ; Instr2 sequential exec.
| x := e assignment
| if (Expr != 0) Instr condition
| while (Expr != 0) Instr loop
| skip skip
| m sync. call
| fork thread creation
| M Instr moving action

Expr ::= expressions
c constant

| Expr1 (+ | - | * | /) Expr2 arith. operation
M Instr ::= moving actions

| go in(�) | go out(�) move in/out

In the grammar, x ranges over variables, c over constants, and m over the names of
synchronization constructs. The meaning of the constructs for expressions and instruc-
tions is rather intuitive: an expression can be either a constant or an arithmetic operation
(i.e., sum, difference, product and division). The instruction set mainly consists of the
standard instructions for imperative languages: a sequential composition operator (;),
the assignment instruction, the control flow instructions if and while, and the skip
statement. The instructions specific to the threads package are the fork instruction,
which spawns a new thread that is an exact copy of the thread executing the fork
instruction, and the call to a synchronization method m.

We further assume a set of location names Loc, and we let �, �1, �2, . . . range over
Loc. A thread is �[[T]] , with � being the location name of thread T . More than one

1 For detailed discussion on programming languages for mobile code and their syntax the reader
can refer to [15].

42 C. Braghin, N. Sharygina, and K. Barone-Adesi

thread may be identified by the same location, that is �[[T1 | T2]] (examples will be
shown later). A mobile program is defined by the parallel composition of multiple
threads. A location can thus be seen as a bounded place, where mobile computation
happens.

Conceptually, thread locations represent the geographical distribution of the Web. To
capture this fact, we use a special structure, called a location net, which encapsulates
the hierarchical nesting of the Web. We define the location net as a tree, whose nodes
are labeled by unique location names, and the root is labeled by the special location
name env, representing the external environment of the system under analysis. A tree
t� is identified with the set of its paths.

Example 1. As a running example consider a shopping agent program, where several
agents are sent out over the network to visit airline Web-sites to find the best airfare.
Each agent is given various requirements, such as departure and destination time re-
strictions. After querying the airline database, it reports back the information to the
user who made the request.

For simplicity, let’s assume that the system is composed of threads T1...T6 which
are distributed among various locations: Loc = {env, �0, �1, �2, �3, �4} and that a sin-
gle thread is sent out. Here, �2, �3, �4 are the locations of various websites; �1 is the
location of the agent, �0 is the program sending out the agent, and env the gener-
alized environment location. Clearly, some of the locations are nested, and the lo-
cation net corresponds to a tree, which can be defined by the set of its paths, i.e.,
t� = {env.�0.�1, env.�2, env.�3, env.�4}, or can be depicted as follows.

In the rest of the paper, when referring to nodes of the location net, we borrow stan-
dard vocabulary to define the relationship among tree nodes, such as father, child and
sibling. For instance, in our example, �2 and �3 are siblings, whereas �0 is the father of
�1 (and �1 is the child of �0). �

The location net represents the topology of thread locations. In fact, it implicitly repre-
sents the distribution of threads. Location-aware threads can perform moving actions to
change this distribution. These actions are the moving instructions,go in and go out.
The explicit notion of location and the existence of moving actions affect the interaction
among concurrent threads as follows (the formal definition will be given in Section 3.2):

- There are two types of composition: the parallel composition among threads iden-
tified by the same location (i.e., �[[T1 | T2]]), and the parallel composition among
threads identified by different locations (i.e., �1[[T1]] ‖ �2[[T2]]) - see the example
below.

- The execution of moving actions changes the location net, i.e., mobility can be
described by updates of the location net.

Automated Verification of Security Policies in Mobile Code 43

- The execution of moving actions is constrained by the structure of the location net,
i.e., moving actions can be performed only if the thread location and the target
location has the father-child or siblings relationship.

Example 2. For example, if threads T1 and T2 represent a mail server and a browser
running at site l0 and threads T3...T6 are each running at sites l1...l4, then the shopping
agent program of Example 1 can be formalized as follows:

�0[[T1 | T2]] ‖ �1[[T3]] ‖ �2[[T4]] ‖ �3[[T5]] ‖ �4[[T6]]

In this program, threads T1 and T2 are running in parallel locally since �0[[T1 | T2]] .
On the contrary, T3 and T4 are running remotely since �1[[T3]] ‖ �2[[T4]] . �

3.2 The Computational Model

In this section we formalize the semantics of mobile programs. We first define the se-
mantics of a single thread, and then extend it to the case of a multi-threaded system.
As done in the examples of the previous section, when discussing about multi-threaded
systems consisting of n threads, we will use i, with 1 ≤ i ≤ n, as a unique identifier of
each thread T (i.e., we will write Ti).

Definition 1 (Location-aware Thread). A thread is defined as a Labeled Kripke Struc-
ture T = (S, Init, AP,L, Σ,R) such that:

- S is a (possibly infinite) set of states;
- Init ∈ S is the initial state;
- AP is the set of atomic propositions;
- L : S → 2AP is a state-labeling function;
- Σ is a finite set (alphabet) of actions;
- R ⊆ S ×Σ × (S ∪ { S × S }) is a total labeled transition relation.

A state s ∈ S of a thread is defined as a tuple (Vl, Vg, pc, ϕ, η), where Vl is the evalu-
ation of the set of local variables, Vg is the evaluation of the set of global variables, pc
is the program counter, ϕ : Loc ↪→ Loc is a partial function denoting the location net
(where Loc is the set of location names as defined in Section 3.1), and η : N ↪→ Loc is a
partial function denoting the thread location. More specifically, ϕ describes the location
net at a given state by recording the father-child relationship among all nodes of the net
(⊥ in the case of env), whereas η(i) returns the location name of Ti (i.e., the thread
identified by i).

Example 3. Consider again the shopping agent program and its location net as de-
fined in Example 2. In this case, the location net function is ϕ(�0) = env, ϕ(�1) =
�0, ϕ(�2) = env, ϕ(�3) = env, ϕ(�4) = env. In addition, the thread location function
for threads T1 · · ·T6 is defined as η(1) = �0, η(2) = �0, η(3) = �1, η(4) = �2, η(5) =
�3, η(6) = �4. �

The transition relationR is labeled by the actions of which there are four types: moving,
synchronization, thread creation, and τ actions, which are contained in the mutually
disjoint sets ΣM , ΣS, ΣT , Στ , respectively. We use Σ to identify the set of all ac-
tions. τ represents a generic action such as an assignment, a function call, etc. We write

44 C. Braghin, N. Sharygina, and K. Barone-Adesi

s
a−→ s′ to mean (s, a, s′) ∈ R, with a ∈ Σ. Moreover, we write s

a−→ i s
′ to specify

which thread performed the action. Note that, since we allow thread creation, if thread

Ti performs a fork action, s′ can be defined as a pair of states s.t. s
fork−−−−−→ i (s′, s),

where s′ is the next state of s, and s = Initi is an initial state of the newly created
thread (which corresponds to the initial state of Ti).

Table 1 gives the inference rules for the labeled transition relation in the case of
moving actions (go in(�), go out(�)), thread creation action, fork, and the synchro-
nization action m. For the rules corresponding to the generic operations the reader is
referred to [16]. The premises of the rules presented in Table 1 represent guarded con-
ditions for the execution of the actions. All rules check the value of Instr(s.pc), which
determines the instruction to be executed by the running thread. Then, depending on
the type of the action, they check further guarding conditions. In the consequences of
the inference rules, we describe (within square brackets) the updates of the thread state
caused by the execution of an action. We use the standard notationϕ∪{�1 �→ �2} (with
�1, �2 ∈ Loc) to indicate the update to function ϕ, i.e., the updates to the location net.

In the case of a ”fork” action, thread Ti spawns a new thread that is an exact copy
of itself. As a consequence, the program counter of Ti is updated, and a new thread is
created with an initial state s. The initial state is a copy of the initial state of Ti.

In the case of a ”go in(�)” action, if � is a sibling location to thread Ti location
(i.e., s.ϕ(s.η(i)) = s.ϕ(�)), then the thread makes a transition and changes the state
accordingly: the program counter pc is incremented, and the location net is updated (�
is now the father location of Ti location). If � is not a sibling location, then the action is
not performed because the guard does not hold.

In the case of a”go out(�)” action, if � is the father location to thread Ti location
(i.e., s.ϕ(s.η(i)) = �), then the thread makes a transition and changes the state accord-
ingly: the program counter pc is incremented, and the location net is updated (� is now
a sibling location of Ti location). If � is not the father location, then the action is not
performed because the guard does not hold.

Note that the subtle features of mobile programs (namely, location, location net and
unbounded thread creation) are modeled explicitly.

Let T1, · · · , Tn be a set of threads initially present in the mobile program P , then
P = T1 ‖ · · · ‖ Tn. The parallel composition operation is defined as follows.

Definition 2 (Mobile Program). Let thread T1 = (S1, Init1, AP1,L1, Σ1,R1) and
thread T2 = (S2, Init2, AP2,L2, Σ2,R2) be two Labeled Kripke structures. Then their
composition is defined as follows: T1 ‖ T2 = (S1 × S2, Init1 × Init2, AP,L, Σ1 ∪
Σ2,R) with the labeled transition relation defined in Table 2.

In Table 2, a single state belonging to thread Ti is denoted by si, i.e., with i as super-
script to indicate the thread number. When needed, we also use a subscript (and variable
j) to indicate the position of an element in the path. For example, si

1 is the initial state
of thread Ti. Given a state si ∈ Si of thread Ti, si.Vl, si.Vg , si.pc, si.ϕ and si.η are
the values of local variables Vl, of global variables Vg , of program counter pc, of ϕ
and of η, respectively. Moreover, Instr(si.pc) denotes the instruction pointed by pc in
thread Ti at state si. Note that ∀i, j, i 	= j,Σi ∩ Σj = ΣS, that is threads share only
synchronization actions. In other words, threads proceed independently on local actions

Automated Verification of Security Policies in Mobile Code 45

Table 1. Inference rules for the labeled transition relation R for thread Ti

(FORK-ACTION)

Instr(s.pc) = fork

s
fork−−−→ i (s′, s) [s′.pc = s.pc + 1; s = Initi]

(in-ACTION)

Instr(s.pc) = go in(�) ∧ (∃�1.�1 := s.η(i) ∧ s.ϕ(�1) = s.ϕ(�))

s
go in(�)−−−−−→ i s′ [s′.pc = s.pc + 1; s′.ϕ = s.ϕ ∪ {�1
→ �}]

(out-ACTION)

Instr(s.pc) = go out(�) ∧ (∃�1.�1 := s.η(i) ∧ s.ϕ(�1) = �)

s
go out(�)−−−−−−→ i s′ [s′.pc = s.pc + 1; s′.ϕ = s.ϕ ∪ {�1
→ s.ϕ(�)}]

(SYNC-ACTION)

Instr(s.pc) = m

s
m−→ i s′ [s′.pc = s.pc + 1]

and synchronize on shared actions (m ∈ ΣS), or on shared data (by definition of Si,
S1 ∩ S2 	= ∅). This notion of composition is derived from CSP [17].

The definition of a path of a mobile program reflects the possibility of unbounded
thread creation during the execution of the fork instruction.

Definition 3 (Path). A path π = 〈(s11, s21, . . . , sn1
1), a1, (s12, s

2
2, . . . , s

n2
2), a2, . . .〉 of

a mobile program is an alternating (possible infinite) sequence of tuples of states and
events such that:
(i) nj ∈ N and, ∀i, j ≥ 1, si

1 = Initi, si
j ∈ Si, and aj ∈ ∪iΣi;

(ii) either si
j

aj−−→ si
j+1 or si

j = si
j+1 for 1 ≤ i ≤ nj+1;

(iii) if aj = fork:

– then nj+1 = nj + 1 and snj+1
j+1 = Initk with sk

j

aj−−→ sk
j+1

– else nj+1 = nj.

A path includes tuples of states, rather than a single state. The reason for that is that
when a fork operation is executed, the state of the newly created thread must be
recorded. Our notation indicates each state sj

i by two indices, i and j, one to indicate
the thread number, the other one to indicate the position in the path, respectively. The
size of the tuple of states (i.e., the number of the currently existing threads) increases
only if a fork is executed, otherwise it remains unchanged (case (iii)). In case of a
fork, index k identifies the thread that performed the action. Thus, the state of the
newly created thread is a copy of the initial state of thread Tk. Moreover, depending on
the type of action (i.e., shared or local) one or more threads will change state, whereas
the others do not change (case (ii)).

46 C. Braghin, N. Sharygina, and K. Barone-Adesi

Table 2. The labeled transition relation for the parallel composition of two threads

(SYNC-ACTION)

a ∈ ΣS
1 ∧ s1 a−→ 1 s

′ 1
∧ a ∈ ΣS

2 ∧ s2 a−→ 2 s
′2

∧ s1.η(1) = s2.η(2)

(s1, s2)
a−→ (s

′1
, s

′2
)

(L-PAR)

a ∈ ΣM
1 ∧ s

a−→ 1 s
′ 1

(s1, s2)
a−→ 1 (s

′1
, s2)

(R-PAR)

a ∈ ΣM
2 ∧ s2 a−→ 2 s

′2

(s1, s2)
a−→ 2 (s1, s

′ 2
)

4 Specifying Security Policies of Mobile Programs

In order to support features of mobile systems, we devised a policy specification lan-
guage that defines rules for expressing also the code location. This security language
primarily works at the level of method calls and variable accesses. Methods may be
disallowed to an agent, either in general, or when invoked with specific arguments.
(Global) variables may be marked as having a high security level, and they cannot be
assigned to variables of a lower level; it is also possible to specify methods that may not
be accessed within or passed to (no Read Up, no Write Down). In this way, it is possible
to express both information flow and access control policies with the same language .

The BNF specification of the language follows, where terminals appear in Courier,
non terminals are enclosed in angle brackets, optional items are enclosed in square
brackets, items repeated one or more times are enclosed in curly brackets, and alterna-
tive choices in a production are separated by the | symbol. A policy might contain: (i)
the definition of security levels; (ii) a list of operation definitions; and (iii) a list of
deny statements, each one including one or more permission entries. In the definition of
security levels, we enumerate the high level variables to specify a multi-level security
policy. The definition of an operation collects together functions with the same meaning
or side-effect (e.g., scanf and fread). A deny statement specifies which types of actions
are not allowed to entities. By default, in the absence of deny statements, all actions are
allowed to every possible user.

The entities to deny permissions to consist of processes (e.g., agents), identified by
their current location. The keyword public means that the permission is denied to all
entities. As we are dealing with mobile systems, an entity can also be identified by the
host address (via codeBase), or by the location (via codeOrigin) it came from.
The keyword remote identifies non-local locations.

A permission entry must begin with the keyword permission. It specifies actions
to deny. An action can be a function (either user-defined or from the standard library),
or an operation (a collection of functions). If it is a function, it is possible to also specify
(i) formal parameters (variable names), (ii) actual parameters (the value of the argu-
ments passed), (iii) an empty string, denying access to the function regardless of the

Automated Verification of Security Policies in Mobile Code 47

arguments to it, or (iv) the keyword high (no high variables can be passed as argu-
ments to this function). Notably, an actual parameter may be a location (a trailing *
prevents not only the location, but all sub-locations too).

〈policy〉 −→ {〈sec levels〉 | 〈operation def〉 | 〈deny statement〉}
〈deny statement〉 −→ deny to 〈deny target〉 [〈code base〉] [〈code origin〉]

{ 〈permission entry〉 {, 〈permission entry〉} }
〈deny target〉 −→ public | 〈entity list〉

〈entity list〉 −→ 〈entity id〉 {, 〈entity id〉}
〈entity id〉 −→ 〈location id〉

〈location id〉 −→ 〈identifier〉
〈identifier〉 −→ (〈letter〉 | 〈symbol〉) {〈letter〉 | 〈digit〉 | 〈symbol〉}
〈symbol〉 −→ _ | .

〈code base〉 −→ codeBase 〈IPv4 addr〉
〈code origin〉 −→ codeOrigin (〈location〉 | remote)

〈location〉 −→ 〈location id〉 {: 〈location id〉}
〈permission entry〉 −→ permission 〈action〉

〈action〉 −→ 〈function〉 | 〈operation〉
〈function〉 −→ function 〈function id〉 〈parameters〉

〈function id〉 −→ 〈identifier〉
〈parameters〉 −→ 〈actual par〉 | 〈formal par〉 | high | ε

〈actual par〉 −→ " 〈string〉"
〈formal par〉 −→ args 〈vars〉 | " 〈location id〉" [*]

〈vars〉 −→ 〈identifier〉 {, 〈identifier〉}
〈operation def〉 −→ 〈operation 〉{ 〈function id〉 {, 〈function id〉} }

〈operation〉 −→ operation 〈operation id〉
〈operation id〉 −→ 〈identifier〉

〈receiver〉 −→ 〈location id〉
〈sec levels〉 −→ High={ 〈vars〉}

Consider the Java sandbox: it is responsible for protecting a number of resources by
preventing applets from accessing the local hard disk and the network. In our language,
a sketch of this security policy could be expressed as:

operation read_file_system { fread, read, scanf, gets}
deny to public codeOrigin remote
{ permission function connect_to_location,
permission operation read_file_system }

A multi-level security policy could be expressed as:

High={confidential_var, x}
deny to public codeOrigin remote
{ permission function fopen high}

48 C. Braghin, N. Sharygina, and K. Barone-Adesi

4.1 Security and Projection

To cope with the computational complexity of verifying mobile programs, we define
projection abstractions. Given a path of a multi-threaded program T1 ‖ · · · ‖ Tn, one
can construct projections by restricting the path to the actions in the alphabet of threads,
or to states satisfying some conditions. We exploit the explicit notion of locations and
define the location-based projections, which allow efficient verification of location-
specific security policies (security policies in which codeOrigin or codeBase is
present). With a location-specific policy, only processes which run on the indicated lo-
cation need to be verified.

In the following, we assume only paths of finite length, as they are computed by
the symbolic fix-point algorithm to handle verification of systems with an unbounded
number of threads. In addition, we write 〈〉 for the empty path, and we use the dot
notation to denote the concatenation of sequences. The concatenation of sequences will
be used in the inductive definitions of projections to concatenate subsequences of paths.
Notice that . is the concatenation operator for sequences of characters, thus it is not
affected by the presence of mismatched parentheses.

Definition 4 (Location Projection, π ↓ �). Let P be T1 ‖ · · · ‖ Tn and � ∈ Loc be
a location. The projection function Proj� : L(P)∗ → L(P)∗ is defined inductively as
follows (we write π ↓ � to mean Proj�(π)):

1. 〈〉 ↓ � = 〈〉
2. If si.η(i) = � then (〈si〉.π) ↓ � = 〈si〉.(π ↓ �)
3. If si.η(i) 	= � then (〈si〉.π) ↓ � = π ↓ �
4. If a ∈ Σi, with i s.t. si.η(i) = �, then (〈a〉.π) ↓ � = 〈a〉.(π ↓ �)
5. If a 	∈ Σi, with i s.t. si.η(i) 	= �, then (〈a, (s1, s2, . . . , sn)〉.π) ↓ � = π ↓ �

This projection traces the execution of threads for a particular location. The following
information is collected: (i) states of threads whose location is � (i.e., threads Ti such
that si.η(i) = �), and (ii) actions that are performed by the threads whose location is
� (i.e., actions a such that a ∈ Σi, with �[[Ti]]). Here, the concatenation is done on
each state element of the path, since each single state is examined to satisfy condition
(i) (rules 2-3). On the contrary, once an action does not satisfy condition (ii), the next
tuple is erased (rule 4).

With respect to what happens at a particular location during execution of a mobile
program, there is no loss of precision in this projection-based abstraction. The pro-
jection removes only states and actions which are irrelevant to the particular location.
Moreover, since security policies are defined in terms of a single location, this abstrac-
tion does not introduce spurious counterexamples during the verification of security
policies using the codeOrigin entry.

5 A Model Checking Framework for Verification of Security
Policies

A prototype framework for security analysis of mobile programs is shown in the picture
below. A mobile program, P , and a security policy, S, are provided as an input to the
model checking engine.

Automated Verification of Security Policies in Mobile Code 49

These inputs are processed, creating a new program, P ′, annotated with the security
invariants. It has the following property: an assertion assert(0) (a security invariant)
is not reachable in P ′ if and only if P enforces the security policyS. Thus, it is sufficient
to give P ′ as an input to a model checker to statically determine whether or not an
assert(0) is reachable in P .

The procedure for annotating the program with security invariants is a multi-step pro-
cess. First, the intersection of methods in the security policy and methods used within
the agent to verify is found. Then, a wrapper method is created for each of these meth-
ods. This wrapper contains an assert(0), either unconditionally, or within a guard,
based on the policy (this may check where the agent came from, and/or the arguments
being passed to the method). The handling of high variable access is more complex (due
to scoping and syntax), but analogous. This annotating procedure, as in SLIC [18], is the
implementation of Schneider’s security automata [19]. In fact, the annotated program
P ′ consists of program P with inlined the reference monitor that enforces the security
policy S.

Our framework uses a model checking toolset, SATABS [1]. Applying model check-
ing to the analysis of mobile and multi-threaded systems is complicated by several fac-
tors, ranging from the perennial scalability problems to thread creation that is potentially
unbounded and that thus leads to infinite state space. Predicate abstraction is one of the
most popular and widely applied methods for systematic state-space reduction of pro-
grams. It abstracts data by only keeping track of certain predicates on the data. Each
predicate is represented by a Boolean variable in the abstract program, while the original
data variables are eliminated. The resulting Boolean program is an over-approximation
of the original program. One starts with a coarse abstraction, and if it is found that an
error-trace reported by the model checker is not realistic, the error trace is used to re-
fine the abstract program, and the process proceeds until no spurious error traces can
be found. The actual steps of the loop follow the abstract-verify-refine paradigm [20].
SATABS implements the abstraction refinement loop by computing and refining abstract
programs. The procedure for the location-specific projections can be seen as the extension
of SATABS’s abstraction procedures. Among various techniques employed by SATABS,
there is a model checker for Boolean programs (computed by the SATABS abstraction
engine), BOPPO[16] that handles unbounded thread creation. The execution of a fork
action corresponds to the migration of the code to the new sites and potentially leads to
the creation of an unbounded number of new threads. SATABS implements a symbolic
algorithm for over-approximating reachability in Boolean programs to support arbitrary
thread creation which is guaranteed to terminate [21]. The devised algorithm is used as
the underlying reachability engine in the CEGAR framework and is efficient. The SA-
TABS ability to handle programs with arbitrary thread creation was the key reason for
using it as a model checking engine of our security framework.

50 C. Braghin, N. Sharygina, and K. Barone-Adesi

An initial configuration file can also be provided, to test whether the policy is upheld
in specific network configurations (where the agent came from, both on the underlying
network and the location network, and where it’s currently running). Several functions
exist within the mobile code framework to check these values; there is a dynamic ver-
sion to be used at run-time, and a static version which is generated from the specified
initial configuration. To check whether the policy holds under all possible conditions,
it suffices to not provide these function definitions to SATABS, which then treats the
results as non-deterministic; this can be accomplished by telling SATABS to use the
run-time version of the definitions, not providing an initial configuration, or by not pro-
viding the generated location file as an input to SATABS.

SATABS supports C programs, thus our benchmarks have a C-base mobile lan-
guage. Since serialization is not possible in C, we only allow code mobility (i.e., applet
sending); running code cannot migrate. It is straightforward to extend our approach to
benchmarks using other programming languages (e.g., Java, Telescript, etc.) by imple-
menting a different front-end targeted to the language of choice.

5.1 Experimental Results

To validate the theoretical concepts presented in this paper, an experimental mobile
code framework was developed, for which a number of examples of mobile code agents
were generated. The mobile code agents were a shopping agent [22] and an updating
agent [23].

The shopping example deals with a shopping query client, which sends several
agents out to query simulated airline services in order to find available airfares. The
agent is run on a simulated airline server, which is a distinct location on the location net
from the original query client, and may be on a remote host. When the agent receives a
reply, or fails to, it then tries to report back to the shopping query client.

The updating example specifies a central update server and several clients. The
clients contact the server, and updates are sent, as an executable agent, whenever an
update is available. This represents a way to keep the client software up to date, without
forcing the client to poll the update server.

We verified a number of security policies ranging from file access control to policies
that conditionally allowed the use of mobile code APIs based on the codeOrigin.
The examples have been tested against different security policies, some general and
some application dependent, as well as different initial location configurations. Both
contain a ”malicious” action (opening a connection to the location named ”bad” and
opening /etc/passwd, respectively), and one of the security policies for each checks
this. The results of the experiments, with a location projection (where �=the agent’s
location) on the whole system, are reported in Table 5.1.

The above policies are of a few forms, best shown by example. The updating agent
opens /etc/passwd: Policy 2 (ua) disallows this action if and only if the agent came from
a remote location, whereas every other argument to fopen is allowed.

deny to public codeOrigin remote
{ permission function fopen "/etc/passwd"}

Automated Verification of Security Policies in Mobile Code 51

Table 3. Agent benchmarks with deterministic configurations: pv = policy violated, ua = updating
agent, sa = shopping agent

policy time (s) # iterations # predicates pv? SATABS: pv?
none (ua) 0 1 0 no no

1 (ua) 10.888 2 11 yes yes
2 (ua) 34.812 14 18 yes yes
3 (ua) 0.194 1 3 yes yes

none (sa) 0.001 1 0 no no
no effect (sa) 0 1 0 no no

1 (sa) 151.644 7 17 yes yes
2 local (sa) 100.234 5 15 no no

2 remote (sa) 524.866 12 36 yes yes
3 codeBase (sa) 340.011 12 22 yes yes

3 (sa) 108.564 6 16 yes yes

Policy 3 codeBase in the shopping agent example is a variant on the policy above: it
specifies codeBase (an IPv4 origin address) instead of codeOrigin, and is tailored to the
”malicious action” found in the shopping agent.

deny to public codeBase 127.0.0.1
{ permission function connect_to_location bad}

Other policies are: ”none” (verifying the agent without any security policy), the Java-
like policy described in Section 4 (Policy 1 (ua)), and the security-level example policy
also described in Section 4 (Policy 3 (ua)).

We were able to validate our technique on systems of different complexities, by
changing the number of agents instantiated. Our tools correctly detected every secu-
rity policy violation with no false positives. We observed that without performing pro-
jections the verification was problematic, whereas when using location projection the
technique scaled gracefully and the complexity of the verification was highly reduced.
Table 1 reports the total verification time (in sec) for the shopping agent and the up-
dating examples; a number of predicates and a number of the CEGAR loop iterations
indicate the complexity of the abstracted models.

6 Conclusion

In this paper, we introduced a framework for the modeling and verification of mobile
programs. The system semantics were presented in terms of Labeled Kripke Structures,
which encapsulated the essential features of mobile programs: namely, location and
unbounded thread creation. The explicit modeling of these features enabled the spec-
ification of mobile systems security policies, which are otherwise difficult to define.
The verification was based on model checking, exploiting abstraction-refinement tech-
niques that not only allowed handling unbounded state space, but also deal effectively
with large systems.

52 C. Braghin, N. Sharygina, and K. Barone-Adesi

Acknowledgments. The authors thank Daniel Kroening for useful discussions and
support during the implementation of the prototype framework for verifying security
policies.

References

1. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate abstrac-
tion for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
570–574. Springer, Heidelberg (2005)

2. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The role of trust management in
distributed systems security, pp. 185–210 (1999)

3. Weeks, S.: Understanding trust management systems. In: IEEE Symposium on Security and
Privacy, pp. 94–105 (2001)

4. Schwoon, S., Jha, S., Reps, T.W., Stubblebine, S.G.: On generalized authorization problems.
In: CSFW, pp. 202–217 (2003)

5. Ganapathy, V., Jaeger, T., Jha, S.: Automatic placement of authorization hooks in the linux
security modules framework. In: ACM Conf. on Comp.and Comm. Security., pp. 330–339
(2005)

6. Necula, G.C., Lee, P.: Research on proof-carrying code for untrusted-code security. In: IEEE
Symposium on Security and Privacy, p. 204 (1997)

7. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Nivat, M. (ed.) ETAPS 1998 and FOS-
SACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

8. Hennessy, M., Riely, J.: Resource Access Control in Systems of Mobile Agents. In: HLCL
’98. Journal of TCS, pp. 3–17. Elsevier, Amsterdam (1998)

9. De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering 24(5), 315–330 (1998)

10. Fournet, C., Gonthier, G., Lévy, J.J., Maranget, L., Rémy, D.: A Calculus of Mobile Agents.
In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 406–421.
Springer, Heidelberg (1996)

11. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I and II. Information and
Computation 100(1), 1–40, 41–77 (1992)

12. Vitek, J., Castagna, G.: Seal: A Framework for Secure Mobile Computations. In: Bal, H.E.,
Cardelli, L., Belkhouche, B. (eds.) Internet Programming Languages. LNCS, vol. 1686, pp.
47–77. Springer, Heidelberg (1999)

13. Cardelli, L.: Wide Area Computation. In: Wiedermann, J., van Emde Boas, P., Nielsen, M.
(eds.) ICALP 1999. LNCS, vol. 1644, pp. 10–24. Springer, Heidelberg (1999) (Invited Paper)

14. Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Science 240(1), 177–
213 (2000)

15. Braghin, C., Sharygina, N.: Modeling and Verification of Mobile Systems. In: Proc. of TV
06 (2006)

16. Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous boolean
programs. In: Valmari, A. (ed.) Model Checking Software. LNCS, vol. 3925, pp. 75–90.
Springer, Heidelberg (2006)

17. Roscoe, A.: The theory and practice of concurrency. Prentice-Hall, Englewood Cliffs (1997)
18. Ball, T., Rajamani, S.K.: SLIC: a Specification Language for Interface Checking (of C).

Technical Report MSR-TR-2001-21, Microsoft Research (2002)
19. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-

tem Security, vol. 3(1) (2000)

Automated Verification of Security Policies in Mobile Code 53

20. Kurshan, R.: Computer-Aided Verification of Coordinating Processes. Princeton University
Press, Princeton (1995)

21. Cook, B., Kroening, D., Sharygina, N.: Over-Approximating Boolean Programs with Un-
bounded Thread Creation. In: FMCAD 06: Formal Methods in System Design, Springer,
Heidelberg (2006)

22. White, J.: Telescript technology: The foundation of the electronic marketplace. Technical
report, General Magic Inc (1994)

23. Bettini, L., De Nicola, R., Loreti, M.: Software update via mobile agent based programming.
In: SAC, pp. 32–36. ACM, New York (2002)

Slicing Concurrent Real-Time System

Specifications for Verification�

Ingo Brückner

Universität Oldenburg, Department Informatik, 26111 Oldenburg, Germany
ingo.brueckner@informatik.uni-oldenburg.de

Abstract. The high-level specification language CSP-OZ-DC has been
shown to be well-suited for modelling and analysing industrially relevant
concurrent real-time systems. It allows us to model each of the most
important functional aspects such as control flow, data, and real-time
requirements in adequate notations, maintaining a common semantic
foundation for subsequent verification. Slicing on the other hand has
become an established technique to complement the fight against state
space explosion during verification which inherently accompanies increas-
ing system complexity. In this paper, we exploit the special structure of
CSP-OZ-DC specifications by extending the dependence graph—which
usually serves as a basis for slicing—with several new types of dependen-
cies, including timing dependencies derived from the specification’s DC
part. Based on this we show how to compute a specification slice and
prove correctness of our approach.

1 Introduction

When modelling and analysing complex systems, their various behavioural as-
pects need to be considered such as the admitted sequence of events taking place
during operation, the associated modifications induced on the system state, or
the real-time constraints that need to be imposed on the system’s behaviour in
order to achieve a functionally correct system model. In the area of safety-critical
systems the application of formal methods with exactly defined semantics is ad-
visable which are open to subsequent analysis and mathematical proof of certain
desired properties. However, there is no single formalism which is equally well
suited for each of the needed modelling tasks. Therefore, numerous combinations
of different such modelling notations have been proposed in order to address each
of the different system aspects with a dedicated technique [15,21,26,24].

The notation we consider in this paper is the high-level specification lan-
guage CSP-OZ-DC [12], a formalism which has already been shown to be ap-
propriate for modelling industrially relevant specifications such as parts of the
European Train Control System (ETCS, [8]). CSP-OZ-DC combines three indi-
vidually well-researched formalisms: Communicating Sequential Processes (CSP,
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 54–74, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Slicing Concurrent Real-Time System Specifications for Verification 55

[11]) to specify system behaviour in terms of ordering of events and communica-
tion between processes; Object-Z (OZ, [20]) to define a system’s state space and
modifications associated with the occurrence of events; Duration Calculus (DC,
[9]) to define real-time properties over certain events or states. In CSP-OZ-DC,
a common semantic basis is given to these three formalisms by extending the
DC semantics such that it also covers the CSP and the OZ part. Furthermore,
CSP-OZ-DC provides a compositional translation into phase event automata, a
variant of timed automata which is appropriate for subsequent verification by
model-checking [8,19,2].

One of the main obstacles for automated verification, however, is the prob-
lem of state space explosion, i.e., the exponential blow-up in the number of
system states to be analysed. Many techniques have been proposed to tackle
this problem and the frontier of systems being amenable to model checking has
been pushed forward again and again throughout the last years by the—often
complementary—application of various state reduction methods such as partial-
order reduction [18] or predicate abstraction [6].

Aiming in the same direction is the method of slicing. It was originally intro-
duced by Weiser [25] in the context of program analysis in order to determine
those parts of a program which are relevant with respect to a specific debugging
task. Having become an established method in the area of program analysis [23],
slicing has found numerous further areas of application [28] in the past decades,
among them the area of software verification where it has successfully been ap-
plied to various targets such as Java [10] and Promela [17]. As a syntax-based
approach that operates at the source code level, slicing can exploit additional
knowledge about the system structure. It has hence been shown to be effective
in addition to complementary techniques working on the semantic level of the
models generated from the source code [7].

Slicing in the context of verification is usually done in two steps. First, a depen-
dence graph is constructed representing control and data dependencies present
inside the source code. This first preparatory step is independent from the actual
verification property and thus only needs to be performed once for a given ver-
ification target. Second, a backwards analysis is performed on the dependence
graph with the verification property as slicing criterion, i.e., a starting point to
identify elements that directly or indirectly affect the property to be verified.
Computing the specification slice relevant to the verification property allows us
to omit the irrelevant parts in the subsequent verification step such that the
state space to be examined is already reduced before the verification actually
starts. An important requirement in this context is the correctness of the slic-
ing approach, i.e., the verification result must remain the same, regardless of
whether verification is performed on the original target or on its slice.

In this paper we apply slicing to CSP-OZ-DC specifications as a prepara-
tory step for subsequent verification with respect to test formulas [16], which
form a subset of DC that is amenable to model-checking. The rich syntactical
structure of CSP-OZ-DC specifications and their clear separation in different
parts addressing different system aspects makes them an ideal target for the

56 I. Brückner

syntax-oriented technique of slicing. We exploit the special structure of CSP-
OZ-DC specifications by introducing several new types of dependencies such as
predicate, synchronisation, and timing dependencies into the dependence graph.
In comparison to conventional dependence graphs these dependencies yield addi-
tional information about the specification allowing us to construct a more precise
dependence graph and thus a more precise slicing outcome. Building upon pre-
vious work [4,3], we show correctness of our approach not only with respect to
test formulas, but, more generally, with respect to any logic which is invariant
under stuttering, i.e., which cannot distinguish between interpretations that are
equivalent up to some stuttering steps (defined by sets of irrelevant variables
and events obtained from slicing).

The paper is structured as follows. The next section introduces CSP-OZ-
DC by giving a small example and roughly introducing the semantics of such
specifications. In section 3 we present the dependence graph construction and
the subsequent slicing algorithm, both illustrated by the running example. A
sketch of the correctness proof of the slicing algorithm is given in section 4. The
last section concludes and briefly discusses related work.

2 CSP-OZ-DC

For illustrating our approach we use a CSP-OZ-DC specification of an air con-
ditioner system. It can operate in two modes, either heating or cooling. Initially
the air conditioner is off. When it is switched on (workswitch), it starts to run.
While running, the air conditioner either heats or cools its environment and si-
multaneously allows the user to switch the mode (modeswitch), refill fuel (refill)
or switch it off again. Cooling or heating is modelled by a consumption of one
unit of fuel (consume) and an emission of hot or cold air (dtemp). For the spec-
ification we first define the mode of operating (TMode ::= heat | cool).

The first part of the class defines its interface towards the environment by
means of several communication channels (chan). The next part specifies its
dynamic behaviour, i.e., the allowed ordering of method execution. It is defined
via a set of CSP process equations, beginning with the initially active main
process. The operators appearing here are prefixing →, sequential composition
�, interleaving ||| (parallel composition with no synchronisation) and external
choice �. The third part of a CSP-OZ-DC class describes the attributes and
methods of the class.

For every method we might have an enable schema fixing a guard for method
execution (enabling schemas equivalent to true are left out) and an effect
schema describing the effect of a method upon execution. For instance, the
enable schema of method consume tells us that the air conditioner has to be
on and a minimal amount of fuel is necessary for consume to take place. Upon
execution one unit of fuel is consumed according to its effect schema. The
method level on the other hand is always enabled, it just displays the current
level of fuel.

Slicing Concurrent Real-Time System Specifications for Verification 57

The concluding Duration Calculus (DC) part of the class defines real-time
properties of the system within a number of DC counterexample formulas, i.e.,
a subset of DC which is amenable for later verification. The only formula in the
DC part of AC specifies that whenever the air conditioner is turned on for some
time (�work = 1�) and an event workswitch occurs, an event off must follow
within at most one time unit (negatively defined by . . .� � off ∧ � > 1 � . . . as
part of the counterexample). The expression �work = 1� denotes a non-empty
time interval throughout which predicate work = 1 holds. �workswitch refers to
a point interval at which event workswitch occurs, while � off refers to a non-
empty time interval without any occurrence of event off . The chop operator �
connects all three intervals and surrounds them with initial and concluding true
intervals of arbitrary length. These surrounding intervals enable the observation
of the counterexample to happen at any point in time.

AC
chan workswitch, consume,off chan modeswitch : [m? : TMode]
chan refill : [f ? : Z] chan dtemp : [t! : TMode]
chan level : [f ! : Z]

main = workswitch → On
On = (Work ||| Ctrl) � main
Work = consume → dtemp → level → Work

� off → SKIP

Ctrl = modeswitch → Ctrl
� refill → Ctrl
� workswitch → SKIP

work : B

mode : TMode; fuel : Z

Init
¬work
mode = heat

effect workswitch
Δ(work)

work ′ = ¬work

enable consume

work ∧ fuel > 5

effect consume
Δ(fuel)

fuel′ = fuel − 1

effect modeswitch
Δ(mode); m? : TMode

mode′ = m?

effect dtemp
t! : TMode

t! = mode

effect level
f ! : Z

f ! = fuel

enable off

¬work

enable refill

fuel < 100

effect refill
Δ(fuel); f ? : Z

fuel′ = fuel + f ?

¬(true � �work = 1	 �
workswitch � � off ∧ � > 1 � true)

The air conditioner’s environment is specified within a second class. Apart from
modelling the temperature, this class also models the lighting situation (via type
LMode ::= brighten | darken), possibly determined by some further components
beyond the scope of our small example.

Intuitively, it is already quite obvious that in this specification the additional
aspect of lighting is completely independent from the temperature. In section 3
we will see how to automatically obtain this observation as part of the slicing
result.

58 I. Brückner

Env
chan dtemp : [t? : TMode],dlight : [l? : LMode], tchange, lchange

main = Temp ||| Light
Temp = dtemp → tchange → Temp
Light = dlight → lchange → Light

temp, light, dt, dl : Z

Init
temp = 0 ∧ light = 0

effect dtemp
t? : TMode; Δ(dt)

t? = cool ⇒ dt′ = −1
t? = heat ⇒ dt′ = 1

effect dlight
l? : LMode; Δ(dl)

l? = darken ⇒ dl′ = −1
l? = brighten ⇒ dl′ = 1

effect tchange
Δ(temp)

temp′ = temp + dt

effect lchange
Δ(light)

light′ = light + dl

¬(true �
 dlight � � lchange ∧ � > 1 � true)

Finally, parallel composition of the air conditioner and the environment with syn-
chronisation on the set of common events defines our complete example system:

System = AC ‖
{dtemp}

Env

The compositional semantics of such specifications [12] integrates the trace se-
mantics for CSP [11], the history semantics for Object-Z [20], and the set of
interpretations for Duration Calculus formulas [9].

Definition 1. An interpretation is a function I : Time → Model mapping the
time domain Time == R+ to the set of Z models Model == NAME � W with
NAME being the set of all valid identifiers and W being the world, i.e., the set
of all possible semantic values.

An interpretation of a CSP-OZ-DC class defines a set of observables, i.e., time-
dependent functions yielding valuations for

– all variables that are used in the CSP-OZ-DC class,
– boolean channel variables for all channels of the CSP-OZ-DC class changing

its value at each point in time when the associated event occurs,
– parameter variables for all channels equipped with parameters containing

the parameter values at the point in time when the associated event occurs.

The following definition yields an abstract view of interpretations where time is
not taken into account.

Definition 2. Let I(t) be an interpretation, changing its valuation at points in
time 0 = t0 < t1 < t2 < . . . from Mi−1 to Mi due to events ei occurring at ti ,
i ≥ 1. Then Untime(I) = 〈M0, e1,M1, e2,M2, . . .〉 is the corresponding sequence
of alternating states and events.

An interpretation is fair with respect to a set of events E ′ ⊆ Events (or
E ′-fair) iff inf (Untime(I)) ∩ E ′ 	= ∅ where inf (Untime(I)) = {e ∈ Events |
∃ infinitely many i ∈ N : ei = e}.

Slicing Concurrent Real-Time System Specifications for Verification 59

The semantics of a CSP-OZ-DC class is provided by the set of interpretations
that satisfy the given class, i.e., by interpretations I that satisfy all three parts
comprising the class.

CSP part: I |= CCSP iff Untime(I) corresponds to a run of the labelled transi-
tion system that is defined by the operational semantics of the CSP part [11].

Object-Z part: I |= COZ iff Untime(I) is in the history semantics of the
Object-Z part [20], i.e., its first valuation satisfies the Init schema of the
Object-Z part, all its valuations satisfy the State schema of the Object-Z
part, and all its events together with their pre- and post-states satisfy the
enable and effect schemas of the associated method.

DC part: I |= CDC iff I satisfies each of the DC formulas according to the
semantics of DC [9].

To argue about the events taking place at a given point in time, we use the
following function.

Definition 3. Let I : Time → Model be an interpretation and t a point in time.
TakesPlace(I, t) is the set of events that take place in I at time t:

TakesPlace(I, t) = {e ∈ Events | ∃ ε > 0:
∀ tl ∈ [t − ε, t), tr ∈ [t , t + ε] : I(tl)(e) 	= I(tr)(e)}

The next definition allows us to refer to the CSP process term that remains in
a given interpretation at a given point in time.

Definition 4. Let main be the CSP part of a CSP-OZ-DC specification C and
I an interpretation satisfying C with 0 = t0 < t1 < t2 < . . . the points in
time where I changes and ei ∈ TakesPlace(I, ti) for i > 0. Then the residual
CSP process term associated with a point in time, denoted by CSPC (I, ti), is
defined as CSPC (I, ti) = Pi with main ≡ P0

e1−→ P1
e2−→ . . .

ei−→ Pi being a valid
transition according to the operational semantics of the CSP part of C .

For describing properties of CSP-OZ-DC classes we can now use DC test for-
mulas [16] which can be evaluated on the set of interpretations defined by the
CSP-OZ-DC class. In this paper, we will not introduce this subset of DC, but
instead only assume that our logic is invariant under projection, i.e., that it
cannot distinguish interpretations where one is a projection of the other onto
some set of observables. A precise definition of projection is given in section 4.
One property of interest for our air conditioner specification could for instance
be whether there are always at least 5 fuel units left when the air conditioner is
on (which in fact is not true): ϕ ≡ ¬�(�work ∧ fuel < 5�).

The main purpose of the technique proposed in this paper is to determine
whether it is possible to check the property on a reduced specification C ′ such
that the following holds1: C |= ϕ iff C ′ |= ϕ.

As we will see it is possible to omit elements of the CSP part, the Object-Z
part, and of the DC part of the example system for checking our property.
1 C |= ϕ stands for “the formula ϕ holds on all interpretations satisfying C”.

60 I. Brückner

3 Slicing

In general, the aim of program slicing is to determine those parts of a given
program that are relevant with respect to a given slicing criterion such that only
these relevant parts need to be considered when analysing the program with
respect to the slicing criterion. This relevance analysis is usually based on the
preceding construction of a program dependence graph (PDG) that comprises all
dependence relations between elements of the program code. In preparation for
the construction of the PDG for CSP-OZ-DC specifications we first construct the
specification’s control flow graph (CFG) which represents the execution order of
the specification’s schemas according to the CSP part.

3.1 Control Flow Graph

Starting with the start .main node, representing the beginning of control flow
according to the CSP main process definition, its nodes (n ∈ NCFG) and edges
(−→CFG ⊆ NCFG × NCFG) are derived from the syntactical elements of the
specification’s CSP part, based on an inductive definition for each CSP operator.
Nodes either correspond

– to schemas of the Object-Z part (like enable e and effect e),
– to operators in the CSP part (like nodes interleave and uninterleave for

operator |||, nodes extchoice and unextchoice for operator �, or nodes parS
and unparS for operator ‖

S
), or

– to the structuring of the CSP process definitions (like start .P and term.P
for entry and exit points of CSP process P , or call .P and ret .P for call and
return points of references to process P).

For multiple occurrences of Object-Z methods inside the CSP process definitions
unique CFG nodes are introduced, e.g. by a naming convention of the associated
enable and effect nodes where the methods’ names are extended by an ordinal
referring to their syntactical occurrence inside the CSP process definitions.

Parallel Composition of Several Classes. When computing the PDG for
the parallel composition of several classes, we start by constructing the CFG’s
for each individual class. These are then combined into one single global CFG
for the entire parallel composition in the following steps:

1. The CFG nodes start .main and term.main of class C are renamed into
start .C and term.C such that these nodes remain unique in the final CFG.

2. For each pair of classes (C1,C2) that should run in parallel composition,
parallel synchronisation nodes parS and unparS are created and linked to
the respective start and term nodes of each CFG. The synchronisation set
S contains all events over which both classes need to synchronise.

3. Finally, new start .main and term.main nodes are created and connected to
each of the newly created parallel synchronisation nodes.

Slicing Concurrent Real-Time System Specifications for Verification 61

Instead of constructing one PDG for each individual class as explained in the
following section, the construction of the PDG for the parallel composition of all
involved classes is then based on this previously constructed global CFG. Apart
from this the construction for parallel composition of classes proceeds as usual.

3.2 Program Dependence Graph

The conventional program dependence graph (PDG) usually represents data and
control dependencies that are present inside a program. In our case we derive
several additional types of dependence from the rich syntactical structure of
CSP-OZ-DC specifications, among them predicate dependence representing con-
nections between schemas and associated predicates, synchronisation dependence
representing mutual communication relations between processes, and timing de-
pendence representing timing relations derived from DC formulas.

In addition to the nodes of the CFG, the PDG contains nodes for each predi-
cate inside a specification schema: Npred = {px | p predicate of schema node x}.
Again, predicate nodes are replicated for each occurrence of their associated
event inside the CSP part, e.g., for each CFG schema node. Thus the set of
nodes of the PDG is NPDG = NCFG ∪ Npred . Another important difference be-
tween both graphs is the set of edges they have. An edge connects two PDG
nodes, if predicate, control, data or synchronisation dependencies exist between
these nodes according to the definitions given below.

Before continuing with the construction of the PDG we first introduce some
abbreviations. When reasoning about paths inside the CFG, we let pathCFG(n,n ′)
denote the set of sequences of CFG nodes that are visited when walking along CFG
edges from node n to node n ′. When we refer to schemas or predicates associated
with a PDG node n, we let

– out(n) denote all output variables (those decorated with a !),
– in(n) denote all input variables (those decorated with a ?),
– mod(n) denote out(n) plus all variables being modified (those appearing in

the Δ-list of the schema or in primed form in a predicate),
– ref(n) denote in(n) plus all referenced (unprimed) variables
– vars(n) = mod(n) ∪ ref(n) denote all variables.

Next, we proceed with definitions of the various kinds of dependence types that
establish the program dependence graph for CSP-OZ-DC specifications. An ex-
ample of each type of dependence can be found in the dependence graph of our
example air conditioner system, depicted in figure 1.

Predicate Dependence. Each predicate that occurs in a CSP-OZ specification
is located inside some schema. The idea of predicate dependence edges

pred−→ ⊆ (NCFG × Npred ∪ Npred × NCFG)

is to represent this relation between schemas and their associated predicates. An
example can be seen in figure 1 between node eff dtemp 10 and node
t?=cool => dt’=-1 .

62 I. Brückner

start_AC

...

cd

en_dtemp_5

cd

...

cd

start_Env

temp’=0

pred

light’=0

pred

par_|||_2

cd

call_Temp_18

cd

call_Light_23

cd

start_Temp

cd

start_Light

cd

en_dtemp_10

cd

en_tchange_12

cd

eff_tchange_12

cd

call_Temp_22

cd

sd

eff_dtemp_10

cd

temp’ = temp+dt

pred

cd

en_dlight_11

cd

eff_dlight_11

cd

en_lchange_9

cd

eff_lchange_9

cd

call_Light_15

cd

tdl?=darken => dl’ = -1

pred

l?=brighten => dl’ = 1

pred

light’ = light+dl

pred

cd

t?=cool => dt’=-1

pred

t?=heat => dt’=1

pred

dd

dd

dd

dd

dd

dd

dd

dd

par_AC.Env.{dtemp}

cd

cd

start

cd

Fig. 1. Program dependence graph for the example system. Nodes inside bold bounding
rectangles belong to the same class, nodes inside dashed bounding rectangles to the
same event. Note, that most of the AC part is hidden, indicated by ”. . .” nodes.

For predicates of enable schemas, these edges lead from the enable node
to its predicates and vice versa, while for predicates of effect schemas there
are only edges in the direction from the effect schema to its predicates. The
different treatment of enable and effect schema predicates provides a way to
represent the tighter connection between enable schemas and its predicates:
enable predicates do not only depend on the event they are associated with but
also serve as the event’s guard, i.e., a mutual dependence exists, while this is not
the case for events of an effect schema.

Predicate nodes belonging to the Init schema are attached to the associated
start .main node in the way like predicate nodes belonging to an effect schema
are attached to the associated effect node. This reflects the initial restriction
of the state space according to the Init schema.

Finally, another type of predicate dependence exists for predicate nodes n ≡
px implying modifications of variables mentioned in the DC part. Their so far
unidirectional connection via the predicate dependence edge coming from their
associated effect schema node n ′ ≡ effect x needs to be complemented by
another predicate dependence edge in the opposite direction. This treats such
predicate nodes in a similar way as predicate nodes of enable schemas, since
they play—in conjunction with the DC formula—a similar role: They can be
regarded as a guard for the associated event, since it can only take place if the
predicate complies with the restrictions given in DC .

Slicing Concurrent Real-Time System Specifications for Verification 63

Control Dependence. The further construction of the PDG starts with the
introduction of control dependence edges: cd−→ ⊆ NCFG × NCFG
The idea behind these edges is to represent the fact that an edge’s source node
controls whether the target node will be executed. In particular, a node cannot
be control dependent on itself. We distinguish the following types of control
dependence edges:

– Control dependence due to nontrivial precondition exists between an enable
node and its effect node iff the enable schema is non-empty (i.e., not
equivalent to true).

– Control dependence due to external (resp. internal) choice or parallel com-
position with synchronisation exists between an extch (resp. intch) or parS
node and its immediate CFG successors.

– Control dependence due to synchronisation exists between an enable node
and its associated effect node iff both nodes are located inside a branch
attached to a parallel composition node and their associated event belongs
to the synchronisation alphabet of this parallel composition node. Note, that
even an event with an empty enable schema can be source of a control depen-
dence edge, since synchronisation determines whether control flow continues.

– Control dependence due to timing exists between an enable node and its
associated effect node iff there exists a DC formula that mentions the given
event or variables that are modified by it. Again, even events with an empty
enable schema can be source of a control dependence edge, since the DC
part may restrict whether control flow continues.

An example of control dependence due to synchronisation can be seen in figure 1
between nodes en dtemp 10 and eff dtemp 10 .

Additionally, some further control dependence edges are introduced in order
to achieve a well-formed graph:

– Call edges exist between a call node and its associated start node.
– Termination edges exist between a term node and its associated ret node.
– Start edges exist between a start node and its immediate CFG successor.
– Return edges exist between a ret node and its immediate CFG successor.

Finally, all previously defined (direct) control dependence edges are extended to
CFG successor nodes as long as they do not bypass existing control dependence
edges. The idea of this definition is to integrate indirectly dependent nodes (that
would otherwise be isolated) into the PDG.

– Indirect control dependence edges exist between two nodes n and n ′ iff

∃π ∈ pathCFG(n,n ′) : ∀m,m ′ ∈ ranπ : m cd−→ m ′ ⇒ m = n

An example of indirect control dependence can be seen in figure 1 between nodes
start Light and en lchange 9 .

64 I. Brückner

Data Dependence. The idea of data dependence edges dd−→ ⊆ Npred ×Npred is
to represent the influence that one predicate might have on a different predicate
by modifying some variable that the second predicate references. Therefore, the
source node always represents a predicate located inside an effect schema, while
the target node may also represent a predicate located inside an enable schema.
We distinguish the following types of data dependence edges:

– Direct data dependence exists between two predicate nodes px and qy (ap-
pearing in schemas x and y) iff there is a CFG path between both associated
schema nodes without any further modification of the relevant variable, i.e.,
iff

∃ v ∈ (mod(px) ∩ ref(qy)) , ∃π ∈ pathCFG(x , y) :
∀m ∈ ranπ : v ∈ mod(m) ⇒ (m = x ∨ m = y)

– Interference data dependence exists between two nodes px and qy iff the
nodes of both associated schemas x and y are located in different CFG
branches attached to the same interleaving or parallel composition operator,
i.e., iff mod(px) ∩ ref(qy) 	= ∅ and ∃m : (m ≡ interleave ∨ m ≡ parS) with

∃πx ∈ pathCFG(m, x) ∧ ∃πy ∈ pathCFG(m, y) : ran πx ∩ ran πy = {m}
– Symmetric data dependence exists between two nodes px and qy iff they are

associated with the same schema and share modified variables, i.e., iff

mod(px) ∩ mod(qy) 	= ∅ ∧ x = y

– Synchronisation data dependence exists between two predicate nodes px

and qy iff both are located inside effect schemas whose respective enable
schemas are connected by a synchronisation dependence edge as defined be-
low and one predicate has an output that the other predicate expects as
input, i.e., iff x = effect e ∧ y = effect e ∧ out(px) ∩ in(qy) 	= ∅

An example of direct data dependence can be seen in figure 1 between nodes
t?=cool => dt’=1 and temp’=temp+dt , where the modification of variable dt
at the source node may directly reach the reference of this variable at the target
node.

Synchronisation Dependence. The idea of synchronisation dependence edges
sd←→ ⊆ NCFG × NCFG is to represent the influence that two enable schema

nodes of the same event have on each other by being located inside two different
branches of a parallel composition operator that has the schemas’ associated
event in its synchronisation alphabet. Synchronisation dependence exists be-
tween two nodes n and n ′ with n ≡ n ′ ≡ enable e iff ∃m ≡ parS with e ∈ S :

∃π ∈ pathCFG(m,n) ∧ ∃π′ ∈ pathCFG(m,n ′) : ran π ∩ ran π′ = {m}
An example of synchronisation dependence can be seen in figure 1 between node
en dtemp 5 and node en dtemp 10 which both belong to the synchronisation
alphabet of AC and Env . If one of both events is relevant, this also applies to
the other one, since both need to agree in order to occur.

Slicing Concurrent Real-Time System Specifications for Verification 65

Timing Dependence. The representation of dependencies arising from the
DC part needs some additional preparation. The idea of timing dependence edges
td←→ ⊆ NPDG ×NPDG is to represent the mutual influence between neighbouring

elements of a DC counterexample formula.
According to [12], each formula DC occurring in the DC part of CSP-OZ-DC

specifications can be represented as a sequence of PhaseSpec data structures:

DC =̂ PhaseSpecDC
0 ; PhaseSpecDC

1 ; . . . ; PhaseSpecDC
n

with PhaseSpecDC
i comprising all information specified in the associated phases

of DC , i.e., invariants, time bounds, and forbidden or desired events. Depen-
dencies are defined between nodes associated with the same or neighbouring
PhaseSpecs. For each formula DC we then define a timing node sequence
(TNSDC) consisting of PDG nodes with relevance to the given formula, i.e.,

– predicate nodes implying modifications of variables mentioned in DC ,
– enable nodes of events mentioned in DC , and
– the start .main node of the given class if the initial phase of DC has a time

bound different from 0.

The nodes in each TNSDC are ordered according to the syntactical occurrence
of their associated specification elements inside DC with the exception of the
start .main node. This node does never occur directly inside a DC formula but
rather serves as a reference point for the length of the first phase which is the
reason why this node—if present—will appear as the first element of the timing
node sequence.

n ∈ ranTNSDC ⇔
n ≡ start .main∧ timebound(PhaseSpecDC

0) > 0
∨∃PhaseSpecDC

i : mod(n) ∩ vars(PhaseSpecDC
i) 	= ∅

∨ n ≡ enable e ∧ e ∈ events(PhaseSpecDC
i)

Based on these timing node sequences, bidirectional timing dependence exists
between two nodes n and n ′ iff there is a TNSDC with two neighbouring timing
nodes n and n ′.
An example of timing dependence is the edge between nodes en dlight 11 and
en lchange 9 in figure 1. This timing dependence is derived from the DC formula

DC ≡ ¬(true � � dlight � � lchange ∧ � > 1 � true)

which appears in the DC part of the environment specification and which re-
lates both involved events dlight and lchange. This DC counterexample formula
refers to initial and concluding intervals of arbitrary length (true), represented
by PhaseSpecDC

0 and PhaseSpecDC
2 . In between, it refers to a point interval

(� dlight) followed by a non-empty interval (� lchange ∧ � > 1) which are both
represented by a single data structure, PhaseSpecDC

1 with information about
initial events (dlight), forbidden events (lchange), and interval length (� > 1).

66 I. Brückner

3.3 Backward Slice

For our purpose, slicing is used to determine that part of the specification that
is directly or indirectly relevant for the property ϕ to be verified and which
therefore needs to remain in the specification. Computation of this slice starts
from the set of events Eϕ and the set of variables Vϕ that appear directly in
ϕ. Based on this slicing criterion (Eϕ, Vϕ) we determine the set of PDG nodes
with direct influence on ϕ, i.e., the set of predicate nodes modifying variables
from Vϕ and the set of enable nodes belonging to events from Eϕ:

Nϕ = {px ∈ Npred | mod(px) ∩ Vϕ 	= ∅} ∪ {enable e ∈ NCFG | e ∈ Eϕ}

Starting from this initial set of nodes we compute the backward slice by a reach-
ability analysis of the PDG. The resulting set of backwards reachable nodes
contains all nodes that lead via an arbitrary number of predicate, control, data,
synchronisation or timing dependence edges to one of the nodes that already are
in Nϕ. In addition to all nodes from Nϕ, the backward slice contains therefore
also all PDG nodes with indirect influence on the given property, i.e., it is the
set of all relevant nodes for the specification slice:

N ′ = {n ′ ∈ NPDG | ∃n ∈ Nϕ : n ′ (
pred−→ ∪ cd−→ ∪ dd−→ ∪ sd−→ ∪ td−→)∗ n}

Thus relevant events are those associated with nodes from N ′ that represent
enable or effect schemas

E ′ = {e | ∃n ∈ N ′ : n ≡ enable e ∨ n ≡ effect e}

and relevant variables are those associated with nodes from N ′ that represent
predicates:

V ′ =
⋃

px∈N ′
vars(px).

3.4 Reduced Specification

Slicing concludes with the computation of the reduced specification, i.e., a version
of the full specification without all details which are not relevant for the property
that served as the slicing criterion. Verification with respect to this property can
afterwards be performed on this reduced specification while the verification result
will be the same.

To compute the CSP part of the reduced specification we need a notion of
projection of CSP process definitions onto the set of relevant events:

Definition 5. Let P be the right side of a process definition from the CSP part
of a specification and E be the set of events that appear in the specification. The
projection of P with respect to a set of events E ′ ⊆ E is inductively defined:

Slicing Concurrent Real-Time System Specifications for Verification 67

1. SKIP |E ′ := SKIP and STOP |E ′ := STOP

2. (e → P)|E ′ :=
{

P |E ′ if e 	∈ E ′

e → P |E ′ else
3. (P ◦ Q)|E ′ := P |E ′ ◦ Q |E ′ with ◦ ∈ {; ,�,!,�}
4. (P ‖

S
Q)|E ′ := P |E ′ ‖

S∩E ′
Q |E ′

The projection of the complete CSP part is defined by applying the above defi-
nition to the right side of each process definition.

Given the set N ′, V ′ and E ′ it is then straightforward to construct the reduced
specification. For each class C its slice C ′ contains

– only channels from E ′

– the projection of the original specification’s CSP part onto E ′,
– a state schema with variables from V ′ only (same type as in C),
– schemas only for events in E ′ (plus Init),
– inside these schemas only predicates associated with nodes in N ′, and
– a DC part with only counterexample formulas that mention variables from

V ′ and events from E ′. (Note that due to the construction of timing depen-
dence edges, for any given counterexample formula either all or none of its
variables and events belong to the slice.)

When computing the slice of the complete system, i.e., the air conditioner spec-
ification in parallel composition with the environment with respect to the veri-
fication property ϕ ≡ �(�work ∧ fuel < 5�), we obtain the following results:

AC: Method level has been removed, which is sensible, since communicating
the current amount of fuel (level) does not influence ϕ. Note that methods
modeswitch, dtemp as well as variable mode have not been removed. The rea-
son is that method dtemp belongs to the synchronisation alphabet, resulting
in a control dependence edge due to synchronisation. However, when com-
puting a slice of the air conditioner alone (without parallel composition with
the environment), methods dtemp and modeswitch together with variable
mode can be removed, since the amount of available fuel does not depend
on the mode of operating.

Env: Methods tchange, dlight and lchange have been removed as well as vari-
ables light , temp, and dl and DC formula ¬�(� dlight � � lchange ∧ � > 1).
This result is also sensible, since the actual effect imposed on the environ-
ment’s temperature (tchange and temp) does not influence the verification
property and the modelling of the environment’s lighting behaviour (dlight ,
lchange, light and dl) is not related to the verification property at all.

To summarise, the specification’s state space has not only been reduced with
respect to its control flow space (events level , tchange, dlight , and lchange) but
also with respect to its data state space (variables light , temp, and dl) and its
timing requirements (the DC part of Env).

Note, that in both cases neither the original nor the sliced specification satisfy
the given property, so the verification result will be negative in both cases. Nev-
ertheless, this is exactly what we wanted to achieve: A specification slice must
satisfy a slicing criterion if and only if the original specification does so.

68 I. Brückner

4 Correctness

In this section we show correctness of the slicing algorithm, i.e., we show that
the property (and slicing criterion) ϕ holds on the full specification if and only
if it holds on the reduced specification. For proving this we will show that an
interpretation of the reduced specification is a projection of an interpretation of
the full specification onto some relevant subset of the variables and events, i.e.,
they only differ on variables and events that the formula does not mention.

Intuitively, when computing the projection of a given interpretation onto a
set of relevant variables and a set of events, one divides the interpretation into
blocks formed by time intervals beginning at one relevant event and ending at
the next relevant event. The corresponding block in the projection refers to the
same time interval, but does not contain any of the irrelevant events that may
appear inside the block of the original interpretation. Furthermore, throughout
both blocks the interpretation and its projection coincide in the valuation of all
relevant variables.

Definition 6. Let O ′ be a set of observables, E ′ = O ′∩Events the set of events
within O ′ and I, I ′ be two E ′-fair interpretations with 0 = t0 < t1 < t2 < . . . and
0 = t ′0 < t ′1 < t ′2 < . . . the points in time where I and I ′ change, respectively. I ′

is in the projection of I with respect to O’, denoted by ProjectionO′(I), iff

1. ∀ t : I|O′ (t) = I ′|O′(t)
2. ∀ i ≥ 0: ∃ j : (ti = t ′j ∧ TakesPlace(I, ti) = TakesPlace(I ′, t ′j))

∨ (t ′j < ti < t ′j+1 ∧ TakesPlace(I, ti) ∩ E ′ = ∅)

Given a logic which is invariant under projections, such a projection relation-
ship between any two interpretations then guarantees that formulas which only
mention observables from O ′ hold for either both or none of the interpretations.
Note that projection is a particular form of stuttering.

Correctness proof. Now we start the actual correctness proof with several lemmas
showing the relationships between CSP processes and events and variables which
remain in the specification. Due to space restrictions we only present the main
ideas of the proofs.The complete proofs can be found in [1].

Our first lemma states that the projection of each residual CSP process associ-
ated with a projection interval without relevant events as defined in definition 6
can mimic the behaviour of the residual CSP process associated with the last
state of the projection block, i.e., the relevant event at the end of the block is
enabled at any point inside the block when computing the CSP projection.

Lemma 1 (Transitions of CSP process projections). Let Pj , . . . ,Pj+k+1

be CSP processes, E ′ a set of relevant events, ej+1, . . . , ej+k−2 irrelevant events
(∈ E ′), and ej+k a relevant event (∈ E ′), such that

Pj
ej+1−→ Pj+2

ej+3−→ . . .
ej+k−2−→ Pj+k−1

ej+k−→ Pj+k+1

Slicing Concurrent Real-Time System Specifications for Verification 69

is a valid transition sequence. Then the following holds2:

P
ej+k−→ Pj+k+1|E ′ with P ∈ {Pj |E ′ , . . . ,Pj+k−1|E ′}

Proof sketch: The proof builds up on another lemma considering the case of
a single CSP transition: Either this transition is labelled with a relevant event
e ∈ E ′ or with an irrelevant event e 	∈ E ′. In the former case it is easy to see that
the associated projection also can perform this event e, while in the latter case
some further considerations lead to the conclusion that the associated projection
will finally perform the same relevant event as the original process. Both cases
are shown by induction over the structure of the respective CSP processes. For
the proof of the present lemma we then only need to combine both cases in an
induction over the length of the projection block and come to the desired result.
Next, we bridge the gap between transition sequences that we can observe for
CSP processes and paths that are present in the associated control flow graph.

Lemma 2 (CSP transition sequences and CFG paths). Let C be a class
specification, CFG its control flow graph, I an interpretation satisfying C with
0 = t0 < t1 < t2 < . . . the points in time where I changes, ti with i > 0 one
of these points with e ∈ TakesPlace(I, ti) and f ∈ TakesPlace(I, ti+1). Then the
two corresponding nodes enable e and enable f of CFG are related in either
one of the following ways:

1. There exists a path in CFG which leads from enable e to enable f :

pathCFG(enable e, enable f) 	= ∅

2. There exists a CFG node interleavei or par i
S with S ∩ {e, f } = ∅ which has

enable e and enable f as successors in different branches:

∃n ∈ CFG : n ≡ interleavei ∨ (n ≡ par i
S ∧ S ∩ {e, f } = ∅) :

∃πe ∈ pathCFG(n, enable e) ∧ ∃πf ∈ pathCFG(n, enable f) :
πe ∩ πf = {n}

Proof sketch: The proof consists of two layers of induction over the structure
of the residual CSP process terms CSPC (I, ti) and CSPC (I, ti+1) such that each
possible combination of CSP constructs is shown to be covered by one of the
two cases mentioned in the lemma.
The following lemma states that the set of irrelevant events appearing inside a
projection block does not have any influence on the relevant variables associated
with the states inside the block.

Lemma 3 (No influence of irrelevant events on relevant variables). Let
C be a class specification, I an interpretation satisfying C with 0 = t0 < t1 <
t2 < . . . the points in time where I changes, associated with ei ∈ TakesPlace(I, ti)
for i > 0. Let furthermore E ′ be the set of relevant events computed by the slicing
2 Note, that Pj |E ′ = . . . = Pj+k−1|E ′ does not necessarily hold.

70 I. Brückner

algorithm with respect to some formula ϕ (with an associated set of variables Vϕ),
ej+1, . . . , ej+k−1 	∈ E ′, and ej , ej+k ∈ E ′. Then the following holds:

I(tj)|V = . . . = I(tj+k−1)|V with V = Vϕ ∪
⋃

e∈{ei∈E ′|i≥j}
ref (e)

Proof sketch: We show this by contradiction: Supposed, the equality does not
hold. This implies the existence of a data dependence between an event inside
the block and the relevant event. In consequence, this leads to the event inside
the block being a member of the set of relevant events.

Our last lemma states that DC formulas which the slicing algorithm identified to
be irrelevant with respect to a property to be verified do not impose restrictions
on any relevant event.

Lemma 4 (No influence of irrelevant DC formulas on relevant events).
Let C be a class specification, E ′ the set of relevant events obtained from slicing
C with respect to some slicing criterion ϕ, and DC a counterexample formula
from the DC part of C which is irrelevant with respect to ϕ. Let

EDC = events(DC) ∪ {e ∈ Events | mod(e) ∩ vars(DC) 	= ∅}

be the set of events that DC refers to either directly or indirectly by referring to
some variable that is modified by the respective event. Then the following holds:

1. There exists no CFG path connecting events from EDC with events from E ′.
2. Timings of events from EDC are not affected by timings of events from E ′.

Proof sketch: We show both claims by contradiction: Supposed, a path as in
(1) exists, then this leads to the existence of a control dependence and thus to
DC being relevant. Supposed, an irrelevant event as in (2) is forced to occur
before a certain relevant event, then this leads to a connection between both
nodes either via control flow edges, via a common DC formula, or via two DC
formulas with a common reference point and thus in all cases to e and hence
DC being relevant.

Now we come to our main theorem that states the existence of a projection
relationship between any two interpretations associated with the original and to
the sliced specification.

Theorem 1. Let C be a class specification and C ′ the class obtained when slic-
ing C with respect to a formula ϕ, associated with sets of events Eϕ and variables
Vϕ. Let E ′ and V ′ be the set of events and variables, respectively, which the slic-
ing algorithm delivers as those of interest (in particular Eϕ ⊆ E ′ and Vϕ ⊆ V ′).
Then for any E ′-fair interpretation I satisfying C there is a corresponding E ′-
fair interpretation I′ satisfying C ′ such that

I ′ ∈ ProjectionV ′∪E ′(I).

Slicing Concurrent Real-Time System Specifications for Verification 71

Proof sketch: We need to consider two directions: (1) We have to show that
for any interpretation of C we can construct a corresponding interpretation
of C ′ and (2) vice versa. For both directions we define a set of variables V i
that contains all variables mentioned in the slicing criterion and for each ei ∈
TakesPlace(I, ti)∩E ′ all variables referenced by ei or subsequent relevant events:

V i = Vϕ ∪
⋃

e∈{ej∈E ′|j≥i}
ref (e)

1. Let I be an interpretation satisfying C . We inductively construct an in-
terpretation I ′ which coincides with I on relevant relevant events from E ′

and relevant variables from V i , i.e., intervals of I containing only irrele-
vant events correspond to intervals of I′ containing no events but the same
valuations of relevant variables.

We have to show that I′ satisfies C ′. To this end we use induction over
the length of I′ where we apply lemma 3 and lemma 1 when showing that
we can remove some intermediate sequences from the original interpretation
such that all schemas, process definitions and timing constraints from the
reduced specification are satisfied.

2. Let I ′ be an interpretation satisfying C ′ with 0 = t0 < t1 < t2 < . . . the
points in time where I ′ changes and TakesPlace(I ′, ti) ∩ E ′ 	= ∅.
We inductively construct an interpretation I with

0 = t0 < t1
0 < t2

0 < . . . < tn0
0 < t1 < t1

1 < t2
1 < . . . < tn1

1 < t2 < t1
2 < . . .

the points in time where I changes, such that the same relevant events
appear in I and I′ at points in time ti for i > 0, and additional (irrelevant)
events appear in I at points in time t jii for i ≥ 0 and 1 ≤ ji ≤ ni .

In the induction we apply lemma 3 to show that we can safely insert
the necessary additional steps in I such that the associated schemas of the
full specification are satisfied. Furthermore, we apply lemma 2 to show that
these additional steps are possible according to the process definitions from
the full specification. Finally, we use lemma 4 to show that the additional
DC formulas are satisfied by choosing appropriate points in time for the
additional events in I such that I is indeed an interpretation of C .

5 Conclusion

We presented a slicing approach with the intention to use it as a preprocess-
ing step in the verification of high-level specifications of concurrent real-time
systems with respect to real-time properties. The overall aim of introducing slic-
ing into the verification workflow is to complement other strategies to fight the
problem of state space explosion. Our slicing algorithm is custom-tailored to the
integrated specification language CSP-OZ-DC in order to exploit its particular
features in the construction of an adequate dependence graph. Once this graph
is constructed, it allows us to compute slices of the original specification with

72 I. Brückner

respect to a wide set of verification properties as we demonstrated for a small
example specification. Subsequent verification runs can be performed on the slice
instead of the full specification without changing the verification result.

Currently, we are integrating the proposed slicing technique as a plugin into
the modelling environment Syspect [22] which was already used to automati-
cally generate the dependence graph in figure 1. This tool gives (1) a precise
CSP-OZ-DC semantics to a subset of UML notations such as state charts, class
diagrams, and component diagrams, and (2) has a plugin-based connection to
the verification tool chain for CSP-OZ-DC proposed in [13] and evaluated in [8],
currently based on the abstraction-refinement model checker ARMC [19] and
the deductive model checker SLAB [2].

Related Work. Program slicing as originally defined by Weiser in the field of
program analysis and debugging [25] has been enhanced with respect to many
different aspects, having found numerous additional fields of application at the
same (for overview papers see [23,28]) and a similarly wide spectrum of targets,
including Z-based specifications [5,27] as in our case.

Formal verification is an application area of slicing that has recently seen
increasing interest, since slicing seems to be one technique that can help to tackle
the problem of state space explosion during model checking. Empirical results [7]
have shown that slicing can indeed effectively complement other strategies such
as predicate abstraction [6] and partial order reduction [18] that are mostly
applied on a different stage than slicing, namely either during or after model
generation has already been performed. In contrast to that, slicing can be applied
beforehand as a relatively cheap syntax-based method to reduce the input to
model generation. Thus, the benefit of slicing can be seen in two directions:
First, it enables an optimisation by accelerating the process of model generation,
which is for larger systems already a substantial part of the complete verification
process. Second, it yields smaller models to which subsequently the mentioned
orthogonal strategies for state space reduction can still be applied.

Existing approaches to static slicing of formal specifications, however, do not
consider verification, i.e., slicing is not carried out with respect to verification
properties. Work on slicing used for reducing programs before verification has
for instance been done for Java [7] and Promela [17]. Furthermore, we are not
aware of any existing approaches that consider slicing of high-level specifications
of real-time systems, while on the semantic level of timed automata slicing has
been applied in [14].

References

1. Brückner, I.: Slicing CSP-OZ-DC Specifications for Verification. Technical report,
Univ. Oldenburg (2007) http://csd.informatik.uni-oldenburg.de/∼ingo/
ifm07.pdf

2. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing Abstractions. In:
FSEN’07. LNCS, Springer, Heidelberg (to appear, 2007)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://csd.informatik.uni-oldenburg.de/$sim $ingo/ifm07.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef U/stmry/m/n/5 {OT1/cmr/m/n/9 }U/stmry/m/n/5 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef U/stmry/m/n/5 {OT1/cmr/m/n/9 }U/stmry/m/n/5 size@update enc@update http://csd.informatik.uni-oldenburg.de/$sim $ingo/ifm07.pdf

Slicing Concurrent Real-Time System Specifications for Verification 73

3. Brückner, I., Wehrheim, H.: Slicing an Integrated Formal Method for Verification.
In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 360–374.
Springer, Heidelberg (2005)

4. Brückner, I., Wehrheim, H.: Slicing Object-Z Specifications for Verification. In: Tre-
harne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455,
pp. 414–433. Springer, Heidelberg (2005)

5. Chang, D., Richardson, D.: Static and Dynamic Specification Slicing. In: SIGSOFT
ISSTA, pp. 138–153. ACM Press, New York (1994)

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: CAV’00, pp. 154–169 (2000)

7. Dwyer, M.B., Hatcliff, J., Hoosier, M., Ranganath, V., Wallentine, R., Wallen-
tine, T.: Evaluating the Effectiveness of Slicing for Model Reduction of Concurrent
Object-Oriented Programs. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and
ETAPS 2006. LNCS, vol. 3920, Springer, Heidelberg (2006)

8. Faber, J., Meyer, R.: Model Checking Data-Dependent Real-Time Properties of
the European Train Control System. In: FMCAD’06, pp. 76–77. IEEE Computer
Society Press, Los Alamitos (2006)

9. Hansen, M.R., Chaochen, Z.: Duration Calculus: Logical Foundations. Formal As-
pects of Computing 9, 283–330 (1997)

10. Hatcliff, J., Dwyer, M., Zheng, H.: Slicing Software for Model Construction. Higher-
order and Symbolic Computation 13(4), 315–353 (2000)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

12. Hoenicke, J.: Combination of Processes, Data, and Time. PhD thesis, Univ. of
Oldenburg (2006)

13. Hoenicke, J., Maier, P.: Model-checking specifications integrating processes, data
and time. In: Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 465–480. Springer, Heidelberg (2005)

14. Janowska, A., Janowski, P.: Slicing Timed Systems. Fundamenta Informati-
cae 60(1–4), 187–210 (2004)

15. Mahony, B., Dong, J.S.: Timed communicating Object-Z. IEEE Transactions on
Software Engineering 26(2), 150–177 (2000)

16. Meyer, R., Faber, J., Rybalchenko, A.: Model Checking Duration Calculus: A Prac-
tical Approach. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006.
LNCS, vol. 4281, pp. 332–346. Springer, Heidelberg (2006)

17. Millett, L., Teitelbaum, T.: Issues in Slicing Promela and its Applications to Model
Checking. STTT 2(4), 343–349 (2000)

18. Peled, D.A.: Ten years of partial order reduction. In: Vardi, M.Y. (ed.) CAV 1998.
LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998)

19. Podelski, A., Rybalchenko, A.: ARMC: the logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
Springer, Heidelberg (2006)

20. Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers,
Dordrecht (2000)

21. Smith, G., Hayes, I.J.: An introduction to Real-Time Object-Z. Formal Aspects of
Computing 13(2), 128–141 (2002)

22. Syspect. Endbericht der Projektgruppe Syspect. Technical report, Univ. of Olden-
burg (2006) http://syspect.informatik.uni-oldenburg.de/

23. Tip, F.: A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages 3(3), 121–189 (1995)

http://syspect.informatik.uni-oldenburg.de/

74 I. Brückner

24. Treharne, H., Schneider, S.A.: Communicating B Machines. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272,
pp. 416–435. Springer, Heidelberg (2002)

25. Weiser, M.: Programmers use slices when debugging. Communications of the
ACM 25(7), 446–452 (1982)

26. Woodcock, J.C.P., Cavalcanti, A.L.C.: The Semantics of Circus. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS,
vol. 2272, pp. 184–203. Springer, Heidelberg (2002)

27. Wu, F., Yi, T.: Slicing Z Specifications. SIGPLAN 39(8), 39–48 (2004)
28. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.

SIGSOFT SEN 30(2), 1–36 (2005)

Slotted-Circus

A UTP-Family of Reactive Theories
∗

Andrew Butterfield1, Adnan Sherif2, and Jim Woodcock3

1 Trinity College Dublin
Andrew.Butterfield@cs.tcd.ie

2 Universidade Federal de Pernambuco
ams@cin.ufpe.br

3 University of York
Jim.Woodcock@cs.york.ac.uk

Abstract. We present a generic framework of UTP theories for describ-
ing systems whose behaviour is characterised by regular time-slots, com-
patible with the general structure of the Circus language [WC01a]. This
“slotted-Circus” framework is parameterised by the particular way in
which event histories are observable within a time-slot, and specifies
what laws a desired parameterisation must obey in order for a satisfac-
tory theory to emerge.

Two key results of this work are: the need to be very careful in formu-
lating the healthiness conditions, particularly R2; and the demonstration
that synchronous theories like SCSP [Bar93] do not fit well with the way
reactive systems are currently formulated in UTP and Circus.

1 Introduction

1.1 Circus and Slotted-Circus

The formal notation Circus [WC01a] is a unification of Z and CSP, and has been
given a UTP semantics [WC02]. A Circus text describes behaviour as a collection
of actions, which are a combination of processes with mutable state. However,
apart from event sequencing, there is no notion of time in Circus.

A timed version of Circus (Circus Time Action or CTA) has been explored
[SH02, She06] that introduces the notion of discrete time-slots in which sequences
of events occur. In CTA, we have a two-level notion of history: the top-level views
history as a sequence of time-slots; whilst the bottom-level records a history of
events within a given slot. The key notion in this paper is that we can instantiate
the bottom-level history in a variety of ways: as simple traces, or multisets of
events, or as the more complex “micro-slot” structures used in the operational
semantics of Handel-C [BW05].

This paper describes a generalisation of CTA called “slotted-Circus”, which
is a collection of theories parameterised by different ways to instantiate the
∗

Research reported in this paper was partially supported by QinetiQ.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 75–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

76 A. Butterfield, A. Sherif, and J. Woodcock

P ; Q =̂ ∃ obs0 • P [obs0/obs ′] ∧ Q [obs0/obs]

P �c� Q =̂ c ∧ P ∨ ¬ c ∧ Q

P � Q =̂ P ∨ Q

!i∈I
Pi =̂ ∃ i : I • Pi

S � P =̂ [P ⇒ S]

Fig. 1. Basic UTP Operators

bottom-level event history within a time-slot. The motivation behind this work
is the desire to re-cast existing semantics for Handel-C into the UTP framework
so that Circus can be used as a specification language.

The Handel-C denotational [BW02] and operational semantics use this time-
slot model, but with varying degrees of complexity in the slot structure, de-
pending on which language constructs we wish to support. The slotted-Circus
framework reported here is intended to be a foundation for formulating the
common parts of these models, making it easier to explore the key differences.

1.2 UTP: General Principles

Theories in UTP are expressed as predicates over a pre-defined collection of
free observation variables, referred to as the alphabet of the theory. The pred-
icates are generally used to describe a relation between a before-state and an
after-state, the latter typically characterised by dashed versions of the obser-
vation variables. A predicate whose free variables are all undashed is called a
(pre-)condition. A given theory is characterised by its alphabet, and a series
of healthiness conditions that constrain the valid assertions that predicates may
make. In almost all cases there are some basic operators common to every theory
(Figure 1). Sequential composition (P ; Q) corresponds to relational composi-
tion, i.e., the existence of an intermediate state (obs0), such that P relates obs
to obs0, whilst Q relates obs0 to obs ′. The conditional P �c�Q is generally used
when c is a condition and asserts that P holds if c is true, otherwise it asserts
Q . Nondeterminism between two predicates P ! Q is simply logical disjunction,
which extends to an existential quantifier for a nondeterministic choice over an
indexed set (!i Pi). We capture the notion of refinement � as logical entailment
between the implementation and specification predicates, quantified over all free
variables.

We note that UTP follows the key principle that “programs are predicates”
[Hoa85b], and so does not distinguish between the syntax of some language and
its semantics as alphabetised predicates. In other words, we view the language
constructs as being “syntactic sugar” for their predicate semantics, rather than
defining some form of semantic function mapping some abstract syntax type to
some domain capturing its meaning.

Slotted-Circus 77

Action ::= Skip | Stop | Chaos

| Name+ := Expr+ | Comm → Action | Action � Action

| Action |[VS | CS | VS]| Action | Action\CS

| μ Name • F (Name) | Wait t | . . .

Comm ::= Name.Expr | Name!Expr | Name?Name

Expr ::= expression

t ::= positive integer valued expression

Name ::= channel or variable names

CS ::= channel name sets

VS ::= variable sets

Fig. 2. Slotted-Circus Syntax

1.3 Structure and Focus

The main technical emphasis of this paper is on the construction of the generic
framework and the required healthiness conditions, with the semantics of the
language constructs and a case study provided to give a feel for its utility. We
first present the syntax §2, generic framework §3, healthiness conditions §4, and
semantics §5. We then discuss instantiation §6 and describe a case-study §7,
before mentioning related §8 and future §9 work, and concluding §10. Two ap-
pendices give supporting material.

2 Syntax

The syntax of Slotted-Circus is similar to that of Circus, and a subset is shown
in Figure 2. The notation X + denotes a sequence of one of more X . We assume
an appropriate syntax for describing expressions and their types, subject only
to the proviso that booleans and non-negative integers are included.

The basic actions Skip, Stop, Chaos are similar to the corresponding CSP be-
haviours [Hoa85a, Sch00], respectively denoting actions that do nothing and ter-
minate, do nothing and wait forever, or act unpredictably forever. We also intro-
duce (multiple) assignment (:=) and event (communication) prefixes Comm →
Action as basic actions. The communication prefixes range over communicating
a value on a channel (Name.Expr), sending a value on a channel (Name!Expr), or
receiving a value on a channel (Name?Name). The composite action operator �

denotes external choice, whilst parallel composition of actions (|[VS | CS | VS]|) is
parameterised by three sets, the first and third denoting the variables the corre-
sponding action may modify, while the middle one specifies the synchronisation
channels. We require that parallel processes modify disjoint parts of the state.
We also have hiding (\ CS) and recursively defined actions (μName • F (Name)).

The key construct related to time-slots, and hence not part of Circus, is Wait t
which denotes an action that simply waits for t time-slots to elapse, and then
terminates.

78 A. Butterfield, A. Sherif, and J. Woodcock

3 Generic Slot-Theory

Both the semantics of Handel-C [BW05] and the timed extension to Circus called
“Circus Timed Actions (CTA)” [SH02, She06] have in common the fact that the
models involve a sequence of “slots” that capture the behaviour of the system
between successive clock ticks. These slots contain information about the events
that occurred during that time slot (“history”) as well as the events being refused
at that point. A key feature of all these semantic models is that the progress
of events during a time-slot is observable, rather than just the overall outcome
for an entire slot. While the initial goal was to develop a synchronous variant
of Circus, it rapidly became clear that it was worth investing time in a generic
slot-based theory, which could then be specialised to cover synchronicity, CTA,
and the various slot-models that could be used to characterise Handel-C and
similar synchronous hardware languages at various levels of detail.

We begin our description of the generic slotted theory by noting that it is
parametric in three inter-related aspects:

– A given set of events, E .
– A type constructor H that builds a slot’s history-type from an event type.
– A collection of basic functions that work with H E , which must satisfy

certain laws.

Given H, we then define the notion of a slot (S) as being a pair: a history and
a set of events denoting a refusal:

S E =̂ (H E) × (P E) (1)

In a sense a slot is similar to the notion of a failure in CSP [Ros97], except that
it covers only the events within a single time-slot (i.e., between two successive
clock ticks). Given a notion of time-slot, we then introduce the top-level notion
of event history as being a non-empty sequence of slots. The presence of clock-
ticks in the history is denoted by the adjacency of two slots, so a slot-sequence
of length n + 1 describes a situation in which the clock has ticked n times.

We can now describe the observational variables of our generic UTP theory:

ok : B —True if the process is stable, i.e., not diverging.
wait : B —True if the process is waiting, i.e., not terminated.
state : Var �→ Value —An environment giving the current values of slotted-Circus

variables
slots : (S E)+ : —A non-empty sequence of slots recording the behaviour of the

system.

The variables ok , wait play the same role as the in the reactive systems theory
in [HH98, Chp. 8], while state follows the trend in [SH02] of grouping all the
program variables under one observational variable, to simplify the presentation
of the theory.

In order to give the generic semantics of the language, we need to provide six
functions and two relations over H E , listed in Figure 3. Function Acc returns the

Slotted-Circus 79

AccH : H E → PE

EqvTrcH : E∗ ↔ H E

HNullH : H E

�H : H E ↔ H E

HaddH : H E × H E → H E

HsubH : H E × H E
→ H E

HHideH : P E → H E → H E

HSyncH : P E → H E × H E → P(H E)

Fig. 3. Generic Functions over H E

set of events mentioned (Accepted) in its history argument. The relation EqvTrc
relates a history to all event sequences (traces) compatible with it. HNull is a
constant denoting an empty history. Infix symbol " captures the notion of one
history being a prefix, of pre-history of another, and is required to be a pre-
order. The functions Hsub and Hadd capture the notions of history subtraction
and addition (extension). In particular we note that Hsub is partial and is only
defined when the second argument is a pre-history of the first. Function HHide
acts to remove a set of events from a history. Finally the HSync function gen-
erates all the possible histories that can result from the synchronisation of two
histories over a given event set.

In order to produce a coherent theory, the functions have to obey a number
of laws, listed in Appendix A. Most of the properties concerned capture reason-
able behaviours that one would expect of histories, e.g., that history addition
is associative, or that the null history acts as a unit. Most of these laws where
determined by the needs of the general theory, in particular the definitions and
proofs needed to establish the required healthiness conditions.

As an example, a variation of the CTA theory of [She06] can be captured by
defining an event history (HCTA E) to be a sequence of events, and instantiating
most of the functions and relations as the corresponding ones for sequences.

HCTA E =̂ E∗ (2)

3.1 Derived Types and Operators

Given the definition of H, and the associated functions and relations, we need
to use these to define the corresponding aspects for slots, and the slot-sequences
that comprise our observational variables (see Figure 4). EqvTrace, defined in
terms of EqvTrc, relates traces to slot-sequences with which they are compatible.
The functions Refs and EqvRef extract refusals from slot-sequences, with the
former returning a refusal-set list, whilst the latter singles out the last refusal
set. A slot-sequence s is a slot-prefix of a slot-sequence t , written s � t if the
front of s is a prefix of t and the history component of the last slot of s is
a history-prefix of the corresponding component of the first slot of t − s . The

80 A. Butterfield, A. Sherif, and J. Woodcock

EqvTrace : E∗ ↔ (S E)∗

Refs : (S E)+ → (PE)+

EqvRef : (S E)+ → P E

� : (S E)+ ↔ (S E)+

≈ : S E ↔ S E
∼= : (S E)+ ↔ (S E)+

SaddS : S E × S E → S E

SsubS : S E × S E
→ S E

�� : ((S E)+ × (S E)+) → (S E)+

�� : ((S E)+ × (S E)+)
→ (S E)+

Fig. 4. Derived Functions and Relations

relation � is a pre-order. Slot equivalence ≈ and Slot-sequence equivalence (∼=)
are the symmetric closure of " and � respectively, giving equivalence relations.
An important point to note here is that if s ∼= t , then s and t are identical,
except for the refusal values in the last slot in each.

The notions of adding (extending) and subtracting histories are lifted to the
slot level, but here an issue immediately arises as to how the refusal components
are handled. If we consider history addition, then Hadd(h1, h2) is intended to
capture the history resulting from the events of history h1, followed by those
of h2. We now note that in most CSP-like theories, a failure consisting of a
trace/history of events (h) coupled with a refusal set (r), is to be interpreted
as stating that the process under consideration is refusing the events in r , after
having performed the events in h. Given this interpretation, we are then required
to specify slot addition and subtraction as follows:

Sadd((h1,), (h2, r2)) =̂ (Hadd(h1, h2), r2)
Ssub((h1, r1), (h2,)) =̂ (Hsub(h1, h2), r1)

For history subtraction, the value Hsub(h1, h2) is defined only if h2 " h1, and
denotes those events in h1 that occurred after those in h2. The significance of this
interpretation is important, as will be made clear when we consider an attempt
to model Synchronous CSP (SCSP) [Bar93] later in this paper. A consequence
of this interpretation is that one of the healthiness conditions discussed in the
next section (R2) becomes more complex.

Given slot addition and subtraction, these can then be lifted to act on slot-
sequences, as �� and �� respectively. The latter is only defined if its second
argument is a �-prefix of its first. Slot-sequence addition concatenates its two
arguments, merging the last slot of the first with the first slot of the second:

slots1��slots2 =̂ front(slots1)�〈Sadd(last(slots1), head(slots2))〉�tail(slots2) (3)

Slotted-Circus 81

Slot-sequence subtraction s �� t is defined when t � s , in which case both s
and t can be written as

s = pfx � 〈slots〉 � sfx
t = pfx � 〈slott 〉

In this case, the subtraction becomes:

s �� t =̂ 〈Ssub(slots , slott)〉 � sfx (4)

4 Healthiness Conditions

Given that we are defining semantics as predicates over before- and after- ob-
servations, we need to ensure that what we write is feasible, in that we do not
describe behaviour that is computationally or physically infeasible (e.g., undoing
past events). In UTP, the approach to handling feasibility is to define a number
of so-called healthiness conditions that characterise the sort of predicates which
make sense in the intended interpretation of the theory.

While the notion of healthiness-conditions is well-understood in the UTP
community, we are still going to take time for the presentation that follows, as
we highlight a prevalent use of overloading that can have unexpected effects in
inexperienced hands.

Given a healthiness condition called H we introduce two functions, mkH and
isH. In order to denote a healthiness condition, we require that the former is
an idempotent monotonic predicate transformer, w.rt. to the standard ordering
used in UTP, namely that S � P iff [P ⇒ S]. The role of mkH is to convert
an un-healthy predicate into a healthy one, in some fashion, but also to leave
already healthy predicates unchanged (hence the need for idempotency, so that
a healthy predicate is a fixed-point of mkH).

mkH : Predicate → Predicate
mkH = mkH ◦ mkH

Function isH asserts a healthiness condition, i.e., is a higher order predicate
that tests a given predicate to see if it is healthy:

isH : Predicate → B

isH(P) =̂ P ≡ mkH(P)

We can summarise by saying that a healthy predicate is a fixed-point of the
corresponding healthiness predicate transformer. In most material on UTP, it is
conventional to overload the notation H to refer to both mkH and isH, with
the use usually being clear from context. In either case it is also conventional
to refer in general to H as a healthiness condition, even in a context were it
would actually be a predicate transformer. We shall adopt this convention in the
sequel.

82 A. Butterfield, A. Sherif, and J. Woodcock

However a hazard can arise when alternative formulations of H are available;
note that different functions may have the same set of fixed-points. We illustrate
this later when discussing R2.

The healthiness conditions we introduce here for slotted-Circus parallel some
of those in [HH98, Chp. 8] for general reactive systems, namely R1, R2, R3 and
CSP1.

4.1 Reactive Healthiness

We shall discuss R1 and R3 first, as these are fairly straightforward, while R2
deserves some discussion, as its adaption for slotted-Circus was decidedly non-
trivial.

R1 simply states that a slotted-Circus process cannot undo the past, or in
other words, that the slots ′ observation must be an extension of slots , whilst R3
deals with the situation when a process has not actually started to run, because
a prior process has yet to terminate, characterised by wait = True. In this case
the action of a yet-to-be started process should simply be to do nothing, an
action we call “reactive-skip” (II). Reactive skip has two behavioural modes: if
started in an unstable state (i.e the prior computation is diverging), then all it
guarantees is that the slots may get extended somehow; otherwise it stays stable,
and leaves all other observations unchanged.

R1(P) =̂ P ∧ slots � slots ′

R3(P) =̂ II �wait� P
II =̂ ¬ ok ∧ slots � slots ′

∨
ok ′ ∧ wait ′ = wait ∧ state ′ = state ∧ slots ′ = slots

The purpose of the slots observation variable in slotted-Circus, and its trace
analogue (tr) in UTP reactive-process theory, is to facilitate the definition of
operators such as sequential composition. What is not permitted however, is for
a process to be able to base its actions on the history of past events as recorded
by this variable—any such “memory” of the past must be captured by the state
observation. Healthiness condition R2 is concerned with ensuring that a process
can only specify how the history is extended, without reference to what has
already happened. In [HH98, Chp. 8] this is captured by stating that P is R2-
healthy if it is invariant under an arbitrary shift in the prehistory, or in other
words, a non-deterministic choice over all possible values that tr might take:

R2–UTP(P) =̂ !s P [s , s � (tr ′ − tr)/tr , tr ′]

≡ ∃ s • P [s , s � (tr ′ − tr)/tr , tr ′]

It would seem reasonable to expect the slotted-Circus version to simply replace
tr by slots and use the slot-sequence analogues of sequence concatenation and
subtraction. This would result in the following definition (here the a indicates
“almost”):

R2a(P) =̂ ∃ ss • P [ss , ss �� (slots ′ �� slots)/slots , slots ′] (5)

Slotted-Circus 83

Whilst this looks plausible, there is in fact a problem with it, which only becomes
apparent when we attempt to apply the definition later on in the semantics and
then prove certain key desirable properties. Consider the predicate slots ′ = slots
which asserts that no events occur. This predicate should be R2-healthy, as it
describes a process that chooses to do nothing, regardless of the value of slots .
However calculation shows that

R2a(slots ′ = slots) ≡ slots ′ ∼= slots .

The equality gets weakened to the slot-sequence equivalence introduced earlier.
An immediate consequence of this is that II is not healthy by this definition, as
calculation shows that the slot-equality is weakened to slot-equivalence (under-
lined below).

R2a(II) ≡ ¬ ok ∧ slots � slots ′ ∨ ok ′ ∧ wait ′ = wait ∧ state ′ = state ∧ slots ′ ∼= slots

Original work explored keeping R2a as is, and redefining II to be that version
shown above. However this then weakened a number of key properties of II ,
most notably to do with its role as an identity for sequential composition under
appropriate circumstances.

The underlying problem with R2a has to do with the fact that in slotted-
Circus, unlike UTP, we have refusals interleaved with events in slots , and slot-
sequence operators that treat refusals, particularly the last, in a non-uniform
way. The problem is that R2a weakens the predicate a little too much, so we
need to find a way to strengthen its result appropriately. The appropriate way
to handle this issue has turned out to be to modify the definition of R2 to re-
quire that we only quantify over ss values that happen to agree with slots on
the very last refusal. This has no impact on predicates like � and ∼= which are
not concerned with the last refusals, but provides just enough extra informa-
tion to allow slot-sequence equality be considered as R2-healthy. The slightly
strengthened version now reads:

R2(P) =̂ ∃ ss • P [ss, ss �� (slots ′ �� slots)/slots, slots ′] ∧ Ref (last(slots)) = Ref (last(ss))

The proof that R2 is idempotent is somewhat more involved than those for
R1 and R3. Calculations show that predicates slots � slots ′, slots ′ ∼= slots ,
slots ′ = slots (se Appendix B) and II, are all R2-healthy. It also distributes
through disjunction, which is very important.

It is worth pointing out that two versions of R2 are presented in [HH98]. The
second, which we shall call R2’ is shown in an appendix:

R2’(P) =̂ P [〈〉, tr ′ − tr/tr , tr ′]

Both R2 and R2’ have the same set of fixed points, so can be used interchange-
ably as a test for healthiness. However, if used to make a predicate healthy, then
R2 is more forgiving than R2’:

R2(tr = 〈a〉 ∧ tr ′ = 〈a, b〉) ≡ (tr ′ − tr) = 〈b〉
R2’(tr = 〈a〉 ∧ tr ′ = 〈a, b〉) ≡ false

This is an example of where overloading the notation H to stand for both mkH
and isH can be misleading. We note that the version of R2 used in [She06] is
the CTA equivalent of R2’.

84 A. Butterfield, A. Sherif, and J. Woodcock

Reactive Healthiness. A reactive slotted-Circus process is one that satisfies
all three of the above healthiness conditions, so we define an overall condition
R as their composition:

R =̂ R3 ◦ R2 ◦ R1 (6)

In fact all three conditions commute with each other, so we re-order the above
composition to suit.

4.2 CSP Healthiness

In addition to the reactive-healthiness just introduced, shared by a range of
concurrent theories including ACP and CSP, there are a number of aspects of
healthiness specific to CSP-like theories. In [HH98, Chp. 8] there are five of these
presented, but for our purposes it suffices to consider only the first one.

A process is CSP1 healthy if all it asserts, when started in an unstable state
(due to some serious earlier failure), is that the event history may be extended:

CSP1(P) =̂ P ∨ ¬ ok ∧ slots � slots ′ (7)

5 Slotted Semantics

We are now in a position to give the semantics of the slotted-Circus language
which is presented for completeness in Figures 5 & 6.

We shall not give a detailed commentary to all the definitions shown but
instead will focus on some key points.

The STOP action refuses all events, but does allow the clock to keep tick-
ing. Assignment and channel-communication take less than a clock-cycle, so we
can sequence arbitrarily many in a time-slot. This does raise the possibility of
Zeno processes (infinite events within a time-slot), so some care will be required
here (disallowing infinite histories). This is more power than that required for
synchronous hardware, where we expect these actions to synchronise with the
clock, but we can model that by postfixing a Wait 1 statement, as used in the
case study shown later. An important point to note is the definition of channel
input (c?x → P), not only involves an event c.e for some e, but also updates
the state. This is exploited later to allow shared variables.

The definition of external choice is quite complex —see [She06, p69] for a
discussion.

We define slotted-parallel in a direct fashion, similar to that used for Circus,
avoiding the complexities of the UTP/CTA approaches, and also handling error
cases in passing. An error occurs in P |[sA | C | sB]| Q if P (Q) modifies any
variable in sB (sA).

5.1 Laws

The language constructs displayed here obey a wide range of laws, many of which
have been described elsewhere [HH98, WC01b, SH02, She06] for those constructs

Slotted-Circus 85

Chaos b= R(true)

Stop b= CSP1(R3(ok ′ ∧ wait ′ ∧ EqvTrace(〈〉, slots ′
�� slots)))

b&A b= A �b� Stop

Skip b= R(∃ ref • ref = EqvRef (slots) ∧ Skip)

Wait t b= CSP1(R(ok ′ ∧ delay(t) ∧ EqvTrace(〈〉, slots ′
�� slots)))

delay(t) = (#slots ′ − #slots < t) �wait ′� (#slots ′ − #slots = t ∧ state ′ = state)

x := e b= CSP1

R

ok = ok ′ ∧ wait = wait ′ ∧ slots = slots ′

∧ state ′ = state ⊕ {x
→ val(e, state)}

!!
val : Expr × (Name → Value)
→ Value

c.e → Skip b= CSP1
`
ok ′ ∧ R (wait com(c) ∨ complete com(c.e))

´
wait com(c) = wait ′ ∧ possible(c)(slots, slots ′) ∧ EqvTrace(〈〉, slots ′

�� slots)

possible(c)(slots, slots ′) = c /∈
[

Refs(slots ′ − front(slots))

term com(c.e) = ¬ wait ′ ∧ #slots = #slots ′ ∧ EqvTrace(〈c〉, slots ′
�� slots)

complete com(c.e) = term com(c.e) ∨ wait com(c); term com(c.e)

c!e → Skip b= c.e → Skip

c?x → Skip b= ∃ e •
`
c.e → Skip[state0/state] ∧ state ′ = state0 ⊕ {x
→ e}

´
comm → A b= (comm → Skip); A

A � B b= CSP2(ExtChoice1(A,B) ∨ ExtChoice2(A,B))

ExtChoice1(A,B) b= A ∧ B ∧ Stop

ExtChoice2(A,B) b= (A ∨ B) ∧ DifDetected(A,B)

DifDetected(A,B) b= ¬ ok ′ ∨

0BBBBBB@

0BB@
(ok ∧ ¬ wait) ∧0@„A ∧ B ∧ ok ′ ∧

wait ′ ∧ slots = slots ′

«
∨

Skip

1A
1CCA ;

„
(ok ′ ∧ ¬ wait ′ ∧ slots ′ = slots) ∨
(ok ′ ∧ ImmEvts(slots, slots ′))

«

1CCCCCCA
ImmEvts(slots, slots ′) b= ¬ EqvTrc(〈〉, head(slots ′

�� slots))

Fig. 5. Slotted-Circus Semantics (part I)

that slotted-Circus shares with other languages (e.g. non-deterministic choice,
sequential composition, conditional, guards, STOP , SKIP). Here we simply
indicate some of the laws regarding Wait that peculiar to slotted-Circus
(Figure 7).

5.2 Links

In [HH98, §1.6,pp40–1], a general Galois connection between an abstract theory
with observational variable a and a concrete theory over observation c is:

[(∃ c • D(c) ∧ �(c, a)) ⇒ S (a)] iff [D(c) ⇒ (∀ a • �(c, a) ⇒ S (a))]

Here D and S are corresponding design (concrete) and specification (abstract)
predicates respectively, while �(c, a) is the linking predicate connecting observa-
tions at the two worlds. Of interest to us in the main are links between Circus

86 A. Butterfield, A. Sherif, and J. Woodcock

A |[sA | {| cs |} | sB]| B
=̂ ∃ obsA, obsB •

A[obsA/obs ′] ∧ B [obsB/obs ′] ∧
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

if

⎛

⎝
sA −� stateA �= sA −� state ∨
sB −� stateB �= sB −� state ∨
sA ∩ sB �= ∅

⎞

⎠

then ¬ ok ′ ∧ slots � slots ′

else

⎛

⎜
⎜
⎝

ok ′ = okA ∧ okB ∧
wait ′ = (waitA ∨ 1.waitB) ∧
state ′ = (sB −� stateA) ⊕ (sA −� stateB) ∧
ValidMerge(cs)(slots, slots ′, slotsA, slotsB)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ValidMerge : PE → ((S E)+)4 → B

ValidMerge(cs)(, s, s ′, s0, s1) = dif (s ′, s) ∈ TSync(cs)(dif (s0, s), dif (s1, s))

TSync : P E → (S E)∗ × (S E)∗ → P((S E)+)

TSync(cs)(s1, s2) = TSync(cs)(s2, s1)

TSync(cs)(〈〉, 〈〉) = {}
TSync(cs)(〈s〉, 〈〉) =

{
〈s ′〉 | s ′ ∈ SSync(cs)(s, SNull(Ref (s)))

}

TSync(cs)
(

s1 o
o S1,

s2 o
o S2

)

=

⎧
⎨

⎩

s ′ o
o S ′

| s ′ ∈ SSync(cs)(s1, s2) ∧
S ′ ∈ TSync(cs)(S1,S2)

⎫
⎬

⎭

A \ hidn =̂ R
(

∃ s • A[s/slots ′] ∧
slots ′ �� slots = map(SHide(hidn))(dif (s, slot))

)

; Skip

μX • F (X) =̂ !{X | F (X) � X }

Fig. 6. Slotted-Circus Semantics (II)

Wait n; Wait m = Wait (m + n)

Wait n � Wait n + m = Wait n

(Wait n; P) � (Wait n; Q) = Wait n; (P � Q)

(Skip � (Wait n; P)) = Skip, n > 0

(a → P) � (Wait n; (a → P)) = (a → P)

Fig. 7. Laws of slotted-Circus Wait

(playing the role of the abstract theory with observations a) and various instan-
tiations of slotted-Circus (concrete, with obsevations c). The difference between
Circus and slotted-Circus is that the former has observations tr and ref , whilst
the latter subsumes both into slots . However we can immediately exploit the
method just presented by using the following relationship to define �, which here
relates the Circus observational variables to those of slotted-Circus:

EqvTrace(tr , slots) ∧ ref = EqvRef (slots) (8)

Slotted-Circus 87

So we get a Galois-link between Circus and any instantiation of slotted-Circus
for free. Similarly, a given relationship between different H types allows us to
generate Galois-links between different slotted-Circus instantiations.

6 Instantiating Slotted-Circus

We now look at the issue of giving one or more concrete instantiations to the
slotted-Circus framework just described. Originally, this work was aimed at pro-
ducing a synchronous version of Circus, in which all events in a time-slot were
to be considered as simultaneous. One motivation for this was to support the
Handel-C language, which maps programs to synchronous hardware in which all
variable updates are synchronised with a global clock edge marking the end of
a computation cycle [Cel02]. However, there were two main difficulties with this
approach.

The first was that the formal semantics developed for Handel-C outside of the
UTP framework [BW02, BW05] actually modelled activity within a time-slot as
a series of decision-making events spread out in time, all culminating in a set
of simultaneous variable updates at the end of the slot. This approach, adopted
in both the operational and denotational semantics, gives a very natural and
intuitive description of what is taking place during Handel-C execution.

The second difficulty is more fundamental in nature, and exposed a key as-
sumption underlying the UTP reactive theories, and those for CSP in general.
Early work looked at the Ph.D thesis of Janet Barnes [Bar93] which introduced
a synchronous version of CSP (SCSP). The key observation was a sequence of
slots, each comprising two event sets, one denoting the events occurring in that
slot (Acceptances) and the other describing the events refused (Refusals). A
healthiness condition required that the acceptances and refusals in any slot be
disjoint. However, implicit in this disjointedness condition is the notion that both
the acceptances and refusals are truly simultaneous. However, in the failures of
CSP, and the corresponding tr and ref observations of UTP, the key interpre-
tation involved is that the refusals describe what is being refused given that the
event history has just taken place. As a specific example, consider the process
a → b → P . A possible (failure) observation of this process is (〈a〉, {a}), i.e.,
we have observed the occurrence of the a event and the fact that the process is
now refusing to perform an a.

Consider trying to instantiate a slot where the history is simply an event-set,
as per SCSP:

A ∈ SCSP E =̂ P E
HNullSCSP =̂ ∅

HaddSCSP(A1,A2) =̂ A1 ∪ A2

HsubSCSP(A1,A2) =̂ A1 \ A2

. . .

We find that we cannot guarantee law [Sadd:unit] (Appendix A), even if the
SCSP invariant is not required. This property is required to demonstrate that

88 A. Butterfield, A. Sherif, and J. Woodcock

slots ∼= slots ′ is R2-healthy. The underlying problem is that the definition of R2
relies on being able to deduce that slots is empty if subtracting slots from slots ′

leaves slots ′ unchanged. However at the history-as-set level, we cannot deduce
H = ∅, given that H ′ \ H = H ′.

6.1 Multiset History Instantiation

We can define an instantiation where the event history is a multiset or bag of
events (HMSA), so event ordering is unimportant, but multiple event occurrences
in a slot do matter (Figure 8). The bag notation used here is that of Z [Spi87].
The events accepted are simply the bag domain. A trace corresponds to a bag
if it contains the same number of events as that bag. A null history is simply
an empty bag. A bag is a prefix if smaller than another bag. History addition
and subtract are the bag equivalents. History synchronisation merges the parts
of the two bags disjoint from the synchronisation set, with the intersection of all
three. Hiding is modelled by bag restriction.

The proofs that the above instantiation satisfy the properties in Appendix A
are all straightforward. The proof of law [ET:pfx] for MSA is shown in Ap-
pendix B.

HMSA E =̂ E
→ N1

Acc(bag) =̂ dom(bag)

EqvTrc(tr , bag) =̂ items(tr) = bag

HNull =̂ [[]]

bag1 � bag2 =̂ bag1 � bag2

Hadd(bag1, bag2) =̂ bag1 ⊕ bag2

Hsub(bag1, bag2) =̂ bag1 � bag2

HSync(cs)(bag1 , bag2) =̂ {(cs −� (bag1 ⊕ bag2)) ⊕ (cs � (bag1 ∩ bag2))}
where ∩ is bag interesection

HHide(hdn)bag =̂ hdn −� bag

Fig. 8. Multiset Action Instantiation (MSA)

7 Example Circus Process

We illustrate slotted Circus using an example originally due to Hoare [Hoa85a].
The problem is to compute the weighted sums of consecutive pairs of inputs.
Suppose that the input stream contains the following values: x0, x1, x2, x3, x4, . . .;
then the output stream will be

(a ∗ x0 + b ∗ x1), (a ∗ x1 + b ∗ x2), (a ∗ x2 + b ∗ x3), (a ∗ x3 + b ∗ x4), · · ·

for weights a and b. We specify this problem with a synchronous process with
two channels: left , used for input, and right used for output. Since each output

Slotted-Circus 89

requires two consecutive values from the input stream, the first output cannot
occur before the third clock cycle.

clock 0 1 2 3 4 5
left x0 x1 x2 x3 x4 x5 · · ·

right a ∗ x0 + b ∗ x1 a ∗ x1 + b ∗ x2 a ∗ x2 + b ∗ x3 a ∗ x3 + b ∗ x4 · · ·

Hoare’s solution performs the two multiplications in parallel and then adds the
results. Suppose the implementation technology is a single field-programmable
gate array; the circuitry for the computation of the output would then be in-
herently parallel anyway. Let’s assume instead that we want to implement the
two multiplications on separate FPGAs. It’s clear that the a-product is always
ready one clock cycle before we need to perform the addition. Let’s keep this
intermediate result in the variable m: First however, note we are going to tar-

clock 0 1 2 3 4 5
left x0 x1 x2 x3 x4 x5 · · ·
m a ∗ x0 a ∗ x1 a ∗ x2 a ∗ x3 a ∗ x4 · · ·

right m + b ∗ x1 m + b ∗ x2 m + b ∗ x3 m + b ∗ x4 · · ·

get a Handel-C-like scenario where channel communication and assignment take
one-clock cycle, and we have shared variables. We need to reason about in-
terleavings of assignments, but rather than re-work the whole theory to have
state-sequences, we simply convert assignments into channel communications.
So for the following case study, we have the following shorthands:

shorthand expansion
c?1x c?x → Wait 1.
c!1x c!x → Wait 1.

x :=1 e (a!1e |[∅ | a | x]| a?1x) where a is fresh.
δP variables modified by P i.e used in x := . . . or c?x

P ||| Q P |[δP | ∅ | δQ]| Q

In effect the clock-cycle wait is built into the communication and assignment
notations, effectively avoid any Zeno hazards. Now we’re ready to specify the
problem as a slotted Circus process. The process WS is clearly deadlock and

WS =̂ var x ,m : N • (left?1x ; (left?1x ||| m :=1 a ∗ x);
(μX • (left?1x ||| m :=1 a ∗ x ||| right !1(m + b ∗ x)) ; X))

livelock free: it is a non-stopping process with no internal synchronisations; and
it is hiding and chaos-free, with guarded recursion. Now we need to decompose
WS into two parallel processes with encapsulated state. We can replace the
use of m by a channel communication that passes the intermediate value. One
process (WSL) will receive the input stream and compute the a-product; the
other (WSR) will compute the b-product and the sum, and generate the output

90 A. Butterfield, A. Sherif, and J. Woodcock

stream. But now we see a problem with WS . The value x1 is received by WSL
in the first clock cycle, and so it can be communicated to WSR in the second
cycle. So it can’t be used by WSR until the third clock cycle. So we need to
delay the output on the right by another clock cycle. Our timing diagram shows
this more clearly.

clock 0 1 2 3 4 5
left x0 x1 x2 x3 x4 x5 · · ·
w x0 x1 x2 x3 x4 · · ·
m a ∗ x0 a ∗ x1 a ∗ x2 a ∗ x3 · · ·

right m + b ∗ x1 m + b ∗ x2 m + b ∗ x3 · · ·

Here’s another version of WS that does this.

WS ′ =̂ var w , x ,m : N •
left?1x ; (left?1x ||| w :=1 x);
(left?1x ||| w :=1 x ||| m :=1 a ∗ w);
(μX • (left?1x ||| w :=1 x ||| m :=1 a ∗ x ||| right !1(m + b ∗ w)) ; X)

Our refinement strategy is to split into two processes. The variable x belongs in
WSL, since it is used to store the current input. The variable m can be placed
in WSR, since it is used directly in producing outputs, but its value must be
computed in WSL, and so the value will have to be communicated from left
to right. The variable w records the previous input, and this is used in both
left and right processes; so we duplicate its value using a ghost variable v . The
ghost variable can then be used in the right-hand process in the calculation of
the output on the right. Our refinement starts with organising the variables.
(To reduce clutter, we abbreviate left?1x by ?1x and right !1e by !1e. We also
separate the beginning and end of variable scopes.)

var w , x ,m ;
?1x ; (?1x ||| w :=1 x) ; (?1x ||| w ,m :=1 x , a ∗ w) ;
(μX • (?1x ||| w ,m :=1 x , a ∗ w ||| !1(m + b ∗ w)) ; X) ;

end w , x ,m

= { v ghosts w }
var w , x ,m ;

?1x ; (?1x ||| w :=1 x) ;
var v ;

(?1x ||| v ,w ,m :=1 x , x , a ∗ w) ;
(μX • (?1x ||| v ,w ,m :=1 x , x , a ∗ w ||| !1(m + b ∗ v)) ; X) ;

end v ;
end w , x ,m

= {widen scope }
var v ,w , x ,m ;

?1x ; (?1x ||| w :=1 x) ; (?1x ||| v ,w ,m :=1 x , x , a ∗ w) ;
(μX • (?1x ||| v ,w ,m :=1 x , x , a ∗ w ||| !1(m + b ∗ v)) ; X) ;

end v ,w , x ,m

Slotted-Circus 91

Our next step is to insert some hidden events to prepare for the communication of
values between the two processes. We add two hidden channels: c communicates
x ’s value; and mid communicates m’s value. These events are not needed in the
first two steps.

= { hiding }
(var v ,w , x , m ;

?1x ; (?1x ||| w :=1 x) ; (?1x ||| c.x ||| mid .a ∗ w ||| v ,w ,m :=1 x , x , a ∗ w) ;
(μX •

(?1x ||| c.x ||| mid .a ∗ w ||| v ,w , m :=1 x , x , a ∗ w ||| !1(m + b ∗ v)) ; X) ;
end v ,w , x , m) \ {|c, mid |}

Now we can prepare for the parallel split by organising each step into parallel
parts, examining each atomic action and assigning it to the left or right compo-
nent. The right-hand process doesn’t need to do anything during the first two
steps, so we make it wait. In the third step, the the input belongs on the left.
The pair of actions (c.x ||| v :=1 x) can be replaced by a communication: the
left performs the output c!1x and the right performs the input c?1v . Similarly,
(mid .a ∗ w ||| m :=1 a ∗ w) can be replaced by mid !1a ∗ w and mid?1m.

Finally, the assignment to w belongs on the left. The body of the recursion is
split in exactly the same way, with the addition of the output being assigned to
the right-hand process.

= { parallel }
(var v ,w , x ,m ;

(?1x ‖ Wait 1) ;
((?1x ||| w :=1 x) ‖ Wait 1) ;
((?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ‖ (c?1v ||| mid?1m)) ;
(μX • ((?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x)

‖ (c?1v ||| mid?1m ||| !1(m + b ∗ v)) ; X)) ;
end v ,w , x ,m) \ {|c,mid |}

We also need to split the recursion into two parallel parts. Since the body com-
prises two atomic steps in parallel, the fixed-point operator distributes cleanly
through the parallel operator.

= { parallel }
(var v ,w , x ,m ;

(?1x ‖ Wait 1) ;
((?1x ||| w :=1 x) ‖ Wait 1) ;
((?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ‖ (c?1v ||| mid?1m)) ;
((μX • (?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ; X) ;
‖ (μX • (c?1v ||| mid?1m ||| !1(m + b ∗ v)) ; X)) ;

end v ,w , x ,m) \ {|c,mid |}

Now we can perform the parallel split, using an interchange law for sequence and
parallel that is similar to the spreadsheet rules in UTP. We create the left-hand

92 A. Butterfield, A. Sherif, and J. Woodcock

process by encapsulating w and x , retaining the left-hand parts, and discarding
the right-hand parts. We create the right-hand process similarly.

= { parallel split }
((var w , x ;

?1x ;
(?1x ||| w :=1 x) ;
(?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ;
(μX • (?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ; X) ;

end w , x)
‖
(var v ,m ;

Wait 1 ; Wait 1 ;
(c?1v ||| mid?1m) ;
(μX • (c?1v ||| mid?1m ||| !1(m + b ∗ v)) ; X) ;

end v ,m)
) \ {|c,mid |}

Now we can tidy up the processes for our final result.

(var w , x : N •
left?1x ; (left?1x ||| w :=1 x) ; (left?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ;
(μX • (left?1x ||| c!1x ||| mid !1a ∗ w ||| w :=1 x) ; X) ;

‖
var v ,m : N • (Wait 2 ; (c?1v ||| mid?1m) ;

(μX • (c?1v ||| mid?1m ||| right !1(m + b ∗ v)) ; X) ;)

) \ {|c,mid |}

Of course, since this is equal to WS , it is deadlock and livelock-free and computes
the right results.

A key point of the above case-study is that it works in any of the instantiations
mentioned so far for slotted-Circus, namely CTA or MSA.

8 Related Work

During the development of Handel-C at Oxford, a lot of the principles and theory
was developed and published [PL91, HIJ93]. Here the emphasis was very much
on the verified compilation into hardware of an occam-like language. However
with the commercialisation of this as the language Handel-C the formal aspects
and hardware compilation parted company, and the Handel-C language acquired
new constructs like “prialt” that were not treated in the literature.

Modern Handel-C [Cel02] also has the idea of connecting hardware with differ-
ent clocks together using tightly controlled asynchronous interfaces. Modelling
this kind of behaviour requires a theory that mixes time and asynchronicity, such
as timed-CSP [Sch00].

Slotted-Circus 93

There has been work done on hardware semantics, ranging from the “reFLect”
language used by Intel for hardware verification [GJ06], to the language Esterel
used mainly for the development of flight avionics [BG92]. The Intel approach is a
suite of hardware description languages, model-checkers and theorem provers all
written and/or integrated together using the reFLect language, aimed mainly
at the verification of computer datapath hardware. The Esterel language is a
hardware description language with a formal semantics, and so is quite low-
level in character, and so in the context of this research could be considered a
potential replacement of Handel-C as an implementation technology. However,
it is unclear how well it would link to the kind of specification and refinement
style of work that we are proposing to support.

9 Future Work

We have described a generic framework for instantiating a wide range of slotted-
theories, capturing their common features. An important aspect that has yet to
be covered is what distinguishes the the various instantiations from one another,
i.e. how do the laws of CTA differ from those of MSA, for instance. We know for
example that the following is a law of MSA, but not of CTA, or slotted-Circus
in general:

a → b → P = b → a → P

Also worthy of exploration are the details of the behaviour of the Galois links
inbetween different instances of slotted-Circus, and between those and standard
Circus. These details will provide a framework for a comprehensive refinement
calculus linking all these reactive theories together.

In order to deal with the asynchronously interfaced multiple-clock hardware
now supported by Handel-C we will need to exploit the link from the slotted
theories to the generally asynchronous Circus theory itself.

Also of interest will be to consider to what extent the work on “generic com-
position” [Che02, Che06] can contribute to a clear and or tractable presentation
of this theory.

10 Conclusions

A framework for giving UTP semantics to a class of reactive systems whose ex-
ecution is demarcated by regular clock ticks has been presented. The general
nature of the observational variables and the key operations on same have been
discussed, showing how they are used build to both the healthiness conditions
and the language semantics. A key result of this work has been the care needed
to get a satisfactory definition of R2, and exposing the fact that certain syn-
chronous theories like SCSP do not fit this particular UTP pattern for describing
reactive systems.

94 A. Butterfield, A. Sherif, and J. Woodcock

Acknowledgement

We would like to thank the Dean of Research at TCD and QinetiQ for their
support of this work, and the comments of the anonymous reviewers, which
helped improve key material in this paper.

References

[Bar93] Barnes, J.E.: A Mathematical Theory of Synchronous Communication.
Technical Monograph PRG-112, Oxford University Computing Laboratory
Programming Research Group, Hilary Term (1993)

[BG92] Berry, G., Gonthier, G.: The ESTEREL synchronous programming lan-
guage: design, semantics, implementation. Science of Computer Program-
ming 19, 87–152 (1992)

[BW02] Butterfield, A., Woodcock, J.: Semantic domains for handel-C. Electr. Notes
Theor. Comput. Sci, vol. 74 (2002)

[BW05] Butterfield, A., Woodcock, J.: prialt in Handel-C: an operational seman-
tics. International Journal on Software Tools for Technology Transfer
(STTT) 7(3), 248–267 (2005)

[Cel02] Celoxica Ltd. Handel-C Language Reference Manual, v3.0, (2002) URL:
www.celoxica.com

[Che02] Chen, Y.: Generic composition. Formal Asp. Comput 14(2), 108–122 (2002)
[Che06] Chen, Y.: Hierarchical organisation of predicate-semantic models. In: Dunne,

S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 155–172. Springer,
Heidelberg (2006)

[GJ06] Melham, T., Grundy, J., O’Leary, J.: A reflective functional language for
hardware design and theorem proving. Journal of Functional Program-
ming 16(2), 157–196 (2006)

[HH98] Hoare, C.A.R., He, J.: Unifying Theories of Programming. Series in Com-
puter Science. Prentice-Hall, Englewood Cliffs (1998)

[HIJ93] Jifeng, H., Page, I., Bowen, J.: Towards a provably correct hardware im-
plementation of Occam. In: Milne, G.J., Pierre, L. (eds.) CHARME 1993.
LNCS, vol. 683, pp. 214–225. Springer, Heidelberg (1993) IFIP WG10.2

[Hoa85a] Hoare, C.A.R.: Communicating Sequential Processes. Intl. Series in Com-
puter Science. Prentice-Hall, Englewood Cliffs (1985)

[Hoa85b] Hoare, C.A.R.: Programs are predicates. In: Proc. of a discussion meeting
of the Royal Society of London on Mathematical logic and programming
languages, Upper Saddle River, NJ, USA, pp. 141–155. Prentice-Hall, Inc,
Englewood Cliffs (1985)

[PL91] Page, I., Luk, W.: Compiling Occam into field-programmable gate arrays.
In: Moore, W., Luk, W. (eds.) FPGAs, Oxford Workshop on Field Pro-
grammable Logic and Applications, 15 Harcourt Way, Abingdon OX14 1NV,
UK, pp. 271–283 Abingdon EE&CS Books (1991)

[Ros97] Roscoe, A.W.: The Theory and Practice of Concurrency. international series
in computer science. Prentice-Hall, Englewood Cliffs (1997)

[Sch00] Schneider, S.: Concurrent and Real-time Systems — The CSP Approach.
Wiley, Chichester (2000)

www.celoxica.com

Slotted-Circus 95

[SH02] Sherif, A., He, J.: Towards a time model for circus. In: George, C.W., Miao,
H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 613–624. Springer, Heidelberg
(2002)

[She06] Sherif, A.: A Framework for Specification and Validation of Real Time Sys-
tems using Circus Action. Ph.d. thesis, Universidade Federale de Pernam-
buco, Recife, Brazil (2006)

[Spi87] Spivey,: The Z Notation: A Reference Manual. Prentice Hall, Englewood
Cliffs (1987)

[WC01a] Woodcock, J.C.P., Cavalcanti, A.L.C.: A Concurrent Language for Refine-
ment. In: Butterfield, A., Pahl, C. (eds.) IWFM’01: 5th Irish Workshop in
Formal Methods, Dublin, Ireland, July 2001. BCS Electronic Workshops in
Computing (2001)

[WC01b] Woodcock, J., Cavalcanti, A.: Circus: a concurrent refinement language.
Technical report, University of Kent at Canterbury (October 2001)

[WC02] Woodcock, J., Cavalcanti, A.: The semantics of circus. In: ZB, pp. 184–203
(2002)

A Generic Laws

The functions and relations over H E required to define a slotted-Circus theory,
need to satisfy the following laws:

[ET:elems] EqvTrc(tr , hist) ⇒ elems(tr) = Acc(hist)
[HIST:eq] (h1 = h2) ≡ ∀ tr • EqvTrc(tr , h1) ≡ EqvTrc(tr , h2)
[HN:null] Acc(HNull) = {}
[pfx:refl] hist " hist = True

[pfx:trans] hist1 " hist2 ∧ hist2 " hist3 ⇒ hist1 " hist3
[pfx:anti-sym] hist1 " hist2 ∧ hist2 " hist1 ⇒ hist1 = hist2

[SN:pfx] HNull " hist
[ET:pfx] hist1 " hist2 ⇒ ∃ tr1, tr2 • EqvTrc(tr1, hist1) ∧ EqvTrc(tr2, hist2) ∧ tr1 ≤ tr2

[Sadd:events] Acc(Sadd(h1, h2)) = Acc(h1) ∪ Acc(h2)
[Sadd:unit] Sadd(h1, h2) = h1 ≡ h2 = HNull

[Sadd:assoc] Sadd(h1,Sadd(h2, h3)) = Sadd(Sadd(h1 , h2), h3)
[Sadd:prefix] h " Sadd(h, h′)

[Ssub:pre] pre Ssub(h1, h2) = h2 " h1

[Ssub:events] h2 " h1 ∧ h′ = Ssub(h1, h2) ⇒
Acc(h1) \ Acc(h2) ⊆ Acc(h′) ⊆ Acc(h1)

[SSub:self] Ssub(h, h) = HNull
[SSub:nil] Ssub(h,HNull) = h

[SSub:same] hist " hist ′a ∧ hist " hist ′b ⇒
Ssub(hist ′a , hist) = Ssub(hist ′b , hist) ≡ hist ′a = hist ′b

96 A. Butterfield, A. Sherif, and J. Woodcock

[SSub:subsub] histc " hista ∧ histc " histb ∧ histb " hista
⇒ Ssub(Ssub(hista , histc),Ssub(histb , histc)) = Ssub(hista , histb)

[Sadd:Ssub] hist " hist ′ ⇒ Sadd(hist ,Ssub(hist ′, hist)) = hist ′

[Ssub:Sadd] Ssub(Sadd(h1, h2), h1) = h2

[SHid:evts] Acc(SHide(hid)(h)) = Acc(h) \ hid
[SNC:sym] SSync(cs)(h1, h2) = SSync(cs)(h2, h1)
[SNC:one] ∀ h′ ∈ SSync(cs)(h1,HNull) • Acc(h′) ⊆ Acc(h1) \ cs
[SNC:only] h′ ∈ Acc(SSync(cs)(h1, h2)) ⇒ Acc(h′) ⊆ Acc(h1) ∪Acc(h2)
[SNC:sync] h′ ∈ Acc(SSync(cs)(h1, h2)) ⇒ cs ∩ Acc(h′) ⊆ cs ∩ (Acc(h1) ∩ Acc(h2))

[SNC:assoc] SyncSet(cs)(h1)(SSync(cs)(h2, h3)) = SyncSet(cs)(h3)(SSync(cs)(h1, h2))

B Proofs for R2-ness of = and MSA Prefix

R2(slots ′ = slots)

≡ “ defn. R2, apply substitution, shorthand RL(s) = Ref (last(s)) ”

∃ ss • ss �� (slots ′
�� slots) = ss ∧ RL(slots) = RL(ss)

≡ “ Property 1 (below) ”

∃ ss • slots ′
�� slots = 〈SNull(RL(ss))〉 ∧ RL(slots) = RL(ss)

≡ “ Property 2 (below) ”

∃ ss • front(slots ′) = front(slots) ∧ tail(slots ′).1 = tail(slots).1

∧ RL(slots ′) = RL(ss) ∧ RL(slots) = RL(ss)

≡ “ Liebniz, restrict quantification scope ”

front(slots ′) = front(slots) ∧ tail(slots ′).1 = tail(slots).1

∧ RL(slots ′) = RL(slots) ∧ ∃ ss • RL(slots) = RL(ss)

≡ “ defn. of equality, witness ss = slots ”

slots = slots ′

Property 1: (ss �� tt = ss) ≡ tt = 〈SNull(RL(ss))〉
Property 2: (tt ′

�� tt) = 〈SNull(r)〉 ≡ front(tt) = front(tt ′) ∧ last(tt).1 = last(tt ′).1 ∧ RL(tt ′) = r

bag1 � bag2

≡ “ defn. of prefix ”

bag1 � bag2

≡ “ bag property ”

∃ bagΔ • bag2 = bag1 ⊕ bagΔ

≡ “ bag property: ∀ bag • ∃ tr • items(tr) = bag ”

∃ bagΔ, trΔ, tr1, • bag2 = bag1 ⊕ bagΔ ∧ items(trΔ) = bagΔ ∧ items(tr1) = bag1

≡ “ One-point rule backwards tr2 = tr1 � trΔ ”

∃ bagΔ, trΔ, tr1, tr2 • bag2 = bag1 ⊕ bagΔ ∧ items(trΔ) = bagΔ ∧ items(tr1) = bag1 ∧ tr2 = tr1 � trΔ

Slotted-Circus 97

≡ “ One-point rule bagΔ, Liebniz bag1 ”

∃ trΔ, tr1, tr2 • bag2 = items(tr1) ⊕ items(trΔ) ∧ items(tr1) = bag1 ∧ tr2 = tr1 � trΔ

≡ “ items is a sequence homomorphism ”

∃ trΔ, tr1, tr2 • bag2 = items(tr2) ∧ bag1 = items(tr1) ∧ tr2 = tr1 � trΔ

≡ “ sequence property ”

∃ trΔ, tr1, tr2 • bag2 = items(tr2) ∧ bag1 = items(tr1) ∧ trΔ = tr2 − tr1
≡ “ One point rule: trΔ, requires definedness of tr2 − tr1 ”

∃ tr1, tr2 • bag2 = items(tr2) ∧ bag1 = items(tr1) ∧ tr1 ≤ tr2
≡ “ def. of EqvTrc, backwards ”

∃ tr1, tr2 • EqvTrc(tr2, bag2) ∧ EqvTrc(tr1, bag1) ∧ tr1 ≤ tr2

Bug Hunting with False Negatives�

Jens Calamé1, Natalia Ioustinova1, Jaco van de Pol1,2, and Natalia Sidorova2

1 Centrum voor Wiskunde en Informatica,
P.O.Box 94079, 1090 GB Amsterdam, The Netherlands

2 Eindhoven University of Technology,
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

jens.calame@cwi.nl, ustin@cwi.nl,
jaco.van.de.pol@cwi.nl, n.sidorova@tue.nl

Abstract. Safe data abstractions are widely used for verification pur-
poses. Positive verification results can be transferred from the abstract
to the concrete system. When a property is violated in the abstract sys-
tem, one still has to check whether a concrete violation scenario exists.
However, even when the violation scenario is not reproducible in the
concrete system (a false negative), it may still contain information on
possible sources of bugs.

Here, we propose a bug hunting framework based on abstract vio-
lation scenarios. We first extract a violation pattern from one abstract
violation scenario. The violation pattern represents multiple abstract vi-
olation scenarios, increasing the chance that a corresponding concrete
violation exists. Then, we look for a concrete violation that corresponds
to the violation pattern by using constraint solving techniques. Finally,
we define the class of counterexamples that we can handle and argue
correctness of the proposed framework.

Our method combines two formal techniques, model checking and
constraint solving. Through an analysis of contracting and precise ab-
stractions, we are able to integrate overapproximation by abstraction
with concrete counterexample generation.

1 Introduction

Abstractions [5,6,7,9,13,18] are widely used to reduce the state space of complex,
distributed, data-oriented and thus large systems for verification purposes. We
focus on abstractions that are used to check satisfaction rather than the violation
of properties. These abstractions are constructed in such a way that we can
transfer positive verification results from the abstract to the concrete model,
but not the negative ones. Counterexamples found on the abstract system may
have no counterpart in the concrete system. We further refer to this kind of
counterexamples as false negatives. False negatives are usually used to refine
the abstraction and iteratively call the model checking algorithm on the refined
abstraction [4,10,17].

� Part of this research has been funded by the Dutch BSIK/BRICKS project.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 98–117, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Bug Hunting with False Negatives 99

0
tick

tick

k
+

k-1
tick

...
tick

Fig. 1. Abstracted timer

In this paper, we consider false negatives in the context of data abstractions,
i.e. abstractions that substitute actual data values by abstract ones and op-
erations on concrete data by operations on abstract data, depending on the
property being verified. We use the timer abstraction from [8] as an illustrating
example in this paper. This abstraction leaves all values of a discrete timer below
k unchanged and maps all higher values to the abstract value k+. Note that the
deterministic time progress operation tick (decreasing the values of active timers
by one), becomes non-deterministic in the abstract model (see Fig. 1). But this
abstraction allows us to only regard the k smallest values and the constant k+

in order to prove that a property holds for any value n.
Consider a system, where every timer setting set(n) is followed by n tick steps

before the timer is set again, for some constant value n. Being set to a value n
above k, the abstract timer can do an arbitrary number of tick steps, before it
reaches value k − 1. From there, it decreases until it expires at 0.

We now use this k+ timer abstraction to verify an action-based LTL property
�(a → ♦b) and obtain the following trace as a counterexample for the abstract
system: a.set(k+).tick3.b.(a.set(k+).tick2.d)�. Note that the timer abstraction
affected the parameter of the set action, so that the number of tick steps following
set(k+) is not fixed anymore. This trace obviously is a false negative since it does
not reflect any possible trace of the original system (remember the constant n).

Assuming that the trace a.set(n).tickn.b.(a.set(n).tickn.d)� exists in the orig-
inal system, the false negative still contains a clue for finding this concrete coun-
terexample. We can relax the found abstract counterexample by using the in-
formation that the operations on timers are influenced by the timer abstraction
and check whether the concrete system contains a trace matching the pattern
a.any�.b.(a.any�.d)� where any represents any action on timers. We call such a
pattern a violation pattern. Note that any trace matching the violation pattern
violates our property of interest. The pattern contains a cyclic part, and it is
more restrictive than the negation of the property. Therefore, when enumerative
model checking is concerned, it is easier to find a trace of the concrete system
satisfying the pattern than one that violates the property.

In this paper, we propose a framework that supports the bug hunting process
described in the above example. In this framework, we apply a combination of ab-
straction, refinement and constraint solving techniques to process algebraic spec-
ifications. The framework is illustrated in Fig. 2 where M denotes the concrete
system, Mα stands for an abstraction of M, φ is the property in question and φα

is its abstraction. When checking whether the abstract system satisfies the abstract
property, we may obtain a counterexample having no counterpart in the concrete
system (the set (Mα\M) ∩ ¬φ). Given the counterexample, we relax actions in-
fluenced by the data abstraction and construct a violation pattern that represents

100 J. Calamé et al.

φ¬ αφ¬Μ
α

Μ V

Fig. 2. Violation pattern approach

a set of traces violating the property and resembling the counterexample. For this
to work, we need an accurate analysis of contracting and precise abstractions [16].
In short, contracting abstractions abstract a system property in a way, that less
traces fulfill this property, while precise abstractions do not affect fulfilling traces.

To check whether there is a concrete trace matching the violation pattern, we
transform the violation pattern and the specification of the concrete system into
a constraint logic program. Subsequently, a constraint solver is used to find a
concrete trace matching the violation pattern, if such a trace exists.

The rest of the paper is organized as follows: In the remainder of this section,
we compare our work with related work. In Section 2, we define the class of
systems we are working with. Furthermore, we define a next-free action-based
LTL (ALTL) and extend it by data (eALTL). In Section 3, we work out abstrac-
tions of labeled transition systems and of eALTL properties. In Section 4, we
present a taxonomy of counterexamples, of which we select the false negatives
to build up a bug hunting framework and discuss its correctness in Section 5. In
Section 6, we give an example for the implementation of this framework. Finally,
we conclude with Section 7.

Related Work

First, we compare our method with the more traditional CEGAR approach
(Counter-Example-Guided Abstraction Refinement) [4,17], which has recently
been extended to state- and event-based software by the ComFoRT frame-
work [3]. In both methods, abstractions preserve properties in one direction
only: if the abstract system satisfies the property, so does the concrete system;
a counterexample may however be a real one or a false negative. In the CE-
GAR method, the abstraction is refined based on abstract counterexamples, and
model checking is iteratively applied to the refined abstractions of the system.
Our method is to generalize false negatives and then to find violations in the con-
crete specification, which are similar to the original false negative. Note that in
principle both methods can be combined: given a false negative, one could search
for a concrete violation using our method. If it is found, the CEGAR loop can be
terminated early. If still no concrete counterexample is found, one can proceed
by refining the abstraction as in the CEGAR approach and iterate verification.

For counterexamples that have been produced when model checking the ab-
stract model, it has to be determined whether they represent real system de-
fects. In [21], the problem of automating this analysis has been addressed. For
this purpose, the authors propose two techniques: model checking on choice-free

Bug Hunting with False Negatives 101

paths and abstract counterexample guided concrete simulation. In [20], an ap-
proach based on test generation is proposed for searching for concrete instances
of abstract counterexamples. Only counterexamples for safety properties are ad-
dressed by those approaches, i.e. it works only for finite counterexamples, while
we deal with infinite traces. Unlike these approaches, we look for a concrete trace
that does not match a counterexample itself, but a violation pattern that has
been generated from it.

Finally, [15] and [22] are orthogonal to ours, because there model checking
methods are proposed that rely on a refinement of an underapproximation of the
system behavior. These methods aim at the falsification of a desired property and
apply a refinement when no counterexample is found. In contrast, we try to prove
the property and, if we do not succeed, try to find a concrete counterexample.

2 The Specification Framework

We did our research in the setting of the process-algebraic language μCRL [14].
As graphical notation, we will use symbolic transition systems (STS s, cf. [24]).
A specification S over an alphabet of actions Act (defined below), is given as the
parallel composition Πn

i=1Pi of a finite number of processes. A process definition
P is given by a four-tuple (Var ,Loc,Edg , (�init, ηinit)), where Var denotes a finite
set of variables, and Loc denotes a finite set of locations �, or control states.
A mapping of variables to values is called a valuation; we denote the set of
valuations by Val = {η | η : Var → D}. We assume standard data domains such
as N or B. The set Expr denotes the set of expressions, built from variables
and function symbols in the usual way. An expression can be evaluated to a
value, given a valuation for the variables. We write D when leaving the data-
domain unspecified and silently assume all expressions to be well-typed. The
initial location and valuation are given by (�init, ηinit). The set Edg ⊆ Loc ×
Act × Loc denotes the set of edges. An edge describes changes of configurations
specified by an action from Act .

Let Event be a set of system events (cf. channel names, action names). As
actions, we distinguish (1) the input of an event s together with a local variable
to which the received value can be assigned, (2) the output of an event s together
with a value described by an expression, and (3) internal actions, like assign-
ments. Every action is guarded by a boolean expression g. This guard decides,
whether the action may be executed (when the guard evaluates to true) or not.
So we define the set Act to consist of: g�?s(x), g�!s(e), or g �τ, x := e, resp., and
we use ι, ι′ . . . when leaving the action unspecified. For an edge (�, ι, �̂) ∈ Edg ,
we write more suggestively �→ι �̂.

Examples of specifications can be found in Fig. 6 later in this paper. There,
the system on the left-hand side awaits an input in(x), with a variable x that
will be instantiated at runtime. Depending on the value of x, the system will
then output the event out with either the value of x or 0.

Before we define the semantics of our specifications, we introduce the notion
of labeled transition systems and traces.

102 J. Calamé et al.

Definition 1 (Total LTS). A labeled transition system (LTS) is a quadruple
M = (Σ,Lab, Δ, σinit) where Σ is a set of states, Lab is a set of action labels,
Δ ⊆ Σ × Lab × Σ is a labeled transition relation and σinit ∈ Σ is the initial
state. A total LTS does not contain any deadlocks.

Further we write σ →λ σ
′ for a triple (σ, λ, σ′) ∈ Δ and refer to it as a λ-step of

M. For the rest of the paper, we assume LTS s to be total.

Definition 2 (Traces). Let M = (Σ,Lab, Δ, σinit) be an LTS. A trace β of
M is a mapping β : N\{0} → Lab, such that there is a mapping β′ : N → Σ and
for any i, (i+ 1) ∈ N : β′[i] →β[i+1] β

′[i + 1] ∈ Δ with β′[0] = σinit. We further
refer to the suffix of β starting at β[i] as βi. By [[M]]trace, we denote the set of
all traces in M.

The step semantics of S is given by an LTS M = (Σ,Lab, Δ, σinit). Here, the
set of states is Σ := Loc×Val with the initial state σinit := (�init, ηinit) ∈ Σ. The
(possibly infinite) set of labels is Lab := {s(d) | s ∈ Event, d ∈ D}. Finally, the
transitions Δ ⊆ Σ × Lab ×Σ are given as a labeled transition relation between
states. The labels differentiate internal actions and communication steps, either
input or output, which are labeled by an event and a value being transmitted,
i.e. τ , ?s(v) or !s(v), respectively.

Receiving an event s with a communication parameter x, �→g�?s(x) �̂ ∈ Edg ,
results in updating the valuation η[x �→v] according to the parameter of the event
and changing current location to �̂. The possible input values are limited by the
guard. Output, � →g�!s(e) �̂ ∈ Edg , is guarded, so sending a message involves
evaluating the guard and the expression according to the current valuation. It
leads to the change of the location of the process from � to �̂. Assignments,
� →g�τ,x:=e �̂ ∈ Edg , result in the change of a location and the update of the
valuation η[x �→v], where [[e]]η = v. Assignment transitions are labeled by the
corresponding action label τ . Firing such a transition also involves evaluating
the guard and the expression according to the current valuation.

2.1 ALTL with Data (eALTL)

To specify properties of a system, we propose a data extension for action-based
Linear Temporal Logic (ALTL [12]). This logic specifies system properties in
terms of events parameterized with data. Here, we first define action formulae,
their satisfaction and then define extended ALTL, eALTL.

Definition 3 (Action Formulae). Let x be a variable from Var , expr be a
boolean expression from Expr , a be an event from Event, then the syntax of an
action formula ζ is defined as follows:

ζ ::= & | {a(x) | expr(x)} | ¬ζ | ζ ∧ ζ

We will use a(x) as an abbreviation for {a(x) | true} and a(d) as an abbreviation
for {a(x) | x = d}. We do not impose any limitations on the set of boolean
expressions.

Bug Hunting with False Negatives 103

Definition 4 (Interpretation of an action formula). Let act ∈ Lab and ζ
be an action formula, then the satisfaction of ζ on act is defined as follows:

act |= & always (true)
act |= {a(x) | expr(x)} if there exists some d ∈ D s.t.

act = a(d) and [[expr]][x �→d] = true
act |= ζ1 ∧ ζ2 if act |= ζ1 and act |= ζ2
act |= ¬ζ if not act |= ζ

Definition 5 (eALTL Formulae). Let ζ be an action formula. The syntax of
eALTL formulae is defined by the following grammar:

φ ::= ζ | ¬φ | φ ∧ φ | φUφ

Definition 6 (Semantics of eALTL). Let β be a (infinite) trace, φ, φ1, φ2 be
eALTL formulae, ζ be an action formula then

β |= ζ if β[1] |= ζ
β |= ¬φ if not β |= φ
β |= φ1 ∧ φ2 if β |= φ1 and β |= φ2

β |= φ1Uφ2 if there exists k ∈ N such that
for all 0 ≤ i < k : βi |= φ1 and βk |= φ2

Let M = (Σ,Lab, Δ, σinit) be an LTS . We say that M |= φ iff β |= φ for
all traces β of M starting at σinit. We introduce the following shorthand no-
tations: ⊥ for ¬&; ♦φ for &Uφ; �φ for ¬♦¬φ; φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2); φ1 ⇒
φ2 for ¬φ1 ∨ φ2; φ1Rφ2 for ¬(¬φ1U¬φ2). eALTL is suitable to express a broad
range of property patterns like occurrence, bounded response or absence [11]. For
our further work on abstracting properties of systems, we will require that prop-
erty formulae are in positive normal form, i.e. all negations are pushed inside,
right before action formulae.

3 Abstraction of Systems and Properties

In this section, we present an abstraction mechanism based on homomorphisms
as in [5,16], and adapted to an action-based setting. Abstracting a system leads
to a smaller state space which can thus be examined easier. However, model
checking an abstracted system also requires the abstraction of the properties
that have to be checked. We will first present the abstraction of systems and
then the abstraction of eALTL properties.

3.1 Abstraction of a System

The basis for the abstraction is a homomorphism α = 〈hs, ha〉 defining two
abstraction functions which regard states and actions of an LTS [5,23]. The
function hs : Σ → Σα maps the states of a concrete system M to abstract
states. The function ha : Lab → Labα does the same with action labels of M.

104 J. Calamé et al.

σ S
h α

σ

α

σ̂σ̂
S
h

a
hλ

α

λ

Fig. 3. Abstraction requirement for LTSs

Definition 7. Let abstraction α=〈hs, ha〉 for automaton M=(Σ,Lab, Δ, σinit)
be given. We define α(M) to be (Σα,Labα, Δα, hs(σinit)), where σα →λα σ̂α ∈
Δα if and only if σ →λ σ̂ ∈ Δ, for some σ, σ̂ and λ such that hs(σ) = σα,
hs(σ̂) = σ̂α, and ha(λ) = λα.

Now, we define a homomorphic relation on traces, ≡α⊆ Lab� × Labα�, which
relates concrete traces from Lab� to their abstract counterparts in Labα�.

Definition 8 (Trace Inclusion w.r.t. α). Let α = 〈hs, ha〉 be a homomor-
phism. For a trace β of Lab� and trace βα of Labα�, we say β ≡α βα iff for all
i ∈ N : βα[i] = ha(β[i]).

We say that M ⊆α Mα iff for every trace β of M there exists a trace βα of
Mα such that β ≡α β

α.

It is well known that homomorphic abstractions lead to overapproximations.
Notably, the abstract system covers at least the traces of the concrete system:

Lemma 9. Let M be an LTS with homomorphism α. Then M ⊆α α(M).

It is often more convenient to apply abstractions directly on a system specifica-
tion S than on its transition system M. Such an abstraction on the level of S
is well-developed within the Abstract Interpretation framework [6,7,9]. Abstract
Interpretation imposes a requirement on the relation between the concrete spec-
ification S and its abstract interpretation Sα. This takes the form of a safety
requirement on the relation between data and operations of the concrete system
and their abstract counterparts (we skip the details). Each value of the con-
crete domain D is related by a data abstraction function hd to a value from
the abstract domain Dα. For every operation (function) f on the concrete data
domain, an abstract function fα is defined, which overapproximates f . For rea-
sons of simplicity, we assume f to be a unary operation. Furthermore, we apply
only data abstraction. This means that the names of actions in a system are not
affected by the abstraction, i.e. ha(a(d)) = a(hd(d)) such that two actions a(x)
and b(y) cannot be mapped to the same abstract action.

However, applying abstractions directly on a system’s specification S rather
than on its LTS leads to a loss of precision. Let Sα be the abstract interpretation
of S, and let Mα and M be their underlying LTS s. It is well known that Mα

is only an overapproximation of α(M) (cf. [5]). In particular, we will still have
trace inclusion up to α: M ⊆α α(M) ⊆α Mα.

Bug Hunting with False Negatives 105

Fig. 4. Contracting Abstraction

3.2 Abstraction of eALTL Formulae

The abstraction of eALTL formulae is based on the notions of contracting and
precise abstractions as it has been introduced in [16]. In a contracting abstrac-
tion, a property φα holds for a trace βα iff the property φ holds for all concrete
traces β with βα = α(β). Note that for soundness of abstract model checking, we
need contracting abstractions. This does, however, not imply that all properties
that hold for the original system, must also hold in the abstract system (see
Fig. 4, ellipse vs. hatched square). In precise abstractions, this cannot happen.

Definition 10 (Contracting and Precise Abstraction). Let φ be a property
over an action alphabet λ. Its abstraction φα is

– contracting iff: ∀β ∈ Lab� : α(β) |= φα ⇒ β |= φ.
– precise iff: ∀β ∈ Lab� : α(β) |= φα ⇔ β |= φ.

In the following, we define an abstraction of eALTL formulae that is guaranteed
to be contracting. We assume all formulae to be in positive normal form.

Definition 11 (Abstraction of Action Formulae). Action formulae as de-
fined in Def. 3 are abstracted as follows:

α(&) := &
α({a(x) | expr(x)}) := {a(xα) | ∀x : hd(x) = xα → expr(x))}

α(¬{a(x) | expr(x)}) :=
∨

b�=a

{b(xα)} ∨ {a(xα) | ∀x : hd(x) = xα → ¬expr(x)}

α(ζ1 ∧ ζ2) := α(ζ1) ∧ α(ζ2)

The abstraction of eALTL formulae is more straightforward, since we do not
have to regard negations on this level.

Definition 12 (Abstraction of eALTL Formulae). eALTL formulae as de-
fined in Def. 5 are abstracted as follows:

α(φ1 ∧ φ2) := α(φ1) ∧ α(φ2)
α(φ1Uφ2) := α(φ1)Uα(φ2)

106 J. Calamé et al.

In order to have precise abstractions, we need a restriction on the homomor-
phism α. We define that α is consistent with φ, iff for all action formulae ζ
occuring in φ, {ha(act)|act |= ζ} ∩ [[¬α(ζ)]] = ∅, i.e. the hatched square and the
ellipse in Figure 4 coincide.

Lemma 13. If α is consistent with φ, then α(φ) is precise.

4 Classification of Counterexamples

We can now explain model checking by abstraction for eALTL formulae. Let a
specification S (with underlying LTS M) and an eALTL property φ be given.
Let us investigate whether a contracting abstraction α suffices for our needs.
We compute α(φ) and Sα, generate its underlying LTS Mα and use a model
checking algorithm to check Mα |= φα. If this holds, we can derive by our
previous results, that also M |= φ, without ever generating M. If it does not
hold, we obtain a counterexample. Here we provide a classification of abstract
counterexamples and demonstrate their relationship with contracting and precise
abstractions of eALTL formulae.

Given a concrete system M, its abstraction Mα, a property φ and its abstrac-
tion φα, we differentiate between three classes of abstract counterexamples (see
Fig. 5). Given a counterexample χα, we refer to a concrete trace χ ∈ [[M]]trace such
that χ ≡α χ

α as a concrete counterpart of χα. The first class (see counterexample
1 in Fig. 5) consists of the counterexamples having no concrete counterparts in
the concrete system. These counterexamples are referred to as false negatives.

The second class (see counterexample 2 in Fig. 5) consists of counterexamples
having (at least one) concrete counterpart satisfying the original property. We
further refer to this class as spurious counterexamples.

The third class (see counterexample 3 in Fig. 5) consists of the counterexam-
ples having at least one counterpart in the concrete system; moreover all concrete
counterparts violate the concrete property. Counterexamples from this class are
referred to as ideal counterexamples.

φ¬ αφ¬Μ
α

Μ
2 3 1

Fig. 5. Classification of counterexamples

Definition 14. Let χα be a counterexample obtained by verifying an abstraction
φα of a property φ on the abstraction Mα of a system M w.r.t. the homomor-
phism h. We distinguish the following three cases:

Bug Hunting with False Negatives 107

0

1

2

S

)(? xin

)0(!)2(outx ><)(!)2(xoutx >≥

0

1

2

α

S

)(? xin

)(!)(

)()(

boutcx

bxax

>=

∨=∨=

)(!

)()(

xout

dxcx

>

=∨=

Fig. 6. Concrete and Abstracted Specifications from Example 15

1. We call χα a false negative, if there is no χ ∈ [[M]]trace such that χ ≡α χ
α.

2. We call χα a spurious counterexample if there exists χ ∈ [[M]]trace such that
χ ≡α χ

α and χ |= φ.
3. Otherwise, we call χα an ideal counterexample.

Contracting abstractions may lead to spurious counterexamples. The following
example illustrates this case.

Example 15. Let S in Fig. 6 be the specification of a concrete system. We ab-
stract Z into Zα = {a, b, c, d} where a stands for the numbers from (−∞,−3);
b stands for the numbers from [−3, 0]; c stands for the numbers from (0, 3]; and
d stands for the numbers from (3,+∞). By applying this abstraction to S we
obtain Sα (see Fig. 6).

Consider the property φ = ♦({out(x) | (x ≥ 2)}). We compute the contracting
abstraction of φ as follows:

φ = ♦({out(x) | (x ≥ 2)})
φα = ♦({out(xα) | ∀x : hd(x) = xα → (x ≥ 2)})

= ♦(out(d))

Verifying φα on Sα we may obtain the trace in(c).out(c) as a counterexample,
because it is a trace in Sα, but does not satisfy φ. However, the concrete trace
in(2).out(2) corresponding to the abstract counterexample satisfies ♦(out(x) ∧
(x ≥ 2)). Hence, ¬φα is not precise enough.

Such spurious counterexamples are problematic for tracking real bugs. Therefore,
we will use precise abstractions, in order to avoid spurious counterexamples. A
contracting abstraction can be made precise, by fitting the abstraction to the
predicates in the specification and the formula:

Example 16. Let S in Fig. 7 be the specification of a concrete system. We ab-
stract Z into Zα = {a, b, c, d} where the interpretation of a and b remains the
same as in Example 15 while c represents the numbers from the interval (0, 2)
and d represents those from [2,+∞). By applying this abstraction to S we obtain
Sα (see Fig. 7).

108 J. Calamé et al.

0

1

2

S

)(? xin

)0(!)2(outx ><)(!)2(xoutx >≥

0

1

2

α

S

)(? xin

)(!)(

)()(

boutcx

bxax

>=

∨=∨=
)(!)(xoutdx >=

Fig. 7. Concrete and Abstracted Specifications from Example 16

Consider again the property φ = ♦({out(x) | (x ≥ 2)}) and its abstraction
φα = ♦(out(d)). Verifying φα on Sα we may obtain the following counterexam-
ples: in(a).out(b), in(b).out(b), and in(c).out(b). In this example it is straight-
forward to see that any concretization of these traces is a counterexample for φ.
So in this case, the abstraction is precise.

5 Bug Hunting with False Negatives

Counterexamples that are false negatives still have a value for detecting bugs
in specifications. By relaxing them, i.e. making them even more abstract, false
negatives cover a larger part of the system, which can contain bugs. In this
manner, they can serve as a starting point for bug hunting.

In this section, we provide an overview of our framework for bug hunting with
false negatives. This process comprises the following steps:

1. Specify a requirement as a formula φ of eALTL.
2. Choose and apply a data abstraction, which is consistent with φ, to the

specification of the concrete system and to the concrete property.
3. Abstract counterexamples for the property are (automatically) determined

using model checking.
4. Generalize the false negative further by relaxing actions, which are not di-

rectly relevant for our search. This results in a violation pattern. The relaxing
process itself is automatic, only the counterexample and the set of directly
relevant actions have to be given as input to the algorithm (see Alg. 1).

5. The concrete counterexamples are automatically computed by finding the
intersection of the original system and the violation pattern.

Since the first three steps of the framework can be handled by existing data
abstraction and model checking techniques, our contribution concerns the steps 4
and 5 of the framework.

5.1 Constructing a Violation Pattern

A counterexample that we obtain in case the property is violated on our abstract
model is an infinite trace of the form βpβ

ω
s where βp is a finite prefix and βω

s is
a cyclic suffix with a finite cycle base βs.

Bug Hunting with False Negatives 109

0 1
a

2 3
tickset(k+)

4
tick

5
tick

6
b

7 8

910

a

set(k+)

tick

tickd

Fig. 8. A concrete counterexample

0 1 2 3
a b a

d

set(k
+

) set(k
+

)tick tick

Fig. 9. The violation pattern for the counterexample

Although the counterexample χα may have no counterpart in the concrete
system, it can contain a clue about a counterexample present in the concrete
system. Therefore we transform a counterexample χα into a violation pattern V ,
considering only infinite counterexamples.

A violation pattern is an LTS that accepts all traces hitting a distinguished
cyclic state infinitely often. The violation pattern accepts only traces which are
similar to the counterexample and violate the abstract property. The actions
mentioned in the property are essential for the property violation. Therefore
we keep this information in the violation pattern. For actions influenced by the
abstraction, the order and the number of actions in a similar trace may differ from
those of the counterexample. We will now first illustrate the idea of similarity
on a simple example and then generalize it.

Example 17. Let us come back to the example from the introduction. Assume
that we model-check the property �(a → ♦b) and obtain the abstract coun-
terexample a.set(k+).tick3.b.(a.set(k+).tick2.d)ω (see Fig. 8). The k+ is in this
case an abstraction of a timer: The original value of the timer is preserved up to
k; any value above k is abstracted to the constant value k+. To guarantee that
the property is violated by any trace accepted by the pattern, we keep at least
the actions a and b, because they are mentioned in the property (see Fig. 9).
Since we are searching for similar traces with an infinite cyclic suffix βs, we may
also decide to keep information about some actions of this cycle. Here we also
provide the action step d in the cycle (see Fig. 9). The actions tick and set(k+)
are not mentioned in the property and are definitely influenced by the timer
abstraction. Therefore, we relax these actions, meaning, we allow these actions
to occur an arbitrary number of times in an arbitrary order (see states 1 and 3
of the violation pattern in Fig. 9).

We refer to the set of action labels that we do not want to relax by Labkeep.
This set includes at least all the labels mentioned in the abstract (and also the
concrete) property. In the violation pattern, we distinguish a cyclic state which

110 J. Calamé et al.

corresponds to the first state in the cyclic suffix. The last action in the cycle
base of an infinite counterexample leads to this cyclic state.

Ideally, we would like to relax more actions influenced by data abstraction.
These actions can be found by applying static analysis techniques. The more
actions we keep, the more concrete the counterexample is and the faster we can
check whether there is a concrete trace matching the pattern. By keeping too
many actions, however, we might end up with a violation pattern that specifies
traces having no counterparts in the concrete system.

Definition 18 (Non-relaxed Actions). Given a set Actφα

of actions appear-
ing in a property φα, we define that some set Labkeep of non-relaxed actions in
a violation pattern is consistent if and only if Labkeep ⊇ Actφα

.

Labkeep can optionally contain additional actions, like the last action of a cyclic
suffix, or actions not influenced by the data abstraction, to make the violation
pattern more specific.

Definition 19 (Violation Pattern). Given an abstract counterexample χα =
βpβ

ω
s and a set Labkeep of non-relaxed actions, a violation pattern is an extended

LTS V = (Σ,Lab, Δ, σinit, σcyclic) constructed by Algorithm 1, where σcyclic is the
cyclic state.

The set of traces visiting the cyclic state infinitely often, is further referred to
as the set [[V]]trace of accepted traces.

Given a counterexample χα = βpβ
ω
s and a set Labkeep of actions to keep,

Algorithm 1 constructs the violation pattern V . The algorithm starts with creat-
ing the initial state σinit := 0 of V and goes through βpβs. When the algorithm
encounters an action to relax, it adds a self-loop transition labeled with this
action to the current state of V . When it encounters an action to keep, it adds a
transition from the current state to the (new) next state labeled by this action
or, if the algorithm has reached the end of the cycle base, back to the cyclic
state. The first state of βs is assigned to σcyclic.

Lemma 20. Let Labkeep be consistent with φα, let χα be a counterexample for
φα, and V be a violation pattern generated from χα and Labkeep. Every trace
βα ∈ [[V]]trace satisfies: βα 	|= φα.

Proof Sketch. If a counterexample χα is relaxed, at least all actions from the
property’s alphabet are in Labkeep (see Def. 18), i.e. they are not relaxed. This
means, that if a trace βα is in [[V]]trace, it contains all actions from φα in the
same order as they appear in the counterexample χα.

Since we are considering next-free properties, the absolute position of the
actions in question in the particular trace is not required, to keep violating the
property φα. Preserving the cyclic state σcyclic for an infinite counterexample also
allows us to preserve the cyclicity of the infinite suffix of such a counterexample.

Bug Hunting with False Negatives 111

Algorithm 1. Build Violation Pattern
Require: χα = βpβω

s ,Labkeep // trace, actions to keep
Ensure: V = (Σ,Lab, Δ, σinit, σcyclic) // violation pattern
1: σinit := 0; Σ := {σinit}; // initialization
2: st := 0; // current state st of V
3: for all i = 1..|βpβs| do // for all steps of βpβs

4: if χα[i] �∈ Labkeep then
5: Δ := Δ ∪ {(st, χα[i], st)}; // add a relaxed step
6: fi
7: if i = |βp| + 1 then
8: σcyclic := {st}; // indicate the first state of the cycle
9: fi

10: if χα[i] ∈ Labkeep ∨ i = |βpβs| then // if step to be kept or last one
11: if i = |βpβs| then // if last state in cycle base
12: st′ := σcyclic; // next state is the cyclic one
13: else
14: st′ := st + 1; // next state is arbitrary
15: fi
16: Σ := Σ ∪ {st′}; // add a new state,
17: Δ := Δ ∪ {(st, χα[i], st′)}; // add the step to the new state
18: st := st′; // proceed with the next state of V
19: fi
20: od

5.2 Looking for a Concrete Counterexample

After we have constructed the violation pattern V , we check whether there is
a concrete counterexample χ = χpχ

ω
s , such that the corresponding abstract

counterexample χα ∈ [[V]]trace.
For infinite counterexamples we need to check that some state of χs corre-

sponds to σcyclic. We employ constraint solving [19] to find a concrete counterex-
ample, which allows us to check this condition for infinite (but cyclic) traces,
and also for certain infinite and parameterized systems.

To find a concrete trace matching the violation pattern V , we transform the
specification of the concrete system and the violation pattern into a constraint
program and formulate a query to find such a trace. This transformation is similar
to the one described in [2]. Note that for a concrete system with an infinite state
space, it is possible that the constraint solver will not terminate. Moreover, it is
possible that the only traces that match the violation pattern are spiral traces,
not cyclic ones (i.e. we do have a loop with respect to control locations, but some
variable is infinitely growing) and we will not be able to find them.

The transformation of the specification of the concrete system into a rule
system RS is defined in Table 1. Each edge of the specification S is mapped into
a rule �← g. In the rule, g is a guard and � is a user-defined constraint of the form
s(state(�,Var),state(�̂, Var

′
),param(Y)). The first parameter state of the user-

defined constraint describes the source states corresponding to the edge in terms
of control locations of a process and valuations of process variables. The second

112 J. Calamé et al.

Table 1. From specification S to rule system RS

ROutput
� →g�!s(e) �̂ ∈ Edg

s(state(�,Var), state(�̂,Var), param(e)) ← g

RInput
� →g�?s(x) �̂ ∈ Edg

s(state(�,Var), state(�̂,Var [x �→Y]), param(Y)) ← g

RAssign
� →g�τ,x:=e �̂ ∈ Edg

τ (state(�,Var), state(�̂, Var [x �→e]), param) ← g

Table 2. From violation pattern V to rule system RV

(1)
σ →!s(v) σ̂ ∨ σ →?s(v) σ̂ ∨ σ →τ σ̂ σ �= σcyclic

σ(state(�X), C̄, β̄) ← s(state(�X), state(�X ′), param(Y))∧
v = α(Y) ∧ σ̂(state(�X ′), C̄, [β̄, s(Y)])

(2)
σ →!s(v) σ̂ ∨ σ →?s(v) σ̂ ∨ σ →τ σ̂ σ = σcyclic

σ(state(�X), C̄, β̄) ← s(state(�X), state(�X ′), param(Y))∧
v = α(Y) ∧

(
�X ∈ C̄ ∨ σ̂(state(�X ′), [�X | C̄], [β̄, s(Y)])

)

parameter state describes the destination states in terms of control locations of a
process and valuations of process variables. The third parameter param contains
parameters representing input and output values. The constraint is satisfied iff
the guard g is satisfied. This means, that there is a transition (�, η) →g�s(d) (�̂, η̂),
if and if only the rule s(state(�,Var), state(�̂,Var

′
), param(Y)) ← g holds, for

some substitution Var = η, Var
′
= η̂, Y = d that makes guard g become true.

In ROutput, the name of the constraint coincides with the event s. Note that
the values of the process variables Var remain unmodified and the output value
is represented by the parameter Y whose value is given by the expression e. In
RInput, the input leads to the substitution of the value of process variable x by
the value of the input parameter Y . In RAssign, an assignment is represented
by substituting the value of the process variable x by the valuation of expression
e. These rules have no local parameters, so the parameter structure is empty.

Transformation of the edges of V = (Σ,Lab, Δ, σinit, σcyclic) into the rules of
the rule system RV is defined in Table 2. Here, we abbreviate (�,Var) by �X

and (�̂,Var
′
) by �X ′. Intuitively, given a step of V , a rule of RV checks whether

the concrete system may make this step. The rules also take into account the
information about the cyclic state and the data abstraction.

The rules in Table 2 transform the steps of a violation pattern into rules of the
form: �← ξ ∧ gα ∧ ν. � is a user-defined constraint of the form σ(state(�X), C̄, β̄)
specifying the source state state(�X) of the concrete system, the set of states,
which are possibly on a cycle, in the set C̄. This set is accumulatively constructed,
and it contains concrete candidate cyclic states that match with σcyclic in the

Bug Hunting with False Negatives 113

violation pattern. The third parameter, β̄, contains the trace that has already
been visited while examining V and will contain the end result.
ξ is a user-defined constraint of the form s(state(�X), state(�X ′), param(Y)) as

defined above. It represents a step on which the concrete system and the violation
pattern can potentially synchronize.

The guard gα checks whether the data parameters of the concrete action are
a concretization of the data parameters of the abstract action.

Finally, ν determines whether and how the violation pattern has to be exam-
ined further. We will explain this in more detail shortly. Simplified, ν stops the
further examination of V , if we have reached the cyclic state of V . Otherwise, it
decides that the next step in V will be taken and sets the parameters accordingly.

We will now describe the rules in more detail. Rule 1 of Table 2 transforms
steps of the violation pattern whose actual state σ is not the beginning of the
cycle base. The step specified by the constraint s(state(�X), state(�X ′), param(Y))
changes the state to σ̂ in the violation pattern and to state(�X ′) in the concrete
system. That is captured by the constraint σ̂(state(�X ′), C̄, [β̄, s(Y)]) in �. The
constraint is satisfied only if both the violation pattern and the concrete system
can make the specified step and the action labeling the step of the concrete
system satisfies the constraint v = α(Y). When doing the next examination step,
C̄ is left unchanged, while the actual event s together with a concretization Y
of its parameter v, is added to the examination trace β̄.

Rule 2 transforms those steps of the violation pattern, which start from a state
corresponding to the beginning of the cycle. If the actual corresponding state in
the system is found in C̄, the state is cyclic and has already earlier been visited
during the examination. In this case, examination ends successfully. If the state
is not yet in C̄, it is potentially cyclic. In this case, the step is treated like in Rule
1, just that the actual state of the system is added to C̄. Logging potentially
cyclic states and examining the violation pattern further allows us to not only
detect obvious cycles, i.e. cycles in the system which are also immediately visible
in the violation pattern. We can also detect those cycles, where the system spirals
before entering a real cycle. In this case, the system first runs through a cycle
with respect to the location, but differing in the data part of the system state,
before finally returning to a previously visited state. In such a case, the cyclic
state of the violation pattern is visited more than once.

The rule system RV , together with the rule system RS , forms the constraint
program. In order to check whether we can find a concrete counterexample
matching the violation pattern, we transform the pair of the initial state of
the violation pattern and the initial state of the concrete system into the query
qinit := σinit(state(�Xinit), [], []) (initial state without any potentially cyclic states
and without action steps yet in the counterexample trace) and ask a constraint
solver, whether it finds a solution in the constraint program formed by RS and
RV . If yes, it provides us a counterexample as a list of actions and violation
pattern states, which has been collected over the examination of V . If constraint
solving does not find a solution, we cannot give a conclusive answer and have

114 J. Calamé et al.

to use e.g. abstraction refinement techniques to find out, whether the property
holds on the concrete system or not.

Lemma 21. If the query qinit to the rule system RV holds for some trace β,
then β ∈ [[M]]trace, and α(β) ∈ V.

Proof Sketch. Assume, that qinit holds in rule system RV for a trace β. Then,
this trace is in [[M]]trace, since the conditions for the execution of particular ac-
tions in RV are based on RS , an exact specification of the operational semantics
of the specification language as defined in Section 2.

The abstraction of the trace β, α(β), however, is in the violation pattern V.
The reason therefore is, that the rule system RV is generated from this violation
pattern and thus only reflects steps (and inductively: traces), which appear in V.
Thus, the rule system only holds for those traces β, where α(β) ∈ V.

5.3 Correctness of the Framework

In this section, we argue the correctness of the framework, which has been worked
out in the previous two subsections on the derivation of a violation pattern and
the search for further counterexamples using constraint solving.

Theorem 22. Let α = 〈hs, ha〉 be an abstraction consistent with eALTL-
property φ. Let LTSs M and Mα be given, such that M ⊆α Mα. Further-
more, assume that the counterexample χα ∈ [[Mα]]trace and χα 	|= φα. Let V be
a violation pattern built from χα and a consistent Labkeep by the algorithm in
Fig. 1. Let β be a trace for which qinit holds, according to the constraint solving
procedure defined in Subsection 5.2. Then β is a counterexample: β ∈ [[M]]trace
and β 	|= φ.

Proof Sketch. By Lemma 21, β ∈ [[M]]trace and α(β) ∈ [[V]]trace. By Lemma 20,
α(β) 	|= φα. By Lemma 13, as α is a precise abstraction, we have β 	|= φ.

6 Implementation

To check the applicability of our framework we performed a number of verifica-
tion experiments with μCRL specifications [14]. For constraint solving, we used
Eclipse Prolog [1].

We took a mutant of the Positive Acknowledgment Retransmission Protocol
(PAR) [25] as our case study. The usual scenario for PAR includes a sender, a
receiver, a message channel and an acknowledgment channel. The sender receives
a frame from the upper layer, i.e. from its environment, sends it to the receiver
via the message channel, the receiver delivers the frame to the upper layer and
sends a positive acknowledgment via the acknowledgment channel to the sender.
PAR depends on timers, which we have chosen too low for our experiments.

We tried to verify that for any setting of the sender timer exceeding some value
k, all messages sent by the upper layer to the sender are eventually received by
the upper layer from the receiver. To prove that the property holds for any setting

Bug Hunting with False Negatives 115

of the sender timer exceeding k, we applied the timer abstraction described in
Section 1 to the sender timer. The property was not satisfied on the abstract
system (since the k we took was less than the sum of the channel delays) and
we obtained a counterexample.

The abstract counterexample was not reproducible on the concrete system,
since the number of tick steps from a setting of the sender timer till its expira-
tion varied along the trace due to the use of the abstraction. We transformed the
counterexample into a violation pattern by relaxing the actions on the sender
timer as influenced by the abstraction. The specification of the system was trans-
formed from μCRL into a set of Prolog constraint rules, while the violation pat-
tern was immediately formulated as a set of Prolog rules according to our theory
(Def. 18, 19 and Fig. 9). The constraint solver was then able to find a concrete
counterexample for our property.

7 Conclusion

We proposed a novel framework for interpreting negative verification results
obtained with the help of data abstractions. Existing approaches to handling
abstract counterexamples try to find an exact counterpart of the counterexample
(e.g. [21]). When no concrete counterpart can be found, data abstraction is
considered to be not fine enough and abstraction refinement is applied (e.g. [4]).

In our framework we look for useful information in false negatives, combin-
ing the two formal methods model checking and constraint solving. Given a
specification of a system and a property (formulated as an eALTL formula), we
first choose and apply data abstraction to both of them and then verify the ab-
stract property on the abstract system. If the verification results in a violation
of the abstract property and the obtained counterexample has no counterpart in
the concrete system, we transform the counterexample into a violation pattern,
which is further used to guide the search for concrete counterexamples.

The framework allows to handle counterexamples obtained when verifying
safety properties, but also counterexamples for liveness properties. Moreover,
the framework can be applied for searching concrete counterexamples in pa-
rameterized and infinite state systems. Success is not always guaranteed – the
violation pattern can be too strict, concrete counterexamples can have a spiral
form (i.e. a loop in the specification, that does not lead back to a state fully
identical to its starting state), or there could be no counterexample at all since
the property just holds on the concrete system. Still, our approach can help in
finding counterexamples in those cases when a data abstraction influences the
order and the number of some actions, e.g. as timer and counter abstractions
do. Even though, we defined the framework for homomorphistic abstractions in
this paper, it seems to be possible to generalize abstraction and refinement on
the basis of Galois-connections and so define a framework for bughunting with
false negatives based on abstract interpretation.

The approach to the generation of a violation pattern leaves a certain freedom
in the sense that the set of actions to relax can be more/less restrictive. Tuning

116 J. Calamé et al.

the violation pattern or using the expertise of system developers to pick an
appropriate set of actions to relax can be potentially less costly than repeating
the abstraction/refinement cycle immediately. More case studies comparing both
approaches and trying their combinations are still needed.

References

1. Brisset, P., et al.: ECLIPSe Constraint Library Manual, version 5.9 edn. (May
2006) http://eclipse.crosscoreop.com/eclipse/doc/libman.pdf

2. Calamé, J.R., Ioustinova, N., v.d. Pol, J.C.: Towards Automatic Generation of Pa-
rameterized Test Cases from Abstractions. Technical Report SEN-E0602, Centrum
voor Wiskunde en Informatica (March 2006) (To appear in ENTCS)

3. Chaki, S., Clarke, E., Grumberg, O., Ouaknine, J., Sharygina, N., Touili, T.,
Veith, H.: State/Event Software Verification for Branching-Time Specifications.
In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771,
pp. 53–69. Springer, Heidelberg (2005)

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
Abstraction Refinement for Symbolic Model Checking. Journ. of the ACM 50(5),
752–794 (2003)

5. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994) A
preliminary version appeared in the Proc. of the POPL’92

6. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of
the 4th ACM SIGACT-SIGPLAN Symp. on Principles of programming languages
(POPL’77), pp. 238–252. ACM Press, New York (1977)

7. Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking.
PhD dissertation, Eindhoven University of Technology (July 1996)

8. Dams, D., Gerth, R.: The Bounded Retransmission Protocol Revisited. Electronic
Notes in Theoretical Computer Science 9, 26 (1999)

9. Dams, D., Gerth, R., Grumberg, O.: Abstract Interpretation of Reactive Systems.
ACM Transactions on Programming Languages and Systems (TOPLAS) 19(2),
253–291 (1997)

10. Das, S., Dill, D.L.: Counter-Example Based Predicate Discovery in Predicate Ab-
straction. In: FMCAD, pp. 19–32 (2002)

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for
Finite-state Verification. In: Proc. of the 21st Intl. Conf. on Software Engineering,
pp. 411–420. IEEE Computer Society Press, Los Alamitos (1999)

12. Giannakopoulou, D.: Model Checking for Concurrent Software Architectures. PhD
thesis, Imperial College of Science Techn. and Med., Univ. of London (March 1999)

13. Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Proc. of
the 9th Intl. Conf. on Computer-Aided Verification, pp. 72–83 (1997)

14. Groote, J.F., Ponse, A.: The Syntax and Semantics of μCRL. In: Ponse, A., Ver-
hoef, C., van Vlijmen, S. (eds.) Algebra of Communicating Processes. Workshops
in Computing, pp. 26–62. Springer, Heidelberg (1994)

15. Grumberg, O., Lerda, F., Strichman, O., Theobald, M.: Proof-guided
Underapproximation-Widening for Multi-Process Systems. In: Proc. of the Ann.
Symp. on Principles of Programming Languages, pp. 122–131 (2005)

http://eclipse.crosscoreop.com/eclipse/doc/libman.pdf

Bug Hunting with False Negatives 117

16. Kesten, Y., Pnueli, A.: Control and Data Abstraction: The Cornerstones of Practi-
cal Formal Verification. Intl. Journ. on Software Tools for Technology Transfer 2(4),
328–342 (2000)

17. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental Verification by Ab-
straction. In: Proc. of the Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 98–112 (2001)

18. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property Preserving
Abstractions for the Verification of Concurrent Systems. Formal Methods in System
Design 6(1), 11–44 (1995)

19. Marriott, K., Stuckey, P.J.: Programming with Constraints – An Introduction. MIT
Press, Cambridge (1998)

20. Pace, G., Halbwachs, N., Raymond, P.: Counter-example Generation in Symbolic
Abstract Model-Checking. Intl. Journ. on Software Tools for Technology Trans-
fer 5(2), 158–164 (2004)

21. Pasareanu, C.S., Dwyer, M.B., Visser, W.: Finding Feasible Counter-examples
when Model Checking Abstracted Java Programs. In: Proc. of the Intl. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, pp. 284–298
(2001)

22. Pasareanu, C.S., Pelánek, R., Visser, W.: Concrete Model Checking with Abstract
Matching and Refinement. In: Proc. of the Intl. Conf. on Computer-Aided Verifi-
cation, pp. 52–66 (2005)

23. v.d. Pol, J.C., Espada, M.A.V.: Modal Abstractions in μCRL. In: Rattray, C.,
Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, Springer, Hei-
delberg (2004)

24. Rusu, V., du Bousquet, L., Jéron, T.: An Approach to Symbolic Test Generation.
In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945,
pp. 338–357. Springer, Heidelberg (2000)

25. Tanenbaum, A.S.: Computer Networks. Prentice Hall International, Englewood
Cliffs (1981)

Behavioural Specifications from Class Models

Alessandra Cavarra and James Welch

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD UK

Abstract. This paper illustrates a technique to automatically derive
intra-object behaviours (in the form of state diagrams) from an object
model. We demonstrate how we may take specifications, written in a
restricted language of pre- and postconditions, and generate protocols of
usage that represent possible behaviours of the generated program. We
discuss how to use these state diagrams to analyse the specification for
errors, and how to produce correct abstractions to show a particular class
of properties of a system. This approach proves successful and scalable for
specific domains of application such as database systems and e-commerce
websites.

1 Introduction

Techniques for automatically generating programmes from their specifications
has been a goal of research in software engineering for many years. Techniques
such as automatic programming [12,15,16] met with limited success, but the
growth of model-driven development has led to a renewed effort, most notably
in the form of Model Driven Architecture (MDA)[11].

Much of this work has been on the static properties of programs—in the
conversion of the structure of the specification into an equivalent structure in
the program code. In particular, the class diagrams of the Unified Modeling
Language (UML)[14] are commonly translated into Java class ‘stubs’, where
default create, read, update and destroy methods can be created, but further
functionality is typically required to be added manually by the programmer.

In general, dynamic properties of the system are much harder than static
properties to translate into code, not least because algorithmic code is often
difficult to express using specification languages such as UML, since a suitable
abstraction is harder to find. The wide variety of ways in which dynamic prop-
erties may be expressed (states, events, interactions, use cases, etc.) is also a
hindrance—the interaction between types of specification is not clearly defined
and detailed specifications prove hard to consistently refine.

A typical specification or requirements document is expressed in many ways—
for example domain artifacts in a class diagram, business rules in terms of in-
variants, pre- and postconditions, and protocols in terms of state and sequence
diagrams. Whilst each individual part of the specification may be validated inde-
pendently, the interaction between parts of the specification is less easily under-
stood and harder to reason about. This also leads to the problem of requirements
traceability.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 118–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Behavioural Specifications from Class Models 119

When generating systems in such a manner, we must test their functionality by
testing the resulting application, validating the functionality of the system with
respect to the intended functionality. However, exhaustive testing is infeasible,
and so a more logical solution is to validate the correctness of the specification,
on the assumption that the system functionality is correctly refined from the
specification.

For some predicate P or sequence of transitions S , we may like to ask the
following questions of our specification:

– Is it possible that a state satisfying P might occur during the operation of
the system?

– Is it possible that S may be performed?
– Is it S the only sequence of transactions that may occur?

Moreover, we may wish to enforce these conditions: P must never hold of any
state of the system; S must be an allowed sequence; S must never be allowed to
happen; S must be the only sequence of transactions that may occur. In many
cases, as discussed in [4], such properties may not be expressed explicitly in
terms of invariants, since to do so would make the specification too restrictive
for use in real-life.

In previous works [2,5,4] we have introduced Booster, a domain-specific lan-
guage for specifying information-driven systems. The language is an integrated
formal specification language, based upon object-oriented constructs, and defines
functionality in a declarative style—in terms of pre- and post-conditions. Whilst
the correctness of each method individually may be determined, it is harder to
prove that a system comprising of these methods is correct.

In this paper, we provide a solution to this problem in a domain-specific set-
ting, by automatically generating protocols for usage. These allow us to “step
through” the proposed system, checking for allowable states, and validating se-
quences of transactions.

Whilst the ideas presented here are specific to the Booster language, they may
be usefully adapted for a more generic class of specification, although automation
may not always be possible. In particular, these ideas can be applied to systems
specified using UML class diagrams annotated with constraints written in a
restricted version of the Object Constraint Language. However, as described in
[4], the Object Constraint Language is in some ways less expressive Booster as
it lacks the ability to compose method specifications.

We start this paper by introducing the Unified Modeling Language—in par-
ticular the notions of Class and State Diagrams. Next we give an overview of
the key features of the Booster language, and compare it with the UML. In sec-
tion 4 we discuss the process of automatically generating workflows from Booster
specifications; in section 5 we illustrate this theory with an example, showing
how the technique can be useful. The paper concludes with a brief discussion of
the validity of this work and how the process may be applied with more general
specifications, an orientation of this work amongst recent related work, and a
discussion of future research goals in this area.

120 A. Cavarra and J. Welch

2 UML

The Unified Modeling Language [14] has gained popularity in the last decade and
is now widely used in industry, despite a number of continuing challenges (most
notably the lack of a universally-accepted precise semantics). UML contains a
vast set of notations to describe the structure and the dynamics of a software
system. The language is composed of two different categories of diagrams rep-
resenting the two views of a system: the static view, modeling information that
does not evolve with time, and the dynamic view, where the evolution of the
components of the system is shown.

However, most of the notation provided by UML is actually seldom adopted
in practice, while the parts that are mainly used are those that were already well
established before the advent of UML: class, state, and sequence diagrams. For
the purpose of this work we concentrate on class and state diagrams.

2.1 Class Diagrams and OCL

Class diagrams provide a static structural view of the system; they depict the
classes of the system, their inter-relationships, and the operations and attributes
of the classes.

The application concepts are modelled in UML as classes, each of which de-
scribes a set of objects that hold information and communicate to implement a
behaviour. The information they hold is modelled as attributes; the behaviour
they perform is modelled as operations. Structural relationships between objects
of different classes are represented by associations. The definition of associations
may be enhanced by a name, role names and cardinality (multiplicity).

Class diagrams can be annotated with constraints written using the Object
Constraint Language [17]. OCL is a declarative language for describing rules
that apply to UML models; it allows the definition of invariants on classes and
sets of associated classes, and pre- and postconditions on classes’ operations.
In previous work [4] we have discussed the differences between the UML and
Booster, and described how techniques in Booster may be usefully applied to
models in the UML and OCL.

2.2 State Diagrams

UML state diagrams are a variation of Harel’s statecharts [8]. They focus on the
event-ordered behaviour of an object. A state diagram shows the event triggered
flow of control due to transitions which lead from state to state, i.e. it describes
the possible sequences of states and actions through which a model element can
go during its lifetime as a result of reacting to discrete events.

In UML 2.0 in addition to expressing the behaviour of a part of the system,
state diagrams can also be used to express the usage protocol of part of a system.
These kinds of state diagrams are referred to as behavioural state diagrams and
protocol state diagrams (PSD - introduced in UML 2.0) respectively. A PSD
specifies which operations of the class can be called in which state and under

Behavioural Specifications from Class Models 121

which condition, thus specifying the allowed call sequences on the operations of
the class. A protocol state machine presents the possible and permitted tran-
sitions on the instances of a class, together with the operations that carry the
transitions. A protocol transition specifies a legal transition for an operation.
Transitions of protocol state machines have the following information: a precon-
dition, a trigger, and a postcondition. The protocol transition specifies that the
associated operation can be called for an instance in the origin state under the
initial condition, and that at the end of the transition, the destination state will
be reached under the final condition (post).

3 The Booster Language

The Booster notation, first described in [2], combines key features of three earlier
formal methods—the Z notation, the B method, and the Refinement Calculus—
with the aim of automatically generating software components whose design is:

– transformational—the intended effect of an operation can be described in
terms of values of inputs, outputs, and attributes immediately before, and
immediately after, the operation has been performed.

– sequential—at most one operation may be acting upon the data within the
component at any one time; the current operation must finish reading or
updating the data before the next can begin.

In particular, this encompasses components based upon an object database,
accessed through transactions and queries.

Specifications are structured in an object-based style—using classes, associa-
tions and inheritance. On each class attributes may be defined, which may be
of primitive type or may define end-points for associations. Invariants may be
defined in the scope of a class, but their effect may extend to associated classes.

Methods are defined on each class to update the attributes of the current class
and also any associated classes. Such methods are defined declaratively in terms
of pre- and postconditions. Preconditions may be any arbitrary predicate defined
in terms of the state of input values and attribute values before the execution of
the method.

Postconditions are more restricted however, and are limited to the syntax
provided in Fig. 1.

A postcondition is a series of conjuncts, separated by the symbol ‘&’. A con-
junct may be an implication, a universal quantification, or a primitive postcon-
dition. The antecedent of an implication is an arbitrary predicate, interpreted
as a constraint upon the values of attributes before the operation is performed.
The consequent of an implication is a conjunction of primitives. The range of a
universal quantification is a collection of objects of the same class, constrained
by the antecedent of an implication. A primitive postcondition is an assertion
of equality between a variable and an expression, of set membership, or of its
negation.

122 A. Cavarra and J. Welch

〈postcondition 〉 ::=
〈conjunct 〉 | 〈conjunct〉 “&” 〈postcondition 〉

〈conjunct 〉 ::=
〈 implication〉 | 〈 forall〉 | 〈primitive〉

〈 implication〉 ::=
〈antecedent 〉 “=>” 〈consequent 〉

〈 forall〉 ::=
“forall(” 〈class〉 “).” 〈 implication〉

〈consequent 〉 ::=
〈primitive〉 | 〈primitive〉 “&” 〈consequent 〉

〈primitive〉 ::=
〈variable〉“=” 〈expression 〉 |
〈expression 〉 “:” 〈variable〉 |
〈expression 〉 “/:”〈variable〉

Fig. 1. Syntax of postconditions in Booster

We may also create new methods from existing specifications. For example,
given methods M1 and M2 we may create a new method M1 AND M2 which has
the effect of schema conjunction from Z—the new method has the effect of
calling both M1 and M2 at the same time. Similarly we may use OR for schema
disjunction, THEN for sequential composition, and ALL which has the effect of an
iterated conjunction. Compound methods may be expanded to form primitive
methods; for example M1 AND M2 has a precondition that is the conjunction of
the individual preconditions, postconditions are similarly conjoined. There are
restrictions upon the use of AND to ensure preconditions are not automatically
false; this is explained in [5].

The restriction imposed upon postconditions is powerful in that we may rea-
son about methods without having to concern ourselves with non-determinism
and algorithmic detail. We may automatically generate applications from speci-
fications written in the Booster language; this is a two phase process. The first
stage is that of expansion, where a specification is automatically transformed into
an equivalent specification, also written in the Booster language. This expansion
includes:

– Providing specifications for “default methods” such as Create and Destroy;
– Inheritance hierarchies are flattened[3];
– Compound methods are reduced to primitive methods[5]
– Adding scoping information for attributes;
– Inferring types and adding preconditions to ensure the type-correctness of

all reference and input values;
– Automatically maintaining association invariants[18];
– Automatically guarding against breaking other invariants[4]

Behavioural Specifications from Class Models 123

This expansion allows the programmer to specify only the intended effect of a
method. Any consequences implied by the rest of the model will be automatically
included, and if the intention of the method is impossible in the context of the
model a false precondition will always be generated.

The second phase takes the expanded specification and produces imperative
code—this stage has been explained in [5] and [3]. Method specifications are
compiled into sequential transactions; two methods cannot update the same piece
of data at the same time. These transactions are “atomic” - they are assumed
to occur instantaneously and model states during execution are not of interest.
Preconditions are translated into guards for the transaction; a transaction can-
not be called if its guard evaluates to false. Postconditions are translated into
independent substitutions upon attribute values; the execution of all substitu-
tions is guaranteed to terminate in a state satisfying the postcondition, changing
only the values mentioned in the postcondition.

An extract from an example Booster specification is shown in Fig. 2. This
describes a class of Reader objects—people who are registered on a system for
registering library borrowing. A Reader object has values for his name (of type
String), and for his age (a natural number). The next attribute denotes an as-
sociation between the classes Reader and Library—a Reader may belong to
a number of libraries. The association is bi-directional—there is an attribute
Readers in the class Library—whenever Reader.Libraries is updated then
Library.Readers must be too, and vice-versa. Similarly, the final attribute de-
notes an association between Reader and Book. The definition of these other
classes will be given later in the paper.

CLASS Reader
ATTRIBUTES
Name : STRING
Age : NAT
Libraries : SET(Library.Readers)
Books : SET(Book.Reader)
METHODS
Create,
Destroy,
Borrow(Book_in.Library : Libraries

| Book_in : Books)

Fig. 2. An example of a class in Booster

There are three methods defined on the Reader class: Create and Destroy,
which are both to be given default implementations, and Borrow, which asso-
ciates a new Book with this reader. The precondition ensures that the reader is
a member of the same library as the book (an input-value); the postcondition
states that the new book is a member of the set of books that this reader has
borrowed.

124 A. Cavarra and J. Welch

This information could have been presented in the UML, although, as ex-
plained in [4], the Booster language is more appropriate for our purposes. The
language is more restricted, less verbose, and allows us to form new methods by
combining existing specifications, something currently not possible in the OCL.
However the work presented in this paper could equally be done using a subset
of the UML and OCL, with the same refinement semantics that is provided in
Booster.

4 The Generation of State Diagrams

Given a specification in Booster, consisting of classes, attributes and methods
with pre- and postconditions, we would like to be able to explore the dynamic
properties inherent in the model. In particular this paper addresses those of
state and usage protocols—we generate a UML protocol state diagram—and
from this we can validate some dynamic properties of our models. From the state
machine we can find out whether a particular state is allowed by our system, and
which sequence of transactions will achieve that state. We can decide whether
a sequence of transactions is allowed by our intended system, or whether some
sequence of transactions is the only allowed interaction. Moreover, just viewing
a state machine for a system can give us a better idea of its functionality and we
may gain insight into how the system may be used. In this section, we describe
how this can be achieved and in Section 5 we illustrate the application of this
technique.

4.1 Abstraction

When generating a state machine we must first consider which parts of the
system we are interested in. Generating the entire state machine for a system of
classes will be computationally expensive, in that there may be many states and
transitions to consider. Additionally, such a state machine would be difficult to
view or to manually reason about.

Instead, we must generate a sub-graph of the entire state machine—an ab-
straction that represents particular properties—and we begin this process by
choosing a particular subset of state that we are interested in. We must choose a
particular subset of attributes that are relevant to the dynamic properties that
we wish to validate—the smallest such subset will create the smallest possible
state chart.

Additionally, where attributes may take on a large number of values (e.g.
attributes of natural number type, or set-valued attributes), we must restrict the
states of these attributes to a smaller number that represents values that we are
interested in. For example, we may restrict our interest in a particular attribute,
that is of type natural number, to the values {0, 1, 2, > 2}. Here we consider
states in which the attribute takes the values 0, 1, 2 or any natural number
greater than 2. The abstraction must not restrict the values of the attribute, but
provide a state for every possible value. Such restrictions are usually intuitive

Behavioural Specifications from Class Models 125

from the validation we are interested in; as with all automatic processes it is easy
to adjust the restrictions and re-generate the state machine if the restrictions
are too weak or too strong.

This abstraction process may be automated by considering the semantics
of the property we are interested in, however in general further abstraction is
necessary since some system state, initial conditions and input variable may need
choosing according to an envisaged scenario.

Having reduced the number of states that we are interested in, it is now
possible to automatically reduce the number of transitions that are relevant.
Booster has a notion of a change list, similar to the frame in the refinement
calculus—denoting a set of attributes which are subject to change in the course
of a method. This change list may be specified explicitly by the modeller as
syntactic sugar, but is usually deduced from the postcondition. A postcondition
in Booster is refined into a combination of substitutions on attribute values,
each of which may be guarded. Each substitution is a simple deduction from the
postcondition, and the attribute on the left-hand-side of the substitution is part
of the change-list. For example, the postcondition:

value_in : this.att

gives rise to the substitution:

this .att := this .att ∪ value in

and we deduce that this.att is part of the change-list. From this analysis we can
calculate the change-list of every method, and restrict our transitions to those
corresponding to methods whose change-list includes part of the state that we
are interested in.

Additionally, we may wish to include those methods whose precondition in-
cludes a restriction upon any part of our chosen state, and any others which may
be of interest. We could alternatively choose to ignore certain methods which
lead to sub-sections of the state machine that are uninteresting—for example
the creation of extra objects—that may increase the size of the state machine
without adding to our understanding of the system.

Typically the state machine we are interested in will be based upon the life-
cycle of an object—from its creation to its destruction. We may wish to further
restrict our interest to a particular circumstance though, and choose initial values
for the system. For example, we may wish to only consider the system after
a particular event has occurred, or after a particular state has been reached.
This additional restriction can form part of the validation, or may assist in
viewing particular behaviours of the system—especially when the generated state
machine is still large.

Other initial values are necessary for providing the state machine an envi-
ronment. We might need to assume existence of other objects in the system so
that interactions may take place—we may need to make assumptions on the
attributes and associations of these objects too. For example, if we are looking
at the lifecycle of an object, and a transition causes it to be linked with another

126 A. Cavarra and J. Welch

object, we might prefer to assume that it already exists, rather than cluttering
our state machine with the creation and lifecycle of that object too.

Our example in section 5 illustrates these restriction and initialisation choices,
explains why they are important and discusses how optimal choices can be made.

4.2 Transitions

Having made assumptions about the environment for our state machine, and
made restrictions on the states and the transitions, we can now show how to
build a state machine. Initially we shall consider a particular state and explain
how transitions may be created from methods to leave this state. In the next
subsection we discuss how new states may be created so that an entire graph
may be constructed.

We analyse the precondition in the context of the current subset of state—this
state includes the attributes we have singled out as in our scope of interest, the
values assigned to any input values this method may require, and the state of
any objects that we have made assumptions about previously. We may attempt
to evaluate a precondition in this state and we get three possibilities:

– the precondition is a restriction upon the part of the state we know nothing
about;

– the precondition is partly a restriction upon the state we do know about,
but based upon a part of the state that is outside our scope of interest;

– or that the precondition may be entirely evaluated (to either true or false)
based upon the current subset of state.

In the first situation, we have a method which is only applicable in conditions
which are outside our scope of interest. However, its effect may be within our
scope of interest so it still must be considered. There is a transition corresponding
to this state but it is annotated with a precondition—this precondition corre-
sponds to the entire precondition of the method. Our experience shows that this
kind of transition is rare—generally a precondition for a method provides condi-
tions to ensure that the effect is achievable and so some parts of the precondition
can be evaluated, as in the next case.

In the second case, we have a method whose precondition may be partially
evaluated in the current subset of state. By lazy evaluation we can determine
whether such a precondition is guaranteed to be true, false, or still indeter-
minable. If the precondition is still indeterminable, we create a transition be-
tween this state and the next, and add a precondition to the transition, asserting
that the parts of the precondition that cannot be evaluated hold true. If the pre-
condition is evaluable, and is either true or false, then we may proceed as for
the next case.

In the final case, we have a method whose precondition either evaluates to
true or false. With the latter, this method is never applicable in the current
state and so no transition corresponds to it from this state. In the former, we
create a transition from this state to the next, which corresponds to this method.
There may be a precondition on this transition though, which corresponds with

Behavioural Specifications from Class Models 127

restrictions to input variables, assumptions about objects in our environment,
and parts of the state which fall outside our area of scope.

We choose to ignore those methods that only manipulate the state of other
objects in the system—those that are in our environment. This is because we
only care about the other objects when they become part of the current scope—
before this time their interactions and updates are uninteresting.

4.3 States

When we create a state machine we expect the modeller to provide some initial
conditions—in particular the initial state from which we begin generation. Alter-
natively, when considering the life-cycle of an object, we may wish to start in an
initial pseudo-state such as those defined in the UML, where the first transition
is always the Create method.

From the first state we find all the transitions that are possible, as described
above. These may have preconditions attached to them, that restrict their oper-
ation in certain states outside our scope of interest. Each transition corresponds
to a method in the system, and it is from the method that we construct the next
state. Since every postcondition in Booster can be translated into a collection
of substitutions, we can evaluate each in the context of the current state, any
inputs, our assumed environment, and the fact that the precondition is true.

Such substitutions may either alter the value of an attribute we are interested
in, or it may leave it unchanged. Since new values may be entirely determined,
we can calculate the new state of the system. This may be a new state, unseen by
us in the course of this generation, or it may be a state we have already seen—
perhaps even the current state—in which case the transition takes us back to
that state.

In some cases the new value in the substitution may be indeterminable, be-
cause the expression uses attributes outside the scope of interest. In this case we
have three options available to us:

– add transitions leading to every feasible state in the diagram—states in which
the other attributes correspond to the correct substitution—adding the pre-
condition that the expression evaluates to the value determined by the new
state;

– the modeller must make an assumption about the value of the new expres-
sion, and this must be factored in elsewhere in the state diagram as well;

– or the modeller must choose to increase the number of attributes in the
scope of interest, to allow the expression to be evaluated—in this case the
generation of the state-diagram must restart.

Generation of a state machine can be performed in a breadth-first or depth-
first manner, depending on the type of validation required.

4.4 Validation and Verification

The purpose of creating a state machine may vary—typically it will be to verify
some dynamic property of the specified system, although they may also be helpful

128 A. Cavarra and J. Welch

for customers to look at, or for the modeller to get a better idea of the system they
are building. In the first instance the verification can be performed automatically;
the type of verification required can be split into two distinct cases.

In the first case, the question asked is of the form: “What sequence of events
leads to the system state satisfying a particular predicate?”. This is a reachability
problem –we are looking for one or more states that satisfy a particular condition
and we can evaluate each state as we generate it. We can present each sequence
that starts in an initial state and ends in a state satisfying the condition.

In the second case, we answer questions of the form: “Is this particular se-
quence of transactions S allowed to occur in the generated system?”. S may also
include splitting and joining, and so may be a state diagram itself. Therefore the
problem may be solved by deciding whether S is a sub-graph of the generated
state machine G. The states of S must be a subset of the states of G, and for
any transition between states s1 and s2 there must be the equivalent transition
in G. Any preconditions on the generated transitions must be examined by the
modeller—to decide whether the abstraction is appropriate.

For a particular sequence of transactions, or protocol of usage S we can ensure:

– that S is available during the operation of the system;
– that S is the only sequence of states available;
– or that S is never allowed to happen during the operation of the system.

We can achieve these in obvious ways—by changing the preconditions or post-
conditions of already defined methods such that extra conditions are enforced,
and adding extra attributes to represent the state of the system. In such mod-
ifications however, we may only strengthen preconditions and postconditions,
never weakening constraints that have already been specified by the modeller.
Of course, such guarantees are only applicable in the context of the abstraction,
and it is up to the modeller to decide whether the abstraction is sufficient.

5 A Worked Example

We now present an example to show the validity of our work. In this example we
will start with an initial system, and show how we may generate a state machine
from it to verify a particular property. We show an extract from the generated
state machine that is sufficient to show the property does not hold, and discuss
how we might change the model accordingly.

5.1 An Example Specification

The initial system is that of a library system, first introduced in [18]. Whilst just
a simple problem, it is hopefully complex enough to examine issues that apply
to the kind of systems in the application domain of Booster. The specification is
presented in Fig. 3.

In the library system there are objects representing libraries, readers and
books. A reader may be a member of any number of libraries, and as a member

Behavioural Specifications from Class Models 129

of a library is entitled to borrow books from that library. A book belongs to one
library, and may be in the possession of at most one reader at any one time.

We describe this system using three classes: Library, Reader and Book. A
Book object has many attributes, representing such details as the title, the au-
thor’s name, the publisher, the ISBN number, however these are not of interest
in this example. We consider only the attributes Library and Borrower here.
The attribute Library denotes a mandatory end to an association with the class
Library—the other end of the association is the reference attribute Books in the
class Library. The attribute Borrower is an optional (denoted by square brack-
ets []) end of an association with the class Reader and the attribute Books—this
is an optional-to-many association.

The system also defines a many-to-many association between the classes
Library and Reader. These associations define the only attributes that we are
interested in for the purposes of this example. Similarly, we just present a certain
number of methods that are interesting for the purpose of this example–those
that manipulate these particular associations. This is a part of the abstraction
process–focusing on particular attributes for the properties we are interested in.

In Fig. 3 we present the expanded version of all methods, and for reasons
of space and clarity we’ve omitted parts of the precondition that are irrelevant
for this presentation (such as those pertaining to type checking of references or
setting of other attributes).

The first method defined on the Library class is one that adds a reader
to its membership (note that every person in this system is represented by a
Reader object). The precondition for this method is that there are still some
readers in the system that are not already members of this current library, and
that the input variable, Member_in is not already a member of the library. The
postcondition states that Member_in has this library in its set of libraries, and
that this current library has Member_in in the set of members.

As an aside, this method in Booster could have been specified simply by
specifying the intention: Member_in : Members and the expansion process would
have produced the additional pre- and postconditions, and provided scoping as
explained in section 3. The next method on the class Library, RemoveMember is
similarly defined—the method is unavailable if the input is not a current member
of the library, the effect is that both ends of the association are updated.

Class Reader has three methods that are relevant to this example. The first,
Create, is always available and simply creates a new object. The set Reader is the
extension of the class Reader, that is the set of all objects of that class. Since the
attributes Books and Libraries are not mentioned in the postcondition, they
take on default values, namely the empty set. The Destroy method is always
available, and removes every link it has with other objects and removes itself
from the extension.

Finally the class Book has two methods of interest. The first, Transfer, moves
a book from one library to another. The precondition is that there is at least
one more library in the system where it can be transferred, and that the input
Library_in is not the current location of the book. The postcondition is made

130 A. Cavarra and J. Welch

CLASS Library
ATTRIBUTES
...
Books : SET (Book . Library)
Members : SET (Reader . Libraries)
METHODS
AddMember(0 < (Reader.card - Library_this.Members.card) &

Member_in /: Library_this.Members
| Library_this : Member_in.Libraries &

Member_in : Library_this.Members)
RemoveMember(Member_in : Library_this.Members

| Library_this /: Member_in.Libraries &
Member_in /: Library_this.Members)

CLASS Reader
ATTRIBUTES
...
Books : SET (Book . Borrower)
Libraries : SET (Library . Members)
METHODS
Create(true | Reader_new : Reader)
Destroy(true

| forall (Book_each).(Book_each : Reader_this.Books
=> Reader_this /: Book_each.Borrower) &

forall (Library_each).(Library_each : Reader_this.Libraries
=> Reader_this /: Library_each.Members) &

Reader_this /: Reader)
Borrow(0 < (Book.card - Reader_this.Books.card) &

Book_in.Borrower = {} &
Book_in.Library : Reader_this.Libraries

| Book_in.Borrower = Reader_this &
Book_in : Reader_this.Books)

CLASS Book
ATTRIBUTES
...
Borrower : [Reader . Books]
Library : Library . Books
METHODS
Transfer(2 > Library.card &

Library_in /= Book_this.Library
| Book_this /: Book_this.Library_0.Books &

Book_this : Library_in.Books &
Book_this.Library = Library_in)

Return(Book_this.Borrower /= {}
| Book_this.Borrower = {} &
Book_this /: Book_this.Borrower_0.Books)

Fig. 3. An extract from the Library System Specification in Booster

Behavioural Specifications from Class Models 131

up of three parts: that the book is removed from the Books attribute of the old
library (variables in the pre-state are denoted with _0). Secondly, the method
Return is only available when the book is loaned to a reader; its effect is to
remove the link between the current book and the reader it was loaned to.

The specification as it stands is enough to generate a system, and dynamic
properties of the generated system are inherent in the pre- and postconditions.
However to decide whether the specification is correct with respect to the dy-
namic properties, we must make these properties more explicit. For this example,
we are interested in the question: “Can a reader have a book on loan that does
not belong to a library he is a member of?”. This is a typical question that might
be asked of such a system. We may have decided to disallow such a scenario by
creating an invariant in the class Book:

Book_this.Borrower /= {}
=> Book_this.Borrower : Book_this.Library.Readers

However, as we described in [4], such an invariant may be too strong—for
example a reader may be banned from a library before he has returned all his
books. For the purposes of this example, we will find all the scenarios where such
a situation may occur, so we can strengthen our specification accordingly.

5.2 Generation

We begin by choosing an abstraction that is relevant to our particular problem.
In presenting this example we have already partly achieved this: we have only
presented the attributes and methods that we might be interested in.

For this example we are going to produce the state machine of the object life-
cycle for the class Reader. The property we are interested in can be expressed us-
ing the attributes Reader.Books and Reader.Libraries, and the derived value
Reader.Books.Librarywhich contains the set of all libraries that own the books
that the current reader has on loan. This uses the attribute Book.Library, which
gives three system attributes that we are interested in. We can therefore restrict
our analysis to just the methods that modify these attributes. This is exactly the
set of methods presented in Fig. 3. We assume the lack of Create and Destroy
methods for libraries and books for clarity and simplicity, however in the full
generation we would expect them to appear.

We must also make some initial assumptions about the environment in which
this Reader object is to live. We assume that there is one Book object, B1,
and two Library objects in scope, L1 and L2, and these are the only other
objects in the system. This will largely decrease the state space, but hopefully
not so much that no useful information can be obtained from the state machine.
We will assume that B1 belongs to L1. These assumptions can be modified if
the generated state machine does not show us enough information; however the
authors’ experience is that a small environment such as this is generally suitable.
When generating the state machine, we do not consider updates to these objects
unless they directly update our three attributes—these objects only become of
interest when they are accessible through association.

132 A. Cavarra and J. Welch

We can now choose an abstraction for the state, so that the generated state
machine will be small enough to view. For the attribute Reader.Libraries we
choose the set of states {{}, {L1}, {L2}, {...}} where {...} is any other state. We
choose the same abstraction for Reader.Books.Library and {{}, {B1}, {...}} for
the attribute Reader.Books.

Our final configuration is that of the initial state. Since we are interested in
the object-lifecycle, we begin in the initial pseudo-state and the first transition
will always be the Create method.

An extract from the generated state machine is shown in Fig. 4. The entire
state-machine is just over twice the size of this, and can be easily viewed on a
screen, but is not suitable for presentation in this format. Properties are typically
verified automatically, so there is often no need to present the state machine in
its entirety. However the modeller can gain a better understanding of his model
by viewing the whole thing.

Reader.Libraries : { }
Reader.Books : { }

Reader.Books.Library : { }

Reader.Create

Reader.Libraries : {L1}

Reader.Books : { }
Reader.Books.Library : { }

Reader.Libraries : {L1}

Reader.Books : {B1}

Reader.Books.Library : {L1}

Reader.Libraries : { }
Reader.Books : {B1}

Reader.Books.Library : {L1}

Reader.Libraries : {L1}

Reader.Books : {B1}

Reader.Books.Library : {L2}

L1.AddMember

L1.RemoveMember

[B1.Library = L1]

Reader_this.BorrowB1.Return

[Member_in = Reader_this]
L1.RemoveMember

[Library_in = L2]

B1.Transfer

Reader.Destroy

Reader.Destroy

Reader.Destroy

Fig. 4. An extract of the generated state machine

Behavioural Specifications from Class Models 133

Observe that the generated state machine is actually a protocol state machine
where states are labeled by the postcondition of their incoming transitions rather
than by abstract names.

The original question, “Can a reader have a book on loan that does not belong
to a library he is a member of?”, can be solved by searching for a state in which
the derived set Reader.Books.Library is not a subset of Reader.Libraries.

Automatic analysis of the generated state diagram can show that there are
two ways of reaching the specific state. The two usage protocols are:

Reader .Create → L1.AddMember → Reader this .Borrow → B1.Transfer
and

Reader .Create → L1.AddMember → Reader this .Borrow → L1.RemoveMember

Either a book may be transferred to a different library while a reader is
borrowing it (and the reader is not a member of the new library), or a library
may remove a reader before he has returned his books from that library. The
modeller may now add preconditions to the methods if they wish to prevent such
scenarios from happening.

The modeller may also look at the state machine for themselves and no-
tice other dynamic properties that they weren’t expecting—for example that a
reader can be removed from the system (using Destroy), whilst still holding
books. This may not have been their intention and so they can add precondi-
tions appropriately. It is the authors’ experience that this process can be helpful
before generating a system so that modelling errors can be eliminated.

The process as it stands relies a lot upon the intuition of the modeller to
provide a useful abstraction upon the attributes and their states. However, as
an automatic process, a new state machine can easily be generated if the current
one does not provide the intended answers. The examination of preconditions
on the transitions is also important—to help decide whether the state machine
is an accurate representation of what may happen in the system.

6 Discussion

In this section we discuss the implications of this work in relation to the Booster
language, Model-Driven Development, and Model-Driven Architecture. We give
an overview of related work, and discuss why our methods are novel. Finally
we provide details of our future research plans regarding Booster and software
modelling.

The practice of model-driven development is becoming increasingly popular.
A strong design and build process centered on refinement and verification can
increase the quality of software applications. Techniques for automatic refine-
ment are slowly being developed. Such tools increase the speed of development
as well as reducing the scope for manually-introduced errors.

In Booster, the refinement process is entirely automated—this is possible by
restricting the specification language and the application domain. This restric-
tion is not overly inhibiting though, as the application domain covers a broad

134 A. Cavarra and J. Welch

range of information systems, including database systems and e-commerce web-
sites.

This level of automation makes the Booster language essentially a higher-
level programming language, and this becomes the artifact which is used for
correctness proofs. Such proofs ensure that the model is consistent with the
requirements of the system, as opposed to traditional proof techniques which
ensure consistency between specification and program code.

Whilst the static structure of the specification is relatively easy to verify, dy-
namic properties may be expressed in a wider variety of forms and so are much
harder to verify. In Booster, dynamic properties are expressed in terms of pre-
and postconditions. Such constraints imply restrictions on usage scenarios, but
these restrictions must be made explicit in order for them to be validated against
a specification. In this paper we have shown how we may automatically trans-
late pre- and postconditions in Booster into state machines that more explicitly
depict workflows and object-life cycles.

This is possible through the restricted nature of the Booster specification
language—that we may automatically derive state substitutions from postcon-
ditions. Such substitutions allow us to determine exactly when a method is
applicable, and what the resultant state will be. The technique is not possi-
ble where postconditions are unrestricted constraints, where the method that
satisfies them may be non-deterministic or algorithmic in nature. Booster also
ensures that methods are refined into sequential atomic transactions, where a
single piece of data cannot be updated by two methods at the same time. In
such a way the state machines generated are dependent on the actions of one
user at a time, keeping the machines simple.

This technique proves to be scalable: the state machine generation is not
affected by the number of classes in the model, but depends only on the chosen
abstraction. The abstraction techniques used here are not new—indeed they are
commonly used in model-checking to reduce the state space[1], and have also
been used in a similar context by Gupta[7].

The result of this work is that the activity of software development can be
raised to a higher level–testing can be performed at the level of specification
rather than code. The code from which the application is built is brought closer to
the abstractions of customer requirements, and so may be more easily understood
by non-experts. Indeed, the generation of state machines and the presentation of
specifications in a variety of graphic forms is a useful tool in narrowing the gap
between customers and system developers, as well as aiding the documentation
process.

6.1 Related Work

The work most closely related to ours is that of Gupta[7]. In this work the
author also takes specifications written in the form of class diagrams and pre-
and postconditions. In this respect our work is very similar; however there are
important differences between our work and his.

Behavioural Specifications from Class Models 135

Firstly our pre- and postconditions define the complete constraints upon an
object, not just a partial restriction. Using the Booster expander, we can ensure
that all constraints take account of the whole model and do not just specify the
intended effect of the model. In this respect we do not treat classes independently,
but analyse all methods of associated classes that may change the attributes of
the current class. Such a distinction is important, since invariants generally affect
more attributes than just those of the current class—in particular association
invariants[18].

Most importantly, the restricted nature of Booster postconditions means that
instead of considering the constraints upon the after-state of a method, we can
consider the actions of the methods themselves by calculating the substitutions
that satisfy the constraints. In Gupta’s work, restrictions are necessary on the
types of predicate—they need to be in Disjunctive Normal Form—and he makes
no mention of non-determinism or partiality.

We perform a similar abstraction step to that in Gupta’s work, in order to
reduce the number of states and transitions that we need consider. However, in
our work we can make additional reductions to the number of transitions because
we know which substitutions are to take place—we can calculate exactly which
variables are to change and consider just the methods which change attributes
that we are interested in. In the more general setting, methods have no notion
of a change list and so every method must be considered at every step.

This abstraction technique is also subject to considerable research—in partic-
ular that of slicing state machines[13,20,9], and model-checking[1]. Whilst our
approach is to produce the abstraction as it is generated, an alternative method
would be to generate the whole state machine and then use the techniques in
these papers to perform the abstraction. However this would be computation-
ally expensive, since the number of states and transitions in the complete state
machine would normally be too great to analyse automatically.

Other research has explored the relationship between object-state and dy-
namic behaviour, notably that of Holt et al[10] and Graham[6]. However, this
work has been focussed on testing implementations, and has been manually im-
plemented in a wider application domain.

Other related work includes [19] where state charts are generated from se-
quence diagrams. These links between types of specification diagrams are useful
in allowing the modeller and customer to explore a system before it is built. Other
types of dynamic modelling with Booster is the subject of further research, as
explained below.

6.2 Further Work

Further work is centered around the ongoing research into the Booster language
and toolset—the main focus of which is the integration with the UML. We are
currently in the process of developing a UML profile—restricting the syntax of
the OCL and providing a semantics similar to that of Booster, and extending
the OCL to allow method composition. This integration will allow us to exploit

136 A. Cavarra and J. Welch

interesting existing work on UML, in particular tools, IDEs, and to appeal to
practitioners who are more familiar with the graphical notation.

In relation to the work presented here, we wish to be able to factorise the
generated state machines, by using sequential composite states. This would de-
crease the size of the generated diagrams and make them easier to read by the
specifier or a customer.

Another interesting area of exploration is that of validation and correction of
class models or Booster specifications against state machines. We want to allow
the users to be able to modify the generated state machines, for example by
adding preconditions or extra transitions, and see these changes automatically
reflected in the Booster model.

Such further research will increase the applicability of the work presented
here, and increase our knowledge of the relationship between static and dynamic
properties of system specifications.

References

1. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

2. Davies, J., Crichton, C., Crichton, E., Neilson, D., Sørensen, I.H.: Formality, evo-
lution, and model-driven software engineering. In: Mota, A., Moura, A. (eds.) Pro-
ceedings of SBMF 2004. ENTCS (2005)

3. Davies, J., Faitelson, D., Welch, J.: Domain-specific Semantics and Data Refine-
ment of Object Models. In: Moreira, A.M., Ribeiro, L. (eds.) SBMF 2006: Brazilian
Symposium on Formal Methods, pp. 185–200 (2006)

4. Davies, J., Welch, J., Cavarra, A., Crichton, E.: On the generation of object
databases using booster. In: ICECCS ’06: Proceedings of the 11th IEEE Inter-
national Conference on Engineering of Complex Computer Systems, Washington,
DC, USA, pp. 249–258. IEEE Computer Society, Los Alamitos (2006)

5. Faitelson, D., Welch, J., Davies, J.: From predicates to programs: the semantics of
a method language. Electronic Notes in Theoretical Computer Science (to appear
2006)

6. Graham, I.: Graham/SOMA (Semantic Object Modeling Approach) method, pp.
73–83. Wiley-QED Publishing, Somerset, NJ (1994)

7. Gupta, A.: Automated Object’s Statechart Generation from Class Method Con-
tract. In: Proceedings of the 3rd Workshop on Model design and Validation
(MoDeV2a’06): Perspectives on Integrating MDA and V&V, Genoa, Italy, October
2006, ACM/IEEE, New York (2006)

8. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

9. Heimdahl, M.P.E., Whalen, M.W.: Reduction and slicing of hierarchical state ma-
chines. In: Jazayeri, M., Schauer, H. (eds.) FSE 1997. LNCS, vol. 1267, pp. 450–467.
Springer, Heidelberg (1997)

10. Holt, N.E., Anda, B.C.D., Asskildt, K., Briand, L.C.L., Endresen, J., FrØystein, S.:
Experiences with precise state modeling in an industrial safety critical system. In:
Houmb, S.H., Georg, G., France, R., Petriu, D.C., Jürjens, J. (eds.) Critical Sys-
tems Development Using Modeling Lanuguages, CSDUML’06, pp. 68–77. Springer,
Heidelberg (2006)

Behavioural Specifications from Class Models 137

11. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley, Reading, MA (2003)

12. Manna, Z., Waldinger, R.J.: Toward automatic program synthesis. Commun. ACM,
vol. 14(3) (1971)

13. Nowack, A.: Slicing abstract state machines. In: Zimmermann, W., Thalheim, B.
(eds.) ASM 2004. LNCS, vol. 3052, pp. 186–201. Springer, Heidelberg (2004)

14. Object Management Group. UML 2.0 superstructure specification (2005)
http://www.omg.org/cgi-bin/doc?ptc/05-07-04

15. Prywes, N., Amir, S., Shastry, S.: Use of a nonprocedural specification language
and associated program generator in software development. ACM Trans. Program.
Lang. Syst., vol. 1(2) (1979)

16. Ruth, G.R.: Automatic programming: Automating the software system develop-
ment process. In: ACM ’77: Proceedings of the 1977 annual conference, ACM Press,
New York (1977)

17. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd edn. Addison Wesley, Reading, MA (2003)

18. Welch, J., Faitelson, D., Davies, J.: Automatic maintenance of association invari-
ants. In: SEFM ’05: Proceedings of the Third IEEE International Conference on
Software Engineering and Formal Methods, Washington, DC, pp. 282–292. IEEE
Computer Society, Los Alamitos (2005)

19. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: ICSE
’00: Proceedings of the 22nd international conference on Software engineering, New
York, pp. 314–323. ACM Press, New York (2000)

20. Xie, T., Notkin, D.: Automatic extraction of sliced object state machines for com-
ponent interfaces. In: Proceedings of the 3rd Workshop on Specification and Veri-
fication of Component-Based Systems at ACM SIGSOFT 2004/FSE-12 (SAVCBS
2004), October 2004, pp. 39–46 (2004)

http://www.omg.org/cgi-bin/doc?ptc/05-07-04

Inheriting Laws for Processes with States

Yifeng Chen

Department of Computer Science,
University of Durham, Durham DH1 3LE, UK

Yifeng.Chen@dur.ac.uk

Abstract. This paper studies the laws of communicating sequential pro-
cesses (CSP) with Z-like initial and final states. Instead of defining a large
semantics including all observable aspects, we incrementally develop the
model in three stages: partially correct relational model, then totally cor-
rect sequential model and finally the reactive-process model with states.
The properties of each model are captured as algebraic laws. A law in one
model may or may not be true in its submodels. We apply a technique
based on healthiness conditions to identify the conditions for law inher-
itance. Such abstract conditions themselves can be captured as pattern
laws of commutativity. The model uses a new approach to define par-
allel compositions using just the primitive commands, nondeterministic
choice, conjunction and some unary (hiding) operators.

1 Introduction

This paper studies the laws of communicating sequential processes with Z-like
initial and final states. Instead of defining a large semantics including all observ-
able aspects, we incrementally develop the model in three stages: partially correct
relational model, then totally correct sequential model and finally the reactive-
process model with states. The intended model then becomes a submodel with
more healthiness conditions. In particular, we aim at reusing the laws of predi-
cate calculus and sequential models. Many laws of sequential languages also hold
in CSP, but there are exceptions. For example, SKIP is the unit of sequential com-
position: (SKIP � A) = A = (A � SKIP) in both sequential and parallel models.
On the other hand, we have (A � CHAOS) = CHAOS in sequential models but
not in CSP. For a counterexample, we have (a→ SKIP) � CHAOS = (a→ CHAOS)
in which the following divergences cannot undo the action that is already per-
formed.

How do we know which laws are inheritable and which are not? In previous
approaches and also Unifying Theories of Programming [12], this is done by
checking and re-proving laws individually. For example, a conditional test can be
moved ahead of a proceeding assignment statement if the condition is substituted
for the assignment:

(s:= e � if b thenA elseB) = if b[e/s] then (s:= e � A) else (s:= e � B). (1)

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 138–155, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Inheriting Laws for Processes with States 139

This law holds in both the partially correct relational model and the totally
correct sequential model. However, because an assignment statement is denoted
as different predicates in the two models, the law had to be re-proved in UTP
([12] Section 3.1). Such re-proof not only leads to tedious proof obligations but
also raises question over the benefit of theory linking.

We will use a new technique first outlined in [6] and later further developed
in [7]. The technique is based on a meta-theory about healthiness conditions.
We are able to identify some abstract conditions on the structures of laws. Such
conditions are captured in the form of pattern laws for semantic embedding’s
commutativity with respect to program operators. For example, we will show
that if in a law of sequential programs, the first argument of every sequential
composition terminates successfully, and its second argument does not deadlock
or diverge, then the law also holds in CSP with states.

The contribution of this paper is to apply the techniques to integrate event-
based parallel specifications and state-based sequential specifications. Some re-
sults of [7] are repeated here for coherent presentation.

Integrating event-based and state-based specifications has long been of intense
research interests due to its importance in applications as well as its technical
challenges. States are originally abstracted from process calculi because shared
variables cause interference between processes, and such concurrent specifica-
tions (e.g. in action systems) are not compositional at observational level. On
the other hand, pure process calculi are found too restrictive for various applica-
tions. A typical area is verification of security protocols. Most security protocols
do depend on states. The problem is a matter of tradeoff between composition-
ality and flexibility.

Morgan [13] first studied failures-divergences modelling of action systems. The
linking theory was further developed in [3] and applied to the combination of
CSP and B-Method [15]. Another line of research integrates CSP with Z-style
specifications [12,4]. A CSP process is extended with an initial state for the start
of the process and a final state for its end. Unlike action systems, intermediate
states are not represented. This formalism is more abstract. Parallelism is com-
positional and entirely handled by CSP. This paper follows the second approach
and studies laws and law inheritance in such a model. We will show that although
the formalism does not model action systems directly, action systems become
special specifications, as states can be used to determine the actions performed
by a process.

CSP, as a language, has too many different binary operators. There has been
effort in unifying different kinds of parallelism. The most basic form of parallelism
is conjunction (e.g. [8]). Conjunction is useful in specification, but realistic paral-
lel compositions are not as simple. UTP uses a technique called parallel-by-merge.
The idea is to define parallel compositions as a parallel-by-merge composition
with a certain parameter M . The parameter is a three-way relation that con-
nects to the non-conjunctive observables of the composition, hides them and gen-
erates the observable for the composition. A slightly more general notation called
parallel-via-medium was introduced in [5]. The notation is general and powerful

140 Y. Chen

but unfortunately difficult to manipulate. Hoare [11] recently expresses the view
that it is desirable to unify various parallel compositions using conjunction. In
this paper, by temporarily dropping some healthiness conditions of CSP (C1-C7
Chapter 7 of [10]), we are able to define all the CSP parallel compositions using
just the primitive commands, disjunction (nondeterministic choice), conjunction
and a number of unary hiding operators. The dropped healthiness conditions can
be restored at the end without affecting any established laws. For each model,
we will study its healthiness conditions, the corresponding semantic construction
and an algebraic normal form.

Section 2 reviews Unifying Theories of Programming. Section 3 defines health-
iness conditions, commands, laws and fixpoints. Section 4 introduces the models
of partially correct relational model and the totally correct sequential model.
Section 5.2 studies the CSP model with states.

2 Unifying Theories of Programming

This section is prepared for those readers who are unfamiliar with the notations
of this style of algebraic semantics. UTP, the latest development in relational
semantics, is aimed at linking different computational models with predicates
and functions on predicates. Each program or specification is represented as a
predicate, or simply a set of value assignments over some free logical variables.
For example, a predicate x′ = x+1 denotes a sequential program x:= x + 1
that increases x by 1. Two predicates are considered the same if they describe
the same relation. Both universal disjunction (set union) and conjunction (set
intersection) are allowed. Thus the underlying logic is infinitary.

A healthiness condition classifies predicates into the groups of healthy and
unhealthy ones. A general programming theory can be specialised by adding
new healthiness conditions. It has been shown that if the additional healthiness
condition of a submodel is well-formed as the fixpoint equation A = h(A) of
a monotonic and idempotent predicate function h , then the inter-model map-
ping between the original model and the submodel is entirely characterised by
the predicate function h. Any predicate A is transformed by h into a healthy
predicate h(A).

Healthiness condition is a complementary technique to the more traditional
semantic construction in denotational semantics and abstract interpretation. For
example, a binary relation r⊆N×N has a downwards closed range iff it sat-
isfies a healthiness condition r = (r � s) where s =̂ {(n,m) | n	m}. Alter-
natively, given arbitrary S⊆N and k ∈N , we can construct such a relation as
S×{n | n
 k} in correspondence. Sometimes the two approaches are used in a
combination.

In UTP’s sequential models, a binary relation is a predicate on undashed
and dashed variables in pairs. For example, (x′ =x+ 1 ∧ y′ = y) represents an
assignment x:= x+1 with program variables x and y . The sequential com-
position (A � B) is defined as (∃v0 ·A[v0/v′] ∧ B[v0/v]) where v= x, y. Non-
deterministic choice A ! B =̂ A ∨ B is disjunction. The constant predicates
⊥ =̂ tt and & =̂ ff represent chaos and magic, respectively. The refinement

Inheriting Laws for Processes with States 141

order A � B corresponds to reduction of nondeterminism and set containment.
The semantics of a recursion A= f(A) is defined as Tarski’s weakest fixpoint
μf =̂

�
{A | A) f(A)} where f is a monotonic predicate function closed in

the complete lattice of healthy predicates.
The above simple model is not totally correct for sequential computation, as it

does not distinguish termination and nontermination. UTP introduces another
model with two special logical variables ok and ok ′ where ok , not appearing
in any program, records the observation that the program has been started,
and ok ′ records that the program has terminated. The assignment x:= x+ 1
is now represented as ok ⇒ (x′ =x+ 1 ∧ y′ = y ∧ ok ′) . To achieve an appro-
priate set of laws, undesirable predicates must be excluded from the seman-
tic space. Four healthiness conditions have been introduced incrementally: H1
A=(ok ⇒A) (denoted as hok in this paper), H2 A=(A ∨ ∃ok ′ · (A ∧ ¬ok ′)) ,
H3 A= (A � (ok ⇒ ((x′, y′, ok ′)= (x, y, ok))) and H4 (A � tt)= tt . H1 states
that if a computation has not started, it behaves chaotically. H2 describes the
downward closure of ok ′. A model satisfying H1 and H2 can be extended into
a reactive parallel model incorporating intermediate states between the initial
state and the final state [12]. H3 states that if a computation may not terminate
from some initial state, then in the final state, x′, y′ and ok ′ are chaotic. H4 ex-
cludes infeasible specification and guarantees some final state from every initial
state. The last one is not in the regular form A=h(A) and yields a CPO [1] in-
stead of a complete lattice. We leave such a healthiness condition to be included
at last. As long as it yields a property-preserving sub-language, all results from
the complete-lattice model of specifications can be inherited.

We accept two classes of logical variables: non-overlined variables such as
u, v, u′, v′, · · · and overlined ones such as u, v, u′, v′, · · · . Healthiness conditions
are best defined with generic compositions. A generic composition [5] is a rela-
tional composition with a designated interface of non-overlined variables.

Definition 1. A :v C =̂ ∃v0 · A[v0/v] ∧ C[v0/v]

A fresh variable list v0 is used to connect the list v of A and the list v of C
with the interface v0 hidden by the existential quantifier. For example, the fol-
lowing composition relates two predicates on only x (and x for the second
predicate): (x= 10 ∧ y= 20) :x (x
x ∧ z=30) = (10
x ∧ y= 20 ∧ z=30) .
Generic composition and its inverse form a Galois connection and satisfy the
algebraic laws of strictness, distributivity and associativity. The notation is es-
pecially useful when the interfaces of the operators in a predicate are not iden-
tical. For example, the interface can be expanded with new logical variables:
A :v C = A :v,u (C ∧ u=u) where {v} ∩ {u}= ∅. Many healthiness conditions
can now be simplified using the notation.

3 A Meta-theory of Predicative Modelling

3.1 Set-Theoretic Predicate Calculus

Let ν denote the set of all logical variables and C be a set of all constants.
When a variable list is expected, we assume the variables in ν to be ordered

142 Y. Chen

alphabetically. For example (ν= ν′) describes pairwise equality. A value assign-
ment a is a total function a∈ (ν→C). A predicate is a set of assignments. Let
Pred =̂ ℘(ν→C) denote the complete lattice of all predicates whose (refine-
ment) order is ⊇ (also written as �), lub is ∩, glb is ∪, top is the empty
set ∅ and bottom is (ν→C). Here we are following the convention of UTP in
which the complete lattice is “upside-down”. Let s, t, u, · · · denote (finite and
order-sensitive) lists of variables and let {s} denote the set of variables from
the list. Let A,B,C, · · · denote predicates in Pred. The following table lists
the predicate commands including functional equality, substitution, existential
quantification, universal disjunction and negation:

Command Set-theoretic definition

s= e(t) =̂ {a | a(s)= e ◦ a(t)}
A[e(t)/s] =̂ {a′ | a∈A, a′ = a † {s �→ e ◦ a′(t)}}
∃s ·A =̂ {a′ | a∈A, a(u)= a′(u)}
∨

S =̂
⋃

S

¬A =̂ (ν→C) \A

where e is a list of (total) expressions, s, t, u are variable lists, and S⊆℘(ν→C)
is a set of predicates. We use a(s) to denote the tuple of constants from the
assignment a on the list s of variables. Other predicate commands can be de-
rived: universal conjunction

∧
S =̂ ¬

∨
{¬A | A∈S} , binary disjunction A ∨

B =̂
∨
{A,B}, implication A⇒B =̂ ¬A∨B , true tt =̂ (s= s), false ff =̂ ¬tt

and universal quantifier ∀x ·A =̂ ¬∃x · ¬A. We assume that ff=
∨
∅ .

We prefer program notations in semantic models: the bottom ⊥ =̂ tt (or
abort and chaos), the top & =̂ ff (or magic), the glb (or universal nondeter-
ministic choice)

�
S =̂

∨
S, the lub

⊔
S =̂

∧
S, the binary nondeterministic

choice A ! B =̂ A ∨B, conjunctive parallel composition A * B =̂ A ∧B and
the binary conditional (or if b then A else B) A� b�B =̂ (b∧A) ∨ (¬b∧B)
where the boolean expression b = b(t) is a parameter. The basic laws of glb, lub
and conditional are listed as follows. All distributivities also hold for universal
glb and lub.

Law 1 (Pred...) (1) ⊥ ! A = ⊥
(3) ⊥ * A = A

(2) & ! A = A
(4) & * A = &

Law 2 (Pred...) The operators
�

and
⊔

are idempotent, commutative and
associative and distribute each other.

Law 3 (Pred...) (1) A� b�A = A (2) A� tt �B = A
(3) A� b�B = B � ¬b�A
(4) A� c� (B � b� C) = (A� c�B) � b� (A� c� C)
(5) A� c� (B � b� C) = (A� c�B) � c ∨ b� C
(6) (A ! B) � b � C = (A� b� C) ! (B � b� C)
(7) (A� b� &) ! (A� c� &) = A� b ∨ c� &
(8) (A� b�B) * C = (A * C) � b� (B * C)

Inheriting Laws for Processes with States 143

3.2 Predicate Functions

Let f, g, h, · · · denote (total) predicate functions. We use f(Pred) to denote
the range of a unary predicate function f . Let f ◦ g(A) =̂ f(g(A)) .

Definition 2. A function f commutes with another function g for a predi-
cate A , if we have f ◦ g(A) = g ◦ f(A). They commute in a semantic space
h(Pred) if we have f ◦ g ◦ h = g ◦ f ◦ h . They are simply called commutative
if they commute in Pred . A unary function f commutes with an n-arg func-
tion g for the arguments A1, A2, · · · , An, if we have: f(g(A1, A2, · · · , An)) =
g(f(A1), f(A2), · · · , f(An)). A unary function f is idempotent, if we have f ◦
f = f . A unary function is called a healthiness function if it is monotonic
and idempotent. A unary function f is called linear, if it distributes universal
disjunction f(

∨
M) =

∨
{f(A) | A∈M} for any M⊆Pred. A function f ab-

sorbs another function g , if we have f ◦ g = f . A function f is closed with
respect to a unary function g, if we have f ◦ g = g ◦ f ◦ g .

Linearity implies monotonicity. The range of a linear function is always a com-
plete lattice whose glb and lub are disjuction and conjunction, respectively. Ab-
sorbtion characterises the link between the healthiness conditions of a model and
its submodels. Closure is a necessary property relating program operators and
healthiness conditions. A command is called a primitive, if it is a healthy pred-
icate in the semantic space. Assignment statements are primitives. A program
operator is an n-ary monotonic predicate function closed in the semantic space.
A program operator is closed in a semantic space h(Pred) iff it is closed with
respect to the healthiness function h.

3.3 Semantic Inheritance

The healthiness function h2 of a submodel must absorb that h1 of the original ab-
stract model to render an embedding, i.e. h2 ◦ h1 = h2 . If h2 is also closed with
respect to h1 (i.e. h1 ◦ h2 = h2), then the submodel becomes a sublattice. Such
sublattice extension is assumed in the original meta-theory of UTP ([12] Section
4.1), although some semantic extensions are not sublattices. For example, the ex-
tension from the sequential model to reactive processes (such as CSP) is a Galois
embedding satisfying an additionalhealthiness conditionA = (A∧tr
 tr′) (i.e.R1
of UTP). It prevents any computation (even chaos) from unwinding the actions
already performed. The healthiness function htr transforms the primitive ⊥= tt
into tr
 tr′ . Related laws and fixpoints can be affected by such transformation.

A primitive C in the original model satisfying C =h1(C) is inherited by the
submodel as h2(C) . That means, in general, an inherited primitive is not the
original predicate! For example, assignment statement x:= x+ 1 is denoted by
a predicate x′ =x+ 1 in the partially correct relational model with the only
program variable x. The healthiness function hok transforms the predicate to a
different one ok ⇒ (x′ =x+ 1). On the other hand, we follow a principle of UTP
and assume that an operator is always inherited exactly as its original definition.
Violating this requirement may lead to unnecessary complexity in future studies.

144 Y. Chen

The law A!B = B!A holds in every model with a linear healthiness function.
Another law (⊥ � &) = & holds in the partially correct relational model but
not in the totally correct sequential model where (⊥ � &) = ⊥. The law (1)
provides another example. We now address this important issue and consider
the simplest case first.

Theorem 1 (Simple inheritance of laws). Let h1 and h2 be the healthiness
functions of a model and its submodel, respectively. If h2 ◦ h1 = h2 = h1 ◦ h2 ,
and every primitive in a law of the original model is also healthy in the submodel,
then the law also holds in the submodel.

For example, if disjunction is closed in a model, then the law A!B = B !A of
Pred must hold, as every semantic space is a sublattice of Pred . The following
theorem handles the general case when a submodel may not be a sublattice, or
the primitives in the law are not healthy in the submodel.

Theorem 2 (Inheritance of laws). Let h1 and h2 be the healthiness func-
tions of a model and its submodel, respectively. If we have h2 ◦ h1 = h2 , and
h2 commutes with every operator for its arguments in a law, then that law also
holds in the submodel.

Note that the healthiness function h2 only needs to commute with the operators
for their arguments in the law. The program letters, as arguments, are already
h1-healthy.

4 Basic Models

4.1 Partially Correct Relational Model

Model Rel(v) is a property-preserving sub-language of Pred. The undashed
variables v and the dashed variables v′ record the observation about the start
and the end of a computation, respectively. Rel(v) inherits the commands ⊥,
&,

�
,
⊔

, and �b(t, s′)� where s and t are variable lists such that no single vari-
able appears twice in each list and {s, t}⊆{v} . Note that the binary conditional
�b(t, s′)� may test the variables s′ about the final state. This flexibility is con-
venient for future extension to reactiveness. We introduce two new commands:

s:= e(t) =̂ (s′ = e(t) ∧ v1 = v′1) assignment
A � B =̂ ∃v0 · (A[v0/v′] ∧ B[v0/v]) sequential composition

where v1 =̂ v \{s}, and v0 is a fresh list of variables. An assignment statement
keeps variables not in s unchanged. We use a convention IIs =̂

�
e s:= e to

denote the terminating program that assign arbitary values to s and makes it
chaotic, and SKIP to denote IIs with the empty list s. The sequential compo-
sition is standard relational composition. Predicates in this model only depend
on the variables v, v′. The following healthiness condition is a mathematical
representation of this frame restriction:

Inheriting Laws for Processes with States 145

HC 1 (hv) A = ∃ξξ′ ·A (ξ =̂ ν \ {v, v′}) .

As a convention, we write A=A(v, v′) to denote such a healthy predicate.
Note that the condition is semantical not syntactical: a predicate (v′ = v ∧ y= y)
is healthy even if y 	∈ {v, v′}. The corresponding healthiness function
hv(A) =̂ ∃ξξ′ ·A forces any variable not in {v, v′} to be chaotic (and hence
unobservable). All related laws of Pred are inherited.

The basic laws concerning assignments and sequential composition are listed
as follows. Some laws are shared by submodels, while others may be more specific
to this model.

Law 4 (Rel,Seq,CspZ)
(1) s:= e = s, t:= e, t (2) s, t:= e, f = t, s:= f, e
(3) u, s, t:= e, f, g = s, t, u:= f, g, e
(4) (s:= e � s:= f(u)) = s:= f(u[e/s])
(5) (s:= e � t:= f(u)) = s, t:= e, f(u[e/s])
(6) (s:= e * s:= f) = (s:= e) � e= f � &
(7) s:= e(t) � b� & = s:= e(t) � b[e(t)/s′] � &

Law 5 (Rel,Seq,CspZ)
(1) ⊥ � ⊥ = ⊥ (2) (& � A) = &
(3) (�) is associative, distributes ! and has left unit SKIP.
(4) u:= e � (A� b�B) = (u:= e � A) � b[e/u] � (u:= e � B)
(5) (A� b(v) �B) � C = (A � C) � b(v) � (B � C)

Law 6 (Rel,Seq) (1) (v:= e � ⊥) = ⊥
(2) (v:= f � &) = &

Law 7 (Rel,CspZ) (A � SKIP) = A

Law 8 (Rel) (A � &) = &

4.2 Sequential Specifications

The model Seq(w) is a submodel of Rel(w, ok) and inherits all commands
with the only restriction that the special variable ok does not appear in any
program, i.e. {s, t}⊆{w}. Here the original variable list v has split into the
special variable ok and a smaller variable list w . The syntactical restriction
immediately leads to a new healthiness condition:

HC 2 (hok=) A = A :ok ,ok′ (ok = ok ′ ⇒ ok = ok ′)

This condition states that the logical variables ok and ok ′ are either equal,
representing a terminating computation, or chaotic, representing nontermina-
tion. A predicate A satisfies A= hok ◦hok=(A), iff there exist B=B(w,w′) and
C =C(w,w′) such that B ∧ C = ff , A = Φ(B,C) Φ(B,C) =̂ (B ∨ (C ∧
ok = ok ′)) . The closure of operators can be shown using this constructive form.

146 Y. Chen

Adding the healthiness condition alone will not change the laws, because
all primitives (i.e. chaos, magic and syntax-restricted assignments) remain un-
changed, and the space is a sublattice, according to Theorem 1. That means
although the additional healthiness condition has already distinguished termi-
nation and nontermination, it does not generate the desirable set of laws. For
example, we would still have (⊥ � x:= 1) = (x:= 1) , which violates the in-
tuition that no computation after nontermination is observable. To make sure
(⊥ � A) = A , we need to weaken every healthy predicate so that when a com-
putation does not start, it behaves chaotically. This leads us to H1 of UTP:

HC 3 (hok) A = (ok ⇒ A) .

Let hseq =̂ hok ◦hok= . A sequential specification is a predicate A that satisfies
hseq(A) = A . A predicate A satisfies A= hseq(A), iff there exist B=B(w,w′)
and C =C(w,w′) such that B ∧ C = ff , A = ¬ok ∨ Φ(B,C) .

In fact, the healthiness condition hseq is exactly the same as the composition
of H1 and H2 in UTP. The condition H2 A = hok ′(A) =̂ A :ok ′ (ok ′ ⇒ ok ′)
states that if a computation may not terminate (i.e. ¬ok ′) then ok ′ must be
entirely chaotic, and we have hok′ ◦hok = hok ◦hok′ = hok ◦hok= ! Why do we
prefer hok ◦hok= to H1 and H2? That is because this way of introducing health-
iness functions highlights the healthiness condition that preserves laws and the
condition that alters them. As we have explained, hok= reflects a syntactical re-
striction over the language and preserves all laws, while hok alters them. Firstly,
it changes magic from ff into ¬ok ; secondly, the new space is no longer a sub-
lattice as ¬ok is not hok= -healthy; finally, hok does sometimes but not always
commute with sequential composition. For example, we have a counterexample:

hok (⊥ � x:= 1) = ¬ok ∨ (x′:= 1 ∧ v′0 = v0) 	= tt = hok (⊥) � hok (x:= 1)

where v0 =̂ v \ {x} . This is exactly the reason why, by adding hok , we deny
some laws from Rel(v) and at the same time render some new laws!

An interesting question is: how do we know which laws will be inherited
and which will be denied? The method used in UTP is to re-prove the laws
individually. For example the law (1) is re-proved. A more general solution is to
use Theorem 2. In fact if the first argument of a sequential composition always
terminates from any initial state, the function hok does distribute sequential
composition. In the relational model Seq(w), a predicate that always terminates
satisfies the healthiness condition A = (A ∧ ok = ok ′) . Remember that IIw =
(ok = ok ′) . Thus we essentially need to show the following equality

hseq((A ∧ IIw) � B) = hseq((A ∧ IIw) � hseq(B)

for any hseq-healthy predicates A and B . We use a convention [A] =̂ hseq(A) .
Then such commutativity corresponds to a pattern law that links semantic de-
notations in both models.

Law 9 (Rel→Seq) (1) [(A * IIw) � B] = [A * IIw] � [B]
(2) [·] commutes with

�
,
⊔

, and �b� .

Inheriting Laws for Processes with States 147

Other commutativities of Law 9(2) are readily provable. We can directly apply
these pattern laws of inheritance on the law (1):

[s:= e] � [A] � b� [B]
= [s:= e � A� b�B]
= [(s:= e � A) � b[e/s] � (s:= e � B)]
= ([s:= e] � [A]) � b[e/s] � ([s:= e] � [B])

.

Similarly, Law 1-6 are inherited. When the first argument does not always ter-
minate, we need a new law to make the law set complete:

Law 10 (Seq,CspZ) (⊥ � b� &) � A = (⊥ � ∃w′ · b� &).

Evidently (⊥ � A) = ⊥ becomes a special case. For completeness, Law 1-7 and
10 are complete for transformation of any Seq program to a normal form:

⊥ �B �
�

e : C(w,e(w))(w:= e(w) � ∃w′ ·C � &)

where B=B(w,w′) and C =C(w,w′) are two predicates. The healthiness condi-
tion hseqok(A) is also complete and cannot be stronger, as every healthy predicate
is the semantics of some program.

If we impose an additional restriction that the condition b = b(t) in binary
conditionals (A� b(t) �B) does not contain dashed variables. This syntactical
restriction leads to a further healthiness condition A = (A � (ok ⇒ v= v′))
(H3 of UTP). This condition states that if a computation does not terminate,
then both ok ′ and the final state w′ become chaotic. The seuqential model
with this healthiness condition is totally correct and satisfies the law A = (A �
SKIP) . The semantic construction is still ¬ok ∨Φ(B,C) although B=B(w) no
longer depends on dashed variables, reflecting the syntactical restriction. As hw′

commutes with hseq , adding this healthiness condition renders a sublattice. All
primitives are unchanged. According to Theorem 1, all laws of Seq(w, ok) are
inherited. We can further impose the feasibility condition H4 (leaving out & and
*, see Section 2) and Dijkstra’s finitary condition [9,5]. These conditions are of
higher order and form a CPO instead of a complete lattice. Nevertheless, they
will not deny any existing laws as long as such healthiness conditions are added
after the regular healthiness conditions.

5 CSP-Z Specifications

5.1 The Model

CspZ(u) is a submodel of Seq(tr,wait , ref , u) in which the original variable
list w splits up into three special variables and a smaller list u of state variables.
The variable tr represents the (finite) trace record of actions and tr, tr′ ∈A∗

where the alphabet A is a non-empty finite set of actions. The variable wait
was first introduced by Hoare and He [12] to replace the tick action � in the
original CSP model. If a process does not diverge i.e. ok ′ is true, then wait ′

148 Y. Chen

denotes deadlock, and ¬wait ′ denotes a successful termination. The variable ref
represents the refusal set of actions (ref , ref ′⊆A). The refusals help distinguish
external choice and nondeterministic choice. The variable list u contains all
variables of state-based sequential computation.

As a sub-language, CspZ(u) only inherits the primitives chaos ⊥ , magic & ,
state-variable assignment s:= e(t) where {s, t}⊆ {u}, stop (ref ,wait:= B,¬wait)
and action (tr:= tr�〈a〉) , and the operators

�
,
⊔

, (�) , and �b� where B⊆A
and the conditionals only depend on the values of state variables at the start:
b = b(u) . We will use these restricted commands to define CSP processes.

Further healthiness conditions are needed. The healthiness condition hw′ states
that if a computation diverges, then all of wait ′, ref ′, u′ become chaotic while
tr′ is arbitrarily extending tr . Evidently, hw′ is similar but different from H3 of
UTP, as the following skipping command maintains the monotonicity of tr, tr′

even if the previous computation does not terminate. This healthiness condi-
tion denies Law 6, as no following computation can unwind the actions already
performed. The condition htr ensures the monotonicity of trace extension. Note
that chaos is now strengthened from tt to tr
 tr′ . The condition hΔtr (i.e. R2
of UTP) requires a process to depend only on the trace record during the lifes-
pan. The healthiness condition href requires a computation not to depend on
ref (CSP3 of UTP), rendering the law A = (SKIP � A). The condition hwait ′

states that, after succussful termination, a process always refuses all actions,
rendering the law A = (A � SKIP), and after deadlock, the state variables are
chaotic. This corresponds to the CSP property that if a process ends with the
action �, then it can refuse all actions in the end. This condition (CSP4 of
UTP [12]) was neglected in earlier models [10,14]. The condition hwait requires
every healthy predicate to skip and preserve the refusals if the previous process
stops in waiting, rendering the law (STOP � A) = STOP.

HC 4 (hw′) A = A � (v′ = v � ok � tr
 tr′)

HC 5 (htr) A = (A ∧ tr
 tr′).

HC 6 (hΔtr) A = A :tr,tr′ (tr′−tr = tr′−tr)

HC 7 (href) A = ∃ref ·A

HC 8 (hwait ′) A = A :ref ′,u′ (ref ′ = ref ′ � wait ′ � u′ =u′)

HC 9 (hwait) A = hw′(v′ = v) � wait �A

Let hcspz =̂ hwait ◦hwait ′ ◦href ◦hΔtr ◦hw′ ◦hseq be the healthiness function of
CspZ(u) . A predicate A satisfies A= hcspz(A), iff there exist predicates of di-
vergences D=D(dtr, u), failures F =F (dtr, ref ′, u) and terminating behaviours
T =T (dtr, u, u′) such that D= ∃s · (D[s/dtr] ∧ s
 dtr), F * T � D , and

A = hwait ◦ htr ◦ hok (Φ(D, F � wait ′ � T)[tr′−tr/dtr]) .

Inheriting Laws for Processes with States 149

Note that the refinement of such specifications corresponds to refinement for
every of D , F and T for uniqueness of the representation. The closure of oper-
ators can be shown using this constructive form. Most primitives have different
semantic denotations now. For example, skip is changed from (ok ⇒ v′ = v)
into (v′ = v � wait � ∃ref ·v′ = v) � ok � tr
 tr′ .

5.2 CSP Commands and Action System

The following table lists a few inherited primitives as CSP-style convention com-
mands:

CHAOS =̂ ⊥ divergences
VOID =̂ & magic
STOPB =̂ ref ,wait:= B,¬wait immediate waiting
DOa =̂ tr:= tr�〈a〉 doing action a

where B⊆A and a∈A . CHAOS is the weakest process that can do everything,
although it must extend traces. Note that CHAOS is already transformed by hcspz .
VOID is the strongest specification and will erase all previous successfully termi-
nating behaviours. STOPB deadlocks and refuses to engage in any action from
B (without downward closure). SKIP immediately terminates successfully and
refuses all actions after termination. DOa performs an action a and terminates
successfully (without any waiting before the action).

Let the convention DO〈〉 =̂ SKIP and DOs �t =̂ DOs � DOt denote the processes
terminating after a sequence of actions, DOp =̂

�
s∈ p DOs be a process that

nondeterministically chooses an action sequence to perform, DO∗ =̂ DOA∗ be
the process with chaotic action sequences, STOP⊆B =̂

�
C⊆B STOPC be the wait-

ing process with downwards-closed refusals, STOP =̂ STOP⊆A be deadlock, and
MOVE =̂ (IIu � DO∗ � (SKIP ! STOP)) be the weakest convergent process with
chaotic states. We need other useful commands in specifications:

a→A =̂ (DOa ! STOP⊆A\{a}) � A action followed by a process
ACT� =̂

�
a DOa� �(u)= a� VOID state-controlled action

b
�� A =̂ (A � ACT�) � b� VOID guarded process

where � : C|u| → A is a mapping from states to actions. The process a→A
behaves like A after performing as action a. ACT� performs an action, which is
controlled by the initial state and the state-event mapping � . A guarded process
b

�� A first checks the guard condition on the initial state. If the guard is true,
then it behaves like A and then performs an action according to the final state
of A . Normally A in a guarded process is a state-variable assignment. Such a
guarded process is called a guarded assignment, which can be used to link events
and states.

150 Y. Chen

An action system [2], in state-based parallelism, can be represented as a loop
of guarded commands after some initialisation:

B0 � do b1B1[] · · · []bnBn od

where each Bi is an assignment, and each bj is a guard on the state. Seman-
tically, intermediate states are observable and interleaved. Action systems are
not representable in sequential model Seq(w), which does not represent the
intermediate states. Such an action system is now represented using guarded
assignments in CspZ(u) as follows:

B0 � μX · ((b1
�� B1) ! · · · ! (bn

�� Bn) ! (¬b1 ∧ · · · ∧ ¬bn) �� SKIP)) � X
where � extracts some information about the intermediate states. If the alpha-
bet can be infinite and contain all possible states, then we can use an identity
function �(u)=u to represent the action system faithfully. In most systems, the
set of observable actions depend on states but the intermediate states of local
variables are not directly observable. The mapping � can be used to determine
the state influence on observable intermediate actions. Communication and con-
currency are still model-checkable if the alphabet is finite, and then the above
definition becomes attractive. Such systems can be composed in parallel using
CSP operators. Note that CspZ(u) is essentially an integration of CSP and Z
rather than that of CSP and action system. The modelling of alphabetical hiding
is a technical complication in CSP-style action system. But it is not a problem
here, as we do not need to merge adjacent intermediate states after hiding the
actions between them, because such intermediate states do not exist.

Action systems is essentially variable-sharing parallelism. Parallel action sys-
tems may interfere with each other’s state. Our approach is essentially to restrict
variable-sharing within individual processes and use CSP parallel compositions
to compose them and make use of the normal-form technique in verification and
refinement calculus.

5.3 Law Inheritance

The simple inheritance Theorem 1 is no longer applicable. The more general
Theorem 2 works when hcspz commutes with the operators. The following laws
identify the patterns for such commutativity where [A] =̂ hcspz(A):

Law 11 (Seq→CspZ) (1) [A * DO∗ � B * MOVE] = [A * DO∗] � [B * MOVE]
(2) [CHAOS � B] = [CHAOS] � [B]
(3) [s:= e � B] = [s:= e] � [B]
(4) [·] commutes with

�
,
⊔

and �b(u)� .

According these patterns, some laws are directly inheritable. For example, we
still have the algebraic-unit law [SKIP] � [A] = [SKIP � A] = [A] , and [DOs] �
[DOt] = [DOs � DOt] = [DOs �t] . On the other hand, the model Seq(w)’s laws
(STOPB � CHAOS) = CHAOS and (DOa � CHAOS) = CHAOS no longer hold in the
new model. Instead, we have [STOPB] � [CHAOS] = [STOPB] and [DOa] � [CHAOS] 	=
[CHAOS] due to the new property-altering healthiness functions. Law 1, 2, 4, 5
and 10 are inherited. New laws will be introduced in the next subsection.

Inheriting Laws for Processes with States 151

5.4 Parallelism as Conjunction

We have temporarily neglected several healthiness conditions of CSP, including
some closure and feasibility requirements. The reason is that we intend to define
all CSP binary compositions using just disjunction, conjunction and some unary
operators:

δ(A) =̂ hcspz(A ∧ ¬ok ′) extracting divergences
τ(A) =̂ hcspz(∃tr′ ·A) hiding traces
ω(A) =̂ hcspz(∃wait ′ ·A) hiding wait
ρ(A) =̂ hcspz(∃ref ′ ·A) hiding refusals

where the function hcspz is employed to force semantic healthiness. The idea is
perhaps best explained in an analogy to predicate calculus in which we usually
define a binary operator with just disjunction, conjunction and existential hiding:

A⊕B =̂ ∃ab · (A[a/x] ∧ B[b/x] ∧ x= a⊕ b)

where ⊕ is some merging operator. We may re-write this as follows:

A⊕B =
�

a,b (x= a⊕ b * ∃x · (A * x= a) * ∃x · (B * x= b)). (2)

The three unary operators are just like the existential quantifier and can help
hide the observation on traces, waiting and refusals, respectively. The three
operators can be merged into one, although it is more flexible to have them
separately. We temporarily drop the downward-closure healthiness conditions
(C2 and C3 of CSP). Thus STOPB with a fixed (i.e. not downwards-closed)
refusal is a valid command. Such a specification can be used to extract the
refusal of a computation by conjunction, playing a similar role as x= a and
x= b in (2). We have a new Law 12 for deadlock-led sequential compositions,
and other laws for operator elimination into the normal form. Distributivities
also hold for universal glb and lub.

Law 12 (CspZ) (1) (STOPB � A) = STOPB
(2) (A � SKIP) = A
(3) (s:= e � DOa) = (DOa � s:= e)

Law 13 (CspZ) (1) (DOa � A) * STOPB = (DOa � A) * SKIP = VOID
(2) (DOa � A) * (DOa � B) = DOa � (A * B)
(3) (DOa � A) * (DOb � B) = VOID (a 	= b)

Law 14 (CspZ) (1) δ(CHAOS) = CHAOS
(2) δ(VOID) = δ(STOPB) = δ(SKIP) = δ(s:= e) = VOID
(3) δ(DOa � A) = DOa � δ(A)
(4) δ distributes ! and �b� .

152 Y. Chen

Law 15 (CspZ) (1) σ(CHAOS) = CHAOS
(3) σ(STOPB) = (DO∗ � STOPB)
(5) σ(s:= e) = (DO∗ � s:= e)

(2) σ(VOID) = VOID
(4) σ(SKIP) = DO∗

(6) σ(DOa � A) = σ(A)
(7) σ distributes ! and �b� .

Law 16 (CspZ) (1) ρ(CHAOS) = CHAOS
(3) ρ(STOPB) = STOP
(5) ρ(s:= e) = s:= e

(2) ρ(VOID) = VOID
(4) ρ(SKIP) = SKIP
(6) ρ(DOa � A) = DOa � ρ(A)

(7) ρ distributes ! and �b� .

Law 17 (CspZ)
(1) ω(CHAOS) = CHAOS
(3) ω(VOID) = VOID
(5) ω(s:= e) = (STOP ! s:= e)

(2) ω(STOPB) = (STOPB ! SKIP)
(4) ω(SKIP) = (STOP ! SKIP)
(6) ω(DOa � A) = DOa � ω(A)

(7) ω distributes ! and �b� .

CSP-Z specifications have a normal form:
�

s,a:D(s,a) (DOs � CHAOS) � u= a� VOID

!
�

s,B,a:F (s,B,a) (DOs � STOPB) � u= a� VOID

!
�

s,a,b:T (s,a,b) (DOs � u:= b) � u=a� VOID.

whereD=D(dtr, u), F =F (dtr, ref ′, u) and T =T (dtr, u, u′). Every specification
is transformable to this normal form. Proof is standard application of the laws
by induction on the structure of an arbitrary specification.

5.5 Binary Compositions

We now define external choice � that diverges if either argument diverges, con-
joins (i.e. intersects, for downwards-closed processes) the refusals during action-
less waiting, or otherwise behaves nondeterministically, a convention of constant
choice Ab between A and SKIP according to the constant boolean b, fixed-
alphabet parallel composition ‖ that conjoins traces, disjoins the waiting status
and takes union of refusals when being convergent, and the interleaving compo-
sition ||| that interleaves traces, disjoins waiting status and conjoins (i.e. inter-
sects, for downwards-closed processes) refusals:

A � B =̂ δ(A!B) ! ((A!B) * MOVE) ! (A * B)
Ab =̂

�
({A | b} ∪ {SKIP | ¬b})

A ‖ B =̂ δ(A!B) !
�

b,c,B,C (ω ◦ ρ(A * DO∗ � STOPb
B) *

ω ◦ ρ(B * DO∗ � STOPc
C) * (DO∗ � STOPb∨c

B∪C))
A �B =̂ δ(A!B) !

�
s,t,b,c (ω ◦ τ(A * DOs � STOPb) *

ω ◦ τ(B * DOt � STOPc) * (DOs ��� t � STOPb∨c))

where s ��� t is the set of all interleavings of two traces s and t .

Inheriting Laws for Processes with States 153

The following table lists some algebraic properties of various compositions:

! * � � ‖ �
zero CHAOS VOID VOID, STOPB, CHAOS CHAOS CHAOS CHAOS

unit VOID CHAOS SKIP STOP SKIP

where we note that VOID, STOPB, CHAOS are only the left zeros of sequential
composition, which has no right zero.

Although all laws about these compositions are derivable from the laws of
the hiding operators, we still list some interesting ones, as they can be useful in
reasoning.

Law 18 (CspZ)
(1) (A � CHAOS) � (B � CHAOS) = (A � CHAOS) ! (B � CHAOS)
(2) (A * STOP) � (B * STOP) = (A * B * STOP)
(3) (A * STOP) � (B * MOVE) = (B * MOVE)
(4) (A * MOVE) � (B * MOVE) = (A ! B) * MOVE
(5) � is idempotent, commutative and associative, and distributes ! and �b�.

Law 19 (CspZ)
(1) (A � CHAOS) ‖ (B � CHAOS) = (A � CHAOS) ! (B � CHAOS)
(2) (DOa � A) ‖ (DOa � B) = (DOa � A ‖ B)
(3) (DOa � A) ‖ (DOb � B) = VOID (a 	= b)
(4) (STOPB ‖ STOPC) = STOPB∪C
(5) (STOPB ‖ s:= e) = (STOPB ‖ SKIP) = STOPB⊆
(6) (s:= e ‖ t:= f) = (s:= e * t:= f)
(7) ‖ is idempotent, commutative and associative, and distributes ! and �b�.

Law 20 (CspZ)
(1) (A � CHAOS) � (B � CHAOS) = (A � CHAOS) ! (B � CHAOS)
(3) (DOa � A) � (DOb � B) = (DOa � A � (DOb � B)) ! (DOb � (DOa � A) �B)
(4) (STOPB � STOPC) = STOPB � B= C � VOID
(5) (STOPB � s:= e) = (STOPB � SKIP) = STOPB
(6) (s:= e � t:= f) = (s:= e * t:= f)
(7) � is commutative and associative, and distributes ! and �b�.

5.6 CSP

Csp is a submodel of CspZ(u) where the state-variable list u is empty. Only
standard CSP commands are inherited: CHAOS, SKIP, STOP, a→A, A � B , A‖B
and A�B. Because of the syntatical restriction, Csp satisfies more healthiness
conditions. The condition h∅ (C1 of CSP) states that a process at least can
deadlock immediately without refusing any action. The condition href ′ (C3 of
CSP) requires subset closure for ref ′ so that intersection of refusals corresponds
to simple predicative conjunction. The condition hΔtr↓ (C2 of CSP) describes

154 Y. Chen

the prefix closure of traces with the empty refusal. The healthiness condition
href •tr (i.e. C4 of CSP) states that if a process cannot refuse an action, it must
be able to perform it. This condition is of higher order [5] and renders a CPO
instead of a complete lattice – just like the feasibility healthiness condition of
sequential programming. Because a href •tr -healthy predicate in CspZ(u) is still
hcspz-healthy, no difficulty is caused if we always impose it at last, and the
semantic extension is still property-preserving. All CspZ(u) laws (for the sub-
language) are inherited. Details are abbreviated, as our focus is on property-
altering extensions.

HC 10 (h∅) A = A ∨ (¬wait ∧ wait ′ ∧ tr= tr′ ∧ ref ′ = ∅)

HC 11 (href ′) A = A :ref ′ (ref ′ ⊇ ref ′)

HC 12 (hΔtr↓)
A = A ∨ A :wait ′,ref ′,tr′ (tr′−tr > tr′−tr ∧ ¬wait ∧ wait ′ ∧ ref ′ = ∅)

HC 13 (href •tr)

A[tr0, ref 0/tr
′, ref ′] ⇒ ∀a∈A· (A[ref 0 ∪{a}/ref ′] ∨ A[tr�

0 〈a〉, ∅ /tr′, ref ′])

6 Conclusions and Future Work

The handling of fixed points is a challenging issue, which has been addressed
in [7] by two major theorems. Note that the fixed-point theory of UTP no longer
works for our model development, because sequential model is not a sublattice
of the relational model, neither is it the case for the process-state model to the
sequential model. More preconditions are needed to link fixed points in a model
and those in its submodels. Many results and theorems can be found in [7].

The discussions of this paper remain at the theoretical level. More case studies
need to be carried out. If all state-event mappings in a CspZ specification have
finite ranges, then it becomes model-checkable. Tools like FDR can be applied
without modification. Another possible way of application is to use the algebraic
laws in verifying static analysers. A static analyser can be defined in abstract
interpretation as a partial semantic function. We can apply the function on the
normal form to illustrate its effect on any arbitrary process. Similar application
has been successfully achieved for Bulk-Synchronous Parallel programming [16].

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D., Maibaum,
T.S.E. (eds.) Handbook of Logic in Computer Science, pp. 1–168. Oxford University
Press, New York (1994)

2. Back, R.J., von Wright, J.: Trace refinement of action systems. In: International
Conference on Concurrency Theory, pp. 367–384 (1994)

3. Butler, M.: A CSP Approach To Action Systems. PhD thesis, OUCL, University
of Oxford, Oxford (1992)

Inheriting Laws for Processes with States 155

4. Cavalcanti, A., Woodcock, J.: Predicate transformers in the semantics of Circus.
IEE Proceedings - Software 150(2), 85–94 (2003)

5. Chen, Y.: Generic composition. Formal Aspects of Computing 14(2), 108–122
(2002)

6. Chen, Y.: Hierarchical organisation of predicate-semantic models. In: Dunne, S.,
Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 155–172. Springer, Heidelberg
(2006)

7. Chen, Y.: Sharing properties between programming models. Technical report, De-
partment of Computer Science, Durham University (2007)

8. Chen, Y., Sanders, J.W.: Logic of global synchrony. ACM Transactions on Pro-
gramming Languages and Systems 26(2), 221–262 (2004)

9. Dijkstra, E.W.: Guarded commands, nondeterminacy and the formal derivation of
programs. Communications of the ACM 18(8), 453–457 (1975)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

11. Hoare, C.A.R.: Dicussions about parallel composition as conjunction. Private com-
munication (2006)

12. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Engle-
wood Cliffs (1998)

13. Morgan, C.C.: Beauty is our business: a birthday salute to Edsger W. Dijkstra.
chapter Of wp and CSP, pp. 319–326. Springer, Heidelberg (1990)

14. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood
Cliffs (1998)

15. Schneider, S., Treharne, H.: Verifying controlled components. In: Boiten, E.A.,
Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 87–107. Springer,
Heidelberg (2004)

16. Zhou, J., Chen, Y.: Generating C code from LOGS specifications. In: Liu, Z., Araki,
K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 195–210. Springer, Heidelberg (2005)

Probabilistic Timed Behavior Trees

Robert Colvin, Lars Grunske, and Kirsten Winter

ARC Centre for Complex Systems,
School of Information Technology and Electrical Engineering

University of Queensland, Australia

Abstract. The Behavior Tree notation has been developed as a method
for systematically and traceably capturing user requirements. In this pa-
per we extend the notation with probabilistic behaviour, so that reliabil-
ity, performance, and other dependability properties can be expressed.
The semantics of probabilistic timed Behavior Trees is given by mapping
them to probabilistic timed automata. We gain advantages for require-
ments capture using Behavior Trees by incorporating into the notation an
existing elegant specification formalism (probabilistic timed automata)
which has tool support for formal analysis of probabilistic user require-
ments.

Keywords: Behavior Trees, probabilities, timed automata, model
checking.

1 Introduction

Representing the user requirements of a large and complex system in a man-
ner that is readable by the client and preserves their vocabulary and intention
(validatable), while also having a formal underpinning (verifiable), is an impor-
tant task for systems engineering. The Behavior Tree (BT) notation [Dro03]
is a graphical language that supports a behaviour-oriented design method for
handling real-world systems [WD04]. The notation facilitates systematic and
traceable translation of natural language requirements which structures the com-
positional and behavioural information. The notation includes a core subset
which has a formal basis [Win04] and can be model checked [GLWY05].

Currently the Behavior Tree notation does not have a syntax for express-
ing probabilistic behaviour. Such behaviour is important in system specification
as many systems specify, for instance, hardware dependability requirements or
probabilistic measures on performance. In this paper, we extend the Behavior
Tree (BT) notation to include probabilistic choice, thereby increasing the ex-
pressiveness of the language and also allowing stochastic properties to be model
checked. The new notation, which we call probabilistic timed Behavior Trees
(ptBTs), is an extension of timed Behavior Trees (tBTs), which are introduced
in [GWC07]. It allows the user to model timed as well as probabilistic behaviour.

The contributions of the paper are: 1) an operational semantics for timed
Behavior Trees in terms of timed transition systems, based on their mapping

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 156–175, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Probabilistic Timed Behavior Trees 157

to timed automata [BW04] given in [GWC07]; and 2) the syntax and semantics
of probabilistic timed Behavior Trees, which extend those for timed Behavior
Trees, and are based on probabilistic timed automata [Bea03] and probabilistic
timed transition systems. We use two examples to demonstrate the extension,
and describe how probabilistic timed Behavior Trees can be model checked.

The paper is structured as follows. Section 2 introduces Behavior Trees and
their timed extension, and in Section 3 their semantics is given in terms of timed
automata. In Section 4 probabilities are introduced to the timed BT notation
and a semantics is given in terms of probabilistic timed automata. Section 5
gives two examples of probabilistic timed Behavior Trees and explains how they
were model checked using PRISM [HKNP06].

2 Preliminaries on Behavior Trees

As preliminaries we introduce the Behavior Tree notation and their extension to
timed Behavior Trees.

2.1 Behavior Trees

The Behavior Tree (BT) notation [Dro03] is a graphical notation to capture the
functional requirements of a system provided in natural language. The strength
of the BT notation is two-fold: Firstly, the graphical nature of the notation pro-
vides the user with an intuitive understanding of a BT model - an important
factor especially for use in industry. Secondly, the process of capturing require-
ments is performed in a stepwise fashion. That is, single requirements are mod-
elled as single BTs, called individual requirements trees. In a second step these
individual requirement trees are composed into one BT, called the integrated
requirements tree. Composition of requirements trees is done on the graphical
level: an individual requirements tree is merged with a second tree (which can
be another individual requirements tree or an already integrated tree) if its root
node matches one of the nodes of the second tree. Intuitively, this merging step
is based on the matching node providing the point at which the preconditions
of the merged individual requirement tree are satisfied. This structured process
provides a successful solution for handling very large requirements specifications
[Dro03,WD04].

The syntax of the BT notation comprises nodes and arrows. The notation
contains a rich variety of node types for expressing behaviour; in this paper we

tag Component
[B]

a) State Realisation

Flag

b) Selection c) Guard

d) Internal Input Event e) Internal Output Event

tag Component
? B ?

Flag
tag Component

?? B ??

Flag

tag Component
> B <

Flag
tag Component

< B >

Flag

Fig. 1. BT node types

158 R. Colvin, L. Grunske, and K. Winter

focus on a core subset of the language which models state tests and updates
and event initiation and response. Each BT node type in Figure 1 refers to a
particular component, C , and a behaviour, B , and is optionally marked by one
or more flags. Nodes also contain a tag, which is used for traceability; since the
tags have no effect on the semantics, we will ignore them for the purposes of this
paper. The nodes types in Figure 1 are described below.

(a) A state realisation, where B is either a simple state name or an expression.
A state realisation node models that C realises (enters) state B . For exam-
ple, the root node of Figure 2 models that initially the Power component
is in state on.

(b) A selection, where B is a condition on C ’s state; the control flow terminates
if the condition evaluates to false.

(c) A guard, where B is a condition on C ’s state, as with (b); however, the
control flow can only pass the guard when the condition holds, otherwise
it is blocked and waits until the condition becomes true.

(d-e) An event modelling communication and data flow between components
within the system, where B specifies an event; the control flow can pass the
internal event node when the event occurs (the message is sent), otherwise
it is blocked and waits; the communication is synchronous.

Power
[on]

Lamp
[off]

User
[idle]

Lamp
> press <

User
< press >

User
[idle]

Lamp
[on]

Lamp
> timeout <

Lamp
> press <

Lamp
[on]

Lamp
[off]

Fig. 2. Example: A simple lamp and its user

The control flow of the system is specified by either a single arrow leaving a
node, for sequential flow, or multiple arrows leaving a node, for concurrent or
alternative flow. In addition, atomic flow is specified by line with no arrowhead;
this indicates that the behaviour of the child node occurs immediately after the
behaviour of the parent node. We note that more than one input/output event
is not allowed within an atomic block of nodes, since this could induce deadlock
(for a more detailed discussion see [GWC07]).

Probabilistic Timed Behavior Trees 159

The example in Figure 2 shows three types of edges: after the initialisation
the control flow branches into two concurrent threads, the left modelling the
behaviour of the lamp, and the right modelling an abstract user. The lamp thread
contains alternative flow, when either a timeout event happens which causes the
lamp to switch off, or another press signal is send by the user. The lamp waits
for either of these events to occur. The first one to happen determines the flow
of control. This alternative flow is marked by the black box on the branching
edges.

A flag in BT node can specify: (a) a reversion node, marked by ‘ ’̂, if the node
is a leaf node, indicating that the control flow loops back to the closest matching
ancestor node (a matching node is a node with the same component name, type
and behaviour) and all behaviour begun at that node initially is terminated; (b)
a referring node, marked by ‘∼’, indicating that the flow continues from the
matching node; (c) a thread kill node, marked by ‘−−’, which kills the thread
that starts with the matching node, or (d) a synchronisation node, marked
by ‘=’, where the control flow waits until all other threads with a matching
synchronisation node have reached the synchronisation point. Every leaf node
in Figure 2 is marked as a reversion node; we do not utilise the other flags in
the examples in this paper.

2.2 Timed Behavior Trees

Timed Behavior Trees (tBTs), originally introduced in [GWC07], extend BTs
with the notion of real-valued clocks for expressing timing behaviour. The timing
information expressed by timed automata [BW04] was adopted. All clocks are
initialised to zero and progress simultaneously with the same rate. Clocks can
be reset at any time, and they can constrain the behaviour in terms of guards
and invariants: a guard over a clock restricts the time when a step can be taken,
and an invariant restricts the time a component can remain in a state without
changing to the next state. The tBT notation therefore extends a BT node by
three slots: a guard G over clock values, a reset R of clocks, and an invariant
I over clocks. (If not relevant to a particular node, the slots may be omitted.)
As with timed automata, we restrict clock invariants to be expressions of the
form x ⊕ t , where x is a clock, t evaluates to an integer value, and ⊕ is one of
<,≤,=,≥, >.

As an example, in Figure 3 we augment the lamp Behavior Tree of Figure 2
with explicit timing constraints. The thread on the left hand side introduces the
clock variable x , which is reset as soon as the event press is received. When the
lamp realises the state on it must satisfy the invariant x ≤ 5, modelling that
the lamp can remain in state on for at most 5 time units before switching off
(after exactly 5 time units) or the user presses the button. If the user presses
the button while the lamp is on, the lamp may stay on for an additional 5 time
units, as indicated by the reset of clock x . In the right-hand thread, a second
clock y enforces a more specific timed behaviour in that the user cannot press
the button twice within 1 time unit.

160 R. Colvin, L. Grunske, and K. Winter

Power
[on]

Lamp
[off]

User
[idle]

Lamp
> press < User

< press >

User
[idle]

Lamp
[on]

Lamp
> press <

Lamp
[on]

Lamp
[off]

R x := 0

I x =< 5

G x = 5

G x < 5
R x := 0

G y > 1

R y := 0

R y := 0

Fig. 3. Timed system of a lamp and its user in tBT

3 Semantics of Timed Behavior Trees

A timed Behavior Tree (tBT) can be defined as a finite automaton, which con-
tains state variables and clock variables, a finite set of locations, and a finite set
of labelled edges. Locations model the states of the system, abstracting from the
evaluation of state and clock variables. Edges symbolise the transitions between
the locations. A transition from one location to the next can be guarded and it
can perform one or more actions as well as a number of clock resets. Each edge
also has an optional synchronisation event.

Components in a tBT are treated as state variables in a timed automaton,
while events are treated as timed automaton synchronisations. A Behavior Tree
node represents an edge in a timed automaton, as nodes embody state changes
and events. Each arrow in a BT (except for atomic flow) corresponds to a location
in a timed automaton. The guards and updates (including resets) of clock and
state variables, and synchronisation events, are therefore added to the edges,
though clock invariants are pushed to the location following the edge. The general
mapping for a node is given in Figure 4.

Nodes. More concretely, the nodes in Figure 1 may be represented as follows
(altering the component behaviour section in Figure 4). State realisations are
mapped to an update of the relevant component, while a guard node is mapped
to a guard on the component. Both input and output events are mapped to
synchronisations of the same name, with input events decorated with ‘?’ and
output events with ‘!’. The transfer of data through events may be modelled

Probabilistic Timed Behavior Trees 161

Component

behaviour

G
R
I

tag

S0

S1

x < 10
x := 0
x =< 5

S0

S1

x<10
x:=0

x=<5

component_behaviour

Fig. 4. tBT node (left) and corresponding timed automaton (right)

S0

S1 S2

cond ¬cond

Fig. 5. Behaviour for selections

using state variables. A selection node requires the addition of an extra edge
and terminal state (S2) for the case where the condition is not satisfied; this is
shown in Figure 5.

Control flow. Sequential flow, as mentioned above, maps to a location, while
alternative flow maps straightforwardly to nondeterministic choice. Nodes joined
by atomic flow are joined together so that their updates and guards are combined
into one transition. Because we restrict atomic flow in tBTs to contain only one
synchronisation, this representation is straightforward.

Concurrency. We will call tBTs without concurrent flow of control sequential
tBTs. A sequential tBT maps to a single timed automaton as described above.
Timed BTs with concurrent branching, called concurrent tBTs, map to a network
of automata, acting concurrently and synchronising on events. Each thread maps
to a single automaton, which has to be invoked at a particular point in the
control flow, namely the branching point that starts the thread. Therefore, each
single automata has an initial location which models the thread being disabled.
The location disabled can be exited only via an edge that is labelled with the
special synchronisation event invoke? . The process that starts the thread sends
the matching synchronisation event invoke! and terminates, i.e., goes itself to
the location disabled.

162 R. Colvin, L. Grunske, and K. Winter

Flags. We may now specify how a tBT node’s flags are represented. Firstly we
note that both reversion nodes and thread kill nodes terminate the behaviour of
processes at an arbitrary point in their execution. For each automaton p that
may be killed by process q, we introduce a synchronisation event kill q? , and
augment p with edges labelled with kill q? leading from each location in p to
the disabled location (this approach introduces less overhead than if we were to
take the approach of associating kill? events with the process being killed). This
way, an automaton’s behaviour is terminated whenever the corresponding kill q!
event is received. In Figure 6 we depict the user thread from Figure 3 as a timed
automaton in a network system, assuming that it may be killed by process q at
any time.

S1

S2

S3

S0

invoke_user?

user:=idle
y:=0

press!
y>1

kill_q?

kill_q?

kill_q?

disabled

Fig. 6. Timed automaton simulating the user thread within the lamp system

A node with a reversion flag is typically modelled as a transition from the
current location to the location immediately after the edge representing the
target node. In general we choose the after-location rather than the before-
location to allow for resetting of local clocks (see [GWC07] for why reversions
may have different clock resets to their matching node). However, when there are
no resets in the reversion node, or if the resets are identical, we can more simply
represent reversions as an edge to the before-location. For the examples in this
paper, we adopt this more straightforward approach. The reversion transition is
labelled with kill q!, which terminates the behaviour of all automata, if any, that
are invoked after the matching node (in Figure 6 there are none). A node with a
referring flag is modelled simply as a transition from the current location to the
location preceding the target node. A node with a kill flag generates a kill! event,
and a node with a synchronisation flag is modelled directly as a synchronisation
transition in a timed automaton.

3.1 Operational Semantics

The semantics of a sequential tBT is given as as a timed automaton. To a
large extent our definitions follow the definitions of the operational semantics of

Probabilistic Timed Behavior Trees 163

timed automata in [BW04]. We divert from these, however, where it is suitable
for modelling Behavior Trees, e.g., we separate actions (state updates) from
synchronisations, and explicitly define state variables to represent components,
which can be of any type, whereas in [BW04] state variables are treated as a
special kind of clock variable.

Let V be a finite set of state variables, and C be a finite set of clocks. Let Σ(V)
denote the set of actions (representing state updates), and let G(V) denote the
set of conditions over state variables (representing guards and selections). Let
G(C) be a set of guards over clocks, R(C) a set of clock resets, and I(C) a set of
clock invariants. We write skip to represent an action or clock reset which does
has no effect, and true for variable and clock guards which are always satisfied.
Let Θ be the synchronisation events, with ε ∈ Θ a distinguished element which
represents an internal step, i.e., no synchronisation.

Definition 1. A sequential tBT is a tuple 〈L, l0,E , I 〉 where

– L is a finite set of locations
– l0 ∈ L is the initial location
– E ⊆ L ×Θ × G(C) × G(V) ×R(C) ×Σ(V) × L is the set of edges
– I : L → I(C) is the mapping that assigns clock invariants to locations.

We use the notation l
s,g,c,r ,a

→ l ′ if (l , s , g, c, r , a, l ′) ∈ E.

As an example, consider the sequential tBT representing the user in Figure 6.
There are four locations, with the initial location S0. The invocation edge is
the tuple (S0, invoke user?, true, true, skip, skip,S0). The User [idle] edge is the
tuple (S1, ε, true, true, (y := 0), (User := idle),S2), while the User〈press〉 edge is
the tuple (S2, press !, (y > 1), true, skip, skip,S3). The reversion is represented as
an edge back to the location S1, i.e., (S3, ε, true, true, skip, skip,S1). The edge
corresponding to a kill q event occurring while the lamp process is in location
S3 is (S3, kill q?, true, true, skip, skip,S0).

Before giving the operational semantics we introduce some notation. We use
clock assignments to denote the progress of time and with it changing clock
values, and variable assignments to monitor the evaluation of the state variables.
A clock assignment is a mapping from clocks C to non-negative real numbers R+.
If u is a clock assignment, then u +d denotes the clock assignment that maps all
c ∈ C to u(c)+ d . Resetting clocks is denoted as [r �→ 0]u which maps all clocks
in r ⊆ C to 0 and leaves all other clocks in C \ r unchanged. Let v be a variable
assignment mapping all variables in V to a value in their domain. Updating
state variables is denoted as [x �→ e]v which changes the variable assignment to
map variables x ⊆ V to corresponding values in e and leaves all other variables
unchanged.

The semantics of a sequential tBT can be given as a timed transition system,
in which a state of a sequential tBT can be given as a tuple consisting of a
location, a variable assignment, and a clock assignment, i.e., 〈l , v , u〉.

164 R. Colvin, L. Grunske, and K. Winter

There are two types of transitions possible: the system either delays for some
time (delay step) or takes one of the enabled transitions (action step).

Definition 2. The semantics of a sequential tBT is a timed transition system
with states 〈l , v , u〉 and transitions as follows.

- 〈l , v , u〉 d−→ 〈l , v , u + d〉
if u and u + d satisfy I (l) for a d ∈ R+

(delay step)

- 〈l , v , u〉 α−→ 〈l ′, v ′, u ′〉
if l

s,g,c,r ,a
→ l ′, u satisfies g, v satisfies c,

v ′ = [x �→ e]v if a = (x �→ e),
u ′ = [r �→ 0]u, and u ′ satisfies I (l ′).

(action step)

According to this definition, if a process is in a location from where no action
step is enabled by the time the clock evaluation violates the location invariant,
no further step is possible (the delay step is also disabled) and the process
halts. Furthermore, this definition allows for indefinitely many delay steps if the
automaton is in a state for which no location invariant is specified (i.e., any u
and u + d will satisfy true).

3.2 Concurrent Timed Behavior Trees

The semantics of a concurrent tBT can now be given as a network of timed
automata, i.e., parallel automata that operate in an interleaving fashion using a
handshake synchronisation mechanism. A state of a network with n concurrent
processes is formalised as a tuple 〈ls, v , u〉 with ls being a vector of length n
of the current locations in each process, v the variable assignment1 and u the
clock assignment. Let li denote the i-th element of location vector ls and ls[l ′i/li]
denote the vector ls with the element li being substituted by l ′i . With I (ls) we
denote the conjunction of invariants on all locations, i.e., I (ls) =

∧
i I (li).

Let s?, s ! ∈ Θ symbolise reading and sending of a synchronisation event,
respectively, also recalling ε ∈ Θ denotes an internal action of the system.

A network can perform three types of steps: a delay step and an action step,
both similar to the steps in a single automaton, and also a synchronisation step.

Definition 3. The semantics of a concurrent tBT is a network of timed tran-
sition systems with states 〈ls, v , u〉 and transitions as follows.

- 〈ls , v , u〉 d−→ 〈ls , v , u + d〉
if u and u + d satisfy I (ls) for a d ∈ R+

(delay step)

- 〈ls , v , u〉 ε−→ 〈ls [l ′i/li], v ′, u ′〉
if li

ε,g,c,r ,a
→ l ′i ,

u satisfies g, v satisfies c,
v ′ = [x �→ e]v if a = (x �→ e),
u ′ = [r �→ 0]u, and u ′ satisfies I (ls [l ′i/li]).

(action step)

1 State variables are not related to a particular process but treated as global and are
therefore accessible by any process.

Probabilistic Timed Behavior Trees 165

- 〈ls , v , u〉 ε−→ 〈ls [l ′i/li][l ′j /lj], v ′, u ′〉 (synchronisation step)
if there exists i 	= j such that

1. li
s?,gi ,ci ,ri ,ai→ l ′i , lj

s!,gj ,cj ,rj ,aj→ l ′j
and u satisfies gi∧gj and v satisfies ci ∧cj
and

2. v ′ = [xi/ei]([xj/ej]v)
if ai = (xi �→ ei) and aj = (xj �→ ej) and

3. u ′ = [ri ∪ rj �→ 0]u and u ′ satisfies
I (ls [l ′i/li][l

′
j /lu]).

Note that in a synchronisation step the sending process updates the state vari-
ables (if its action a contains updates) before the receiving process, facilitating
synchronous message passing.

4 Probabilistic Timed Behavior Trees

In this section we extend timed Behavior Trees to probabilistic timed Behavior
Trees (ptBTs). We follow the well-established and expressive approach of anno-
tating transitions with a probability that the transition will take place. In the
Behavior Tree notation, this means we associate with each node an optional
probability slot which contains a number from 0 to 1, i.e., in the range [0, 1]. As
an example, in which probabilistic choice is used to model component failures,
consider the ptBT in Figure 7 which extends the lamp example with a 1% chance
that the lamp will fail (e.g., blow a fuse) whenever it is switched from off to on.

For clarity, and without loss of generality, we impose a well-formedness condi-
tion on ptBTs that either every child node of a node has an associated probabil-
ity, or none do (a child node is a direct descendant). We have therefore introduced
probabilistic branching in addition to alternative and concurrent branching. The
probabilities in the child nodes must sum to less than or equal to 1. If the prob-
abilities sum to P , and P is less than one, it is understood that with probability
1−P no transition is taken.2 In the lamp example, the probabilities of the child
nodes of the Lamp〈press〉 node sum to 1, indicating that one of the actions must
be taken. In the user thread, however, the probability of the user pressing the
button is 0.3. Thus it is implicit there is a 70% chance that the user will not
press the button as time passes.

The mapping of ptBTs to probabilistic timed automata follows that of tBTs
for the non-probabilistic constructs in the language, with the addition that prob-
abilities are added to the corresponding edges in the automaton, if the sum of the
probabilities is 1. If the probabilities of all the edges leaving a location sum to P
for P < 1, in general an additional edge looping back to itself with probability
2 This models an exponentially distributed delay before the next action is taken. In

continuous timed systems, such behaviour can also be represented using real-valued
rates, giving the expected incidence of events per time unit. For simplicity we define
ptBTs to contain probabilities only (values in the range [0,1]), but in Section 5 we
describe how rates may be introduced for model checking.

166 R. Colvin, L. Grunske, and K. Winter

Power
[on]

Lamp
[off]

User
[idle]

User
< press >

G y > 1

R y := 0

User
[idle]

R y := 0

P 0.3Lamp
[on]

Lamp
> press <

R x := 0

Lamp
[Faulty]

P 0.01

Lamp
> press <

Lamp
[on]

Lamp
[off]

G x = 5

G x < 5
R x := 0

I x =< 5
P 0.99

Fig. 7. Probabilistic timed system of a lamp and its user

1 − P is added, which includes any clock guards – see Figure 8 for an example.
An exception to this is if the node is an output event. Because it is not possi-
ble to label only one edge in a probabilistic choice in a timed automaton with
a synchronisation, an intermediate location is added between the probabilistic
choice and the synchronisation – an example is given later in Figure 9.

To specify probabilistic properties we may choose from several different specifi-
cation languages: continuous stochastic logic (CSL) [ASSB96], if the model is de-
terministic and uses continuous time; probabilistic computation tree logic (PCTL)
[HJ94], if the model uses discrete time; or PCTL’s extension to probabilistic timed
computation tree logic (PTCTL) [KNSS02], if the model is nondeterministic and
uses continuous time. As an example, if the global time is recorded in clock G,
the dependability property “with what probability will the Lamp enter the faulty
state before X time units” can be formally stated in PCTL as

P=?(true U (lamp = faulty ∧ G ≤ X))

where U is the temporal until operator, and a property true U φ models even-
tually φ.

4.1 Semantics of Probabilistic Timed Behavior Trees

We give the meaning of ptBTs as probabilistic timed automata. There are several
ways in which probabilities may be added to the timed automaton model, e.g.,
by associating them with edges [KNPS06] or with locations [KNSS00]. We follow

Probabilistic Timed Behavior Trees 167

Component

[state]

G
R

tag

S0

S1

x < 10
x := 0

S0

x<10
x:=0
0.5

Component := state

I x =< 5
P 0.5 S1 x=<5

0.5

Fig. 8. ptBT node (left) and corresponding probabilistic timed automaton (right)

the former approach, and replace the target locations in edges with a probability
mapping on clock resets, variable updates, and target locations. A probability
mapping on type T is a partial function from elements of T to values in the
range [0, 1], which sum to 1, i.e.,

Dist(T) =̂ {p : T �→ [0, 1] |
∑

t: dom p

p(t) = 1}

Definition 4. A sequential probabilistic tBT is a tuple 〈L, l0,E , I 〉 where

– L is a finite set of locations
– l0 ∈ L is the initial location
– E ⊆ L ×Θ × G(C) × G(V) × Dist(R(C) ×Σ(V) × L) is the set of edges
– I : L → I(C) is the mapping that assigns clock invariants to locations.

In Figure 9 we give the graphical representation of the sequential probabilistic
timed automaton for the user process in the lamp example, alongside its repre-
sentation as a tuple. By including resets and updates with the target locations
in the distribution we may enforce differing resets and updates depending on
how the probabilistic choice is resolved.

The semantics of a probabilistic timed automaton is updated so that an action
step from location l1 to l2 may be taken only if the associated probability is
greater than 0. This is given by the second line in the action step constraint
below, which is otherwise identical to Definition 2.

Definition 5. The semantics of a sequential ptBT is a probabilistic timed tran-
sition system with states 〈l , v , u〉 and transitions as follows.

- 〈l , v , u〉 d−→ 〈l , v , u + d〉
if u and u + d satisfy I (l) for a d ∈ R+

(delay step)

168 R. Colvin, L. Grunske, and K. Winter

S1

S2

S0

invoke_user?

user:=idle
y:=0

disabled

0.7

S4

press!

0.3

S3

y>1

y>1

L = {S0, S1,S2,S3,S4}
l0 = S0

E = {(S0, invoke user?, true, true, {(skip, skip, S1)
→ 1.0}),
(S1, ε, true, true, {((y := 0), (user := idle),S2)
→ 1.0}),
(S2, ε, (y > 1), true, {(skip, skip, S3)
→ 0.3, (skip, skip,S2)
→ 0.7}),
(S3, press!, true, true, {(skip, skip, S4)
→ 1.0}),
(S4, ε, true, true, {(skip, skip,S1)
→ 1.0})}

I = (λ l : L • true)

Fig. 9. Sequential ptBT of the user process as a probabilistic timed automaton, with
its representation as a tuple

- 〈l , v , u〉 a−→ 〈l ′, v ′, u ′〉
if (l , s , g, c,D) ∈ E,
(r , a, l ′) ∈ dom D and D(r , a, l ′) > 0, and
u satisfies g, v satisfies c,
v ′ = [x �→ e]v if a = (x �→ e),
u ′ = [r �→ 0]u, and u ′ satisfies I (l ′)

(action step)

By augmenting edges with distributions, which therefore represent a set of “prob-
able” edges, rather than assigning a single probability for that edge, we are able
to more succinctly capture the “sum to one” property, and express nondeter-
ministic behaviour. A non-probabilistic timed automaton can be mapped to a
probabilistic timed automaton by replacing each edge (l , s , g, c, r , a, l ′) with the
edge (l , s , g, c,D), where the distribution D maps (r , a, l ′) to 1.0. Such distri-
butions are called point distributions. When a nondeterministic choice is made
between two locations, this is represented by two edges, each of which has a
point distribution on the target edge.

4.2 Semantics of Concurrent Probabilistic Timed Behavior Trees

The semantics of concurrent ptBTs must also be extended in a similar way to
Definition 3, so that both probabilities in a synchronisation step are greater than
0. The definition below differs from Definition 3 in that probabilities are checked
to be non-zero in action and synchronisation steps.

Definition 6. The semantics of a concurrent ptBT is a network of probabilistic
timed transition systems with states 〈ls, v , u〉 and transitions as follows.

- 〈ls , v , u〉 d−→ 〈ls , v , u + d〉
if u and u + d satisfy I (ls) for a d ∈ R+

(delay step)

Probabilistic Timed Behavior Trees 169

- 〈ls , v , u〉 ε−→ 〈ls [l ′i/li], v ′, u ′〉
if (li , ε, g, c,D) ∈ Ei ,
(r , a, l ′i) ∈ dom D and D(r , a, l ′i) > 0,
u satisfies g, v satisfies c,
v ′ = [x �→ e]v if a = (x �→ e),
u ′ = [r �→ 0]u, and u ′ satisfies I (ls [l ′i/li]).

(action step)

- 〈ls , v , u〉 ε−→ 〈ls [l ′i/li][l ′j /lj], v ′, u ′〉 (synchronisation step)
if there exists i 	= j such that

1. (li , s?, gi , ci ,Di) ∈ Ei and
(lj , s !, gj , cj ,Dj) ∈ Ej and
(ri , ai , l ′i) ∈ dom Di ∧ (rj , aj , l ′j) ∈ dom Dj and
Di(ri , ai , l ′i) · Dj (rj , aj , l ′j) > 0 and
u satisfies gi ∧ gj and v satisfies ci ∧ cj and

2. v ′ = [xi/ei]([xj/ej]v)
if ai = (xi �→ ei) and aj = (xj �→ ej) and

3. u ′ = [ri ∪ rj �→ 0]u and u ′ satisfies
I (ls [l ′i/li][l

′
j /lu]).

The addition of probabilities does not greatly affect the semantics, however it has
important implications for model checking. In an execution of the probabilistic
Lamp system in Figure 7, the probability of each transition is recorded, and
hence it is possible, in exhaustive analysis, to determine the probabilities of each
execution. We explore this in more detail in the next section.

5 Model Checking Probabilistic Timed Behavior Trees

In this section we describe how probabilistic timed Behavior Trees may be model
checked using the model checker PRISM [HKNP06], and provide two examples.
PRISM (Probabilistic Symbolic Model Checker) provides model checking facil-
ities for three types of probabilistic models: deterministic time Markov chains
(DTMCs), continuous time Markov chains (CTMCs), and Markov decision pro-
cesses (MDPs) (for an overview of the three models and how they may be model
checked, see [Kwi03]). To utilise PRISM, we must therefore translate ptBTs
into one of the three model types. DTMCs and CTMCs are deterministic, and
hence are suitable for deterministic ptBTs. MDPs, which are generalisations of
DTMCs, contain nondeterministic choice, though, like DTMCs, are limited to
discrete time. Because ptBTs contain nondeterministic choice, we will typically
translate a ptBT model into a PRISM MDP for model checking, following guide-
lines given in [KNPS06]; in Section 5.1 we give an example of this using the Lamp
ptBT. In Section 5.2 we give a deterministic ptBT, which we model check as a
PRISM CTMC.

5.1 Case Study 1 - Lamp Example

Consider the user probabilistic timed automaton given in Figure 9. Its translation
into a PRISM MDP is given below.

170 R. Colvin, L. Grunske, and K. Winter

module user
L: [0..4] init 0;
user: [0..1] init 0;
y: [0..MAX_Y] init 0;

[invoke_user] L=0 -> (L’=1);
[] L=1 -> (L’=2) & (y’=0) & (user’ = 1);
[time] L=2 & y>1 -> 0.3: (L’=3) & INC(y) +

0.7: (L’=2) & INC(y);
[press] L=3 -> (L’=4);
[] L=4 -> (L’=1);
[time] !(L=2 & y> 1) and !(L=3)

-> INC(y);
endmodule

The variable L represents the locations, and user the user component (0 rep-
resenting the user’s initial state, and 1 representing the idle state). We also
declare local clock y, which for efficiency reasons is at most MAX Y . (Within
the code, the abbreviation INC (Y) increments y up to the maximum MAX Y .)
Each action line corresponds to an element of E , and is of the form

[sync] guard -> action
for non-probabilistic behaviour, or

[sync] guard -> prob1 : action1 + prob2 : action2 + ...
for probabilistic behaviour. The start of a line gives the synchronisation event en-
closed in square brackets (which are empty for internal actions), and the guards
combine the conditions on clocks and state variables (there is no distinction
in PRISM). The action part updates variables and clocks. The translation is
straightforward, except that we must explicitly model the advancement of time,
as observed in local clock y. Any action which results in the passing of time is
synchronised with the global clock (see below) on the event time, and any local
clocks are incremented (since this is a discrete time model). In addition, the last
action line allows time to advance with no action being taken (the guard is used
to prevent doubling up of time increments, and to ensure no time passes between
the probabilistic choice and the press event occurring).

Global time is maintained via the time module. After invocation, the time
module increments the global clock synchronously with all modules which main-
tain their own local clocks.

module time
time_L : [0..1] init 0;
global_clock: [0..MAX_GLOBAL_CLOCK] init 0;

[invoke_clock] time_L=0 -> (time_state’=1);
[time] time_L=1 -> (time_state’=1) & INC(global_clock);

endmodule

Probabilistic Timed Behavior Trees 171

The full PRISM model also contains a process representing the lamp, and a
process which initiates the lamp, timer, and user processes. Having translated the
model into an MDP, we may check whether it satisfies reliability requirements
written in probabilistic computation tree logic (PCTL) [HJ94]. For example,
“The probability that the lamp fails within 100 time units should be less than
10 percent” is given as

Pmin<0.1 [true U (lamp_state = faulty & global_clock <= 100)]

where faulty is an abbreviation for the corresponding integer-valued lamp state.
Given a failure probability of 0.01 for the lamp, and that the user presses the

button with a probability of 0.3, the model checking showed the model fulfils
this requirement.

5.2 Case Study 2 - Viking Example

In this section we give a model with no nondeterminism or local clocks, which
can be model checked as a PRISM CTMC. The example involves a group of four
Vikings attempting to cross a bridge, from the “unsafe” side to the “safe” side,
though the bridge may hold only one at a time – see Figure 10. An individual
Viking can step on to the bridge, and then cross to the safe side. However if
more than one steps on to the bridge at the same time, they begin arguing,
which may result in one or more of the Vikings backing down and returning
to the unsafe side of the bridge. (The behaviour of the system can be likened
to processes competing for access to a critical section.) For reasons of space we
show the thread for only one Viking – the other three are similar.

The Viking BT is specified as follows: initially each Viking is unsafe, and with
a rate (described below) given by enter rt they enter the bridge. Note that the

System
[init]

Viking1
< enter >

P enter_rt
Bridge

> leave <

Vcnt
[0]

Bridge
> enter <

Vcnt
[Vcnt+1]

Bridge ^
< enter >

Vcnt
[Vcnt-1]

Bridge ^
< leave >

Viking1
[unsafe]

Vcnt
? = 1 ?

Viking1
<leave>

P leave_rt

Viking1
[safe]

Vcnt
? > 1 ?

Viking1
<leave>

P argue_rt

Viking1 ^
[unsafe]

Viking2
[unsafe]

....

Fig. 10. Viking Behavior Tree

172 R. Colvin, L. Grunske, and K. Winter

Fig. 11. Result of PRISM model checking for the Viking example with a parameter
sweep over the enter and arguing probabilities

passage of time is implicit in this model, and that as time passes it becomes
more and more likely that an individual Viking will enter the bridge. Entering
a bridge is modelled by a synchronisation with the bridge process, which is
described below. After entering the bridge, the Viking may leave if he is the
only occupant, and does so at the rate given by leave rt. If there is more than
one Viking on the bridge, he begins “arguing” with the other Vikings, and may
back down and leave the bridge, returning to the unsafe side, at a rate given by
argue rt. The bridge process simply maintains a count of the number of Vikings
on the bridge by synchronising on leave and enter events from each Viking.

This model may be translated into a CTMC, because it is deterministic and
does not contain local clocks. However, CTMCs operate on rates, rather than
probabilities, and thus the value in the probability slot must be interpreted as a
rate. This is straightforward, unless the rate of an event occurring is more than
once per time unit (since this would require a value greater than one, i.e., could
not be interpreted as a probability). In this example we set our rates to be less
than once per second, and leave the extension of ptBTs to use rates as future
work. The translation of the Viking ptBT to a PRISM CTMC is straightforward,
since time does not need to be explicitly modelled.

We may check various properties of the Viking model, as with the lamp. Be-
cause the model is a CTMC, we use continuous stochastic logic (CSL) [ASSB96]
instead of PCTL. In this case, we may determine which combination of proba-
bilities gives the best performance, as measured by how quickly all Vikings make
it to the safe side of the bridge. As an example, we fix the leaving probability at
1.0, i.e., Vikings will exit the bridge to the safe side at the earliest opportunity,
and observe the change in probability that results from varying the probabilities
of entering and arguing (also called a parameter sweep). This is checked against
the following property, which queries the probability of all four Vikings becom-
ing safe within G time units (all safe is an abbreviation for each Viking being
in the safe state).

P=? [true U<G all_safe]

Probabilistic Timed Behavior Trees 173

The results of the analysis in PRISM are presented in Figure 11. The graphs
show the probabilities that all Vikings are safe for varying values of the argue
and enter rates with the leave rate set at 1. The graph on the left gives the
probabilities for the case where G = 10, i.e., all Vikings are safe within 10 time
units, while the graph on the right is for the case where G = 20. In both cases
a higher argue rate gives better performance, but over a longer time span a
less aggressive enter strategy gives better performance (optimal enter rate for
G = 10 is approximately 0.8, while for G = 20 it is approximately 0.4).

6 Related Work

Various notations have been extended to enable modelling of probabilistic be-
haviour, e.g., stochastic Petri Nets [MBC+95], probabilistic timed CSP [Low95],
stochastic π calculus [Pri95], probabilistic action systems [Tro99], and proba-
bilistic statecharts [JHK02].

From the perspective of probabilistic requirements capture, the closest work
to our own is that of Jansen et al. [JHK02], who extend UML statecharts with
probabilities. Statecharts, like Behavior Trees, is a graphical notation to support
modelling of system requirements. Similarly to our work, the semantics of proba-
bilistic statecharts, which is given in terms of Markov Decision Processes (MDP),
provides an interface to the model checker PRISM. In contrast to probabilistic
timed BTs, however, probabilistic statecharts do not allow modelling timed be-
haviour since a notion of clocks is not included. Furthermore, the Behavior Tree
approach allows individual requirements to be successively integated by grafting
them onto the growing design tree as branches, as outlined in Section 2. Because
Behavior Trees have been specifically designed for this purpose, they provide
a simpler and more straightforward mechanism for building the system model
from its individual requirements than is possible using other notations.

7 Conclusion and Future Work

In this paper we have given a probabilistic extension to the timed Behavior
Tree notation and a semantics in terms of probabilistic timed automata (see,
e.g., [Bea03]), as well as given a more rigorously defined semantics of timed
Behavior Trees [GWC07]. The extension was demonstrated with two examples,
which were also model checked in PRISM [HKNP06]. The notation extension
was designed to be straightforward for system modellers to incorporate when
capturing probabilistic requirements, as well as allow the probabilistic behaviour
of faulty components to be specified. Probabilistic system properties may then
be formally verified after translation to probabilistic timed automata.

The addition of probabilistic choice to Behavior Trees was particularly mo-
tivated by the need for modelling faulty behaviour of safety-critical embedded
systems. Consequently, in future work, we will enhance the automatic Failure
Mode and Effect Analysis (FMEA) for Behavior Trees [GLWY05]. The pro-
cedure currently uses fault injection experiments and model checking of the

174 R. Colvin, L. Grunske, and K. Winter

resulting Behavior Tree to determine whether the injected failure leads to a haz-
ard condition, which is specified as a normal temporal logical formula. However,
a limitation of this procedure is that the model checker will generate counter
examples that are relatively improbable. With the results presented in this pa-
per, we propose to assign to each of these injected faults an occurrence rate, and
perform an analysis of the resulting behaviour with probabilistic model checking.
We will then be able to analyse hazard conditions together with their tolerable
hazard probabilities.

As it stands, current probabilistic model checking approaches work with expo-
nential distributions only, but in practice, many faults are distributed differently;
in particular, many faults are Weibull distributed [Bir99], and follow the common
“bathtub” curve which models a burn-in and wear-out phase. Consequently, we
will investigate how to include arbitrary distributions in the probabilistic timed
BT notation, and in what way these distributions can be supported by model
checking tools.

Acknowledgements. This work was produced with the assistance of funding
from the Australian Research Council (ARC) under the ARC Centres of Excel-
lence program within the ARC Centre for Complex Systems (ACCS). The au-
thors wish to thank their colleagues in the Dependable Complex Computer-based
Systems project and the anonymous reviewers for their constructive suggestions.

References

ASSB96. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time
markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS,
vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

Bea03. Beauquier, D.: On probabilistic timed automata. Theoretical Computer Sci-
ence 292(1), 65–84 (2003)

Bir99. Birolini, A.: Reliability Engineering: Theory and Practice, 3rd edn. Springer,
Heidelberg (1999)

BW04. Bengtsson, J., Wang, Y.: Timed automata: Semantics, algorithms and tools.
In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and
Petri Nets. LNCS, vol. 3098, Springer, Heidelberg (2004)

Dro03. Dromey, R.G.: From requirements to design: Formalizing the key steps.
In: Int. Conference on Software Engineering and Formal Methods (SEFM
2003), pp. 2–13. IEEE Computer Society Press, Los Alamitos (2003)

GLWY05. Grunske, L., Lindsay, P., Winter, K., Yatapanage, N.: An automated fail-
ure mode and effect analysis based on high-level design specification with
Behavior Trees. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM
2005. LNCS, vol. 3771, pp. 129–149. Springer, Heidelberg (2005)

GWC07. Grunske, L., Winter, K., Colvin, R.: Timed Behavior Trees and their Ap-
plication to Verifying Real-time Systems. In: Proc. of 18th Australian Con-
ference on Software Engineering (ASWEC 2007), April 2007, accepted for
publication (2007)

HJ94. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability.
Formal Aspects of Computing 6(5), 512–535 (1994)

Probabilistic Timed Behavior Trees 175

HKNP06. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for
automatic verification of probabilistic systems. In: Hermanns, H., Palsberg,
J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441–444.
Springer, Heidelberg (2006)

JHK02. Jansen, D.N., Hermanns, H., Katoen, J.-P.: A probabilistic extension of
UML Statecharts. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002.
LNCS, vol. 2469, pp. 355–374. Springer, Heidelberg (2002)

KNPS06. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance anal-
ysis of probabilistic timed automata using digital clocks. Formal Methods
in System Design 29, 33–78 (2006)

KNSS00. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantita-
tive properties of continuous probabilistic timed automata. In: Palamidessi,
C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg
(2000)

KNSS02. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verifica-
tion of real-time systems with discrete probability distributions. Theoretical
Computer Science 282(1), 101–150 (2002)

Kwi03. Kwiatkowska, M.: Model checking for probability and time: From theory to
practice. In: Proc. 18th Annual IEEE Symposium on Logic in Computer
Science (LICS’03), Invited Paper, pp. 351–360. IEEE Computer Society
Press, Los Alamitos (2003)

Low95. Lowe, G.: Probabilistic and prioritized models of timed CSP. Theoretical
Computer Science 138(2), 315–352 (1995)

MBC+95. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. Wiley Series in Parallel Com-
puting. Wiley, Chichester (1995)

Pri95. Priami, C.: Stochastic π calculus. The. Computer Journal 38(6), 578–589
(1995)

Tro99. Troubitsyna, E.: Reliability assessment through probabilistic refinement.
Nordic Journal of Computing 6(3), 320–342 (1999)

WD04. Wen, L., Dromey, R.G.: From requirements change to design change: A for-
mal path. In: Int. Conference on Software Engineering and Formal Methods
(SEFM 2004), pp. 104–113. IEEE Computer Society Press, Los Alamitos
(2004)

Win04. Winter, K.: Formalising Behaviour Trees with CSP. In: Boiten, E.A., Der-
rick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 148–167.
Springer, Heidelberg (2004)

Guiding the Correction of Parameterized

Specifications

Jean-François Couchot1,2 and Frédéric Dadeau3

1 INRIA Futurs, ProVal, Parc Orsay Université, F-91893
2 LRI, Univ Paris-Sud, CNRS, Orsay F-91405

3 Lab. d’Informatique de Grenoble, BP. 72, Saint-Martin d’Hères F-38402

Abstract. Finding inductive invariants is a key issue in many domains
such as program verification, model based testing, etc. However, few ap-
proaches help the designer in the task of writing a correct and meaningful
model, where correction is used for consistency of the formal specification
w.r.t. its inner invariant properties. Meaningfulness is obtained by pro-
viding many explicit views of the model, like animation, counter-example
extraction, and so on. We propose to ease the task of writing a correct
and meaningful formal specification by combining a panel of provers, a
set-theoretical constraint solver and some model-checkers.

1 Introduction

When designing safe softwares, writing formal specifications is a hard but valu-
able task, since consistency between the program and its inner properties can be
translated into Proof Obligations (POs) that can then be discharged into some
more or less automated prover.

The B method [1] ranges in this scope, by providing a formal development
framework. It starts from often parameterized abstract specifications, called ab-
stract machines, that are later refined until a parameter-free implementation is
obtained. Intuitively, an abstract machine is composed of state variables, an ini-
tialisation operation, some operations that modify the values of state variables
and an invariant that represents properties that must hold for each state of the
execution.

Invariant verification techniques can be divided into two main categories:
model-checking (Spin [28], SMV [35]), which exhaustively explores the states
of the execution graph, and deductive approaches, based on automatic provers
(Simplify [21], Yices [23], haRVey [20]) or interactive ones (COQ [34], PVS
[37], HOL [27]). Intuitively, model-checking aims at checking whether all reach-
able states satisfy a given property, which is then called an invariant. On the
other hand, deductive approaches try to show that a property is inductive,
i.e., established by initialisation and preserved through each operation. The
B method is conceived as a deductive approach, in which the generated POs

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 176–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Guiding the Correction of Parameterized Specifications 177

are discharged into a set-theoretical prover [16,2]. Some model-checkers for B
machines have been developed, such as ProB [31] or the BZ-Testing-Tools [3]
animator, but all of them require finite and enumerated data structures to
work.

Each inductive property is obviously an invariant, whereas an invariant is,
seldom if ever, inductive. If the invariant is not inductive, invariance proofs fail.
In an interactive mode, the modeler is asked to manually end the proof, which
might be useless since the errors are located in the specification. In an auto-
matic mode, the proof may end. When it does, it generally answers “not valid”,
sometimes while extracting the subformula that originates this answer. This al-
lows the engineer to modify either the invariant, or the code of the operation,
or both. When the proof does not terminate, the validity of the considered for-
mula is unknown. Thus, the engineer is left with unknown results concerning the
inductivity of the invariants he wrote.

This paper presents an original framework relying on the efficient combination
of deductive and model-checking approaches, in order to be able to help the
engineer in the process of designing, automatically checking the correctness and
(eventually) correcting a formal specification.

This framework is depicted in Fig. 1. We first consider the translation of the
formal specification into the Why language. Why [24] is a verification tool that
is dedicated to build POs for a variety of provers, and runs them to perform the
verification. In case of failure of all the provers, our approach aims at providing
a concrete counter-examples for the induction property. This task starts with
an instantiation of the parameters, by using recent results in proof techniques
applied on software verification [26]. It makes it possible to use CLPS [3], a set-
theoretical constraint solver, to solve the instantiated constraint, which results in
a counter-example if the formula is invalid. In addition, B animators [31,11] are
employed to automatically produce an execution trace leading to this counter-
example when it exists. The modeler obtains, for free, some guidance information
that helps her/him to modify the incriminated part of her/his formal specifica-
tion. Furthermore, in order to be able to give a feedback on the PO validity,
when the proof does not terminate, or when the prover is unable to decide the
theory involved within the formula, we also propose to instantiate the formula
before checking its consistency with CLPS.

This paper is organized as follows. Section 2 presents the consistency checking
of B machines, that makes it possible to establish their correction, and presents
the running example that will illustrate our approach throughout the follow-
ing sections. We give in Sect. 3 the translation of B machines into the Why
language. Then, we present in Sect. 4 the instantiation techniques that are suf-
ficient to compute a counter-example. In Sect. 5, we show how to help the de-
signer in the task of correcting her/his specification by computing an execution
trace that leads to the counter-example. Finally, we draw a comparison with
some related works in Sect. 6, before we conclude and present future works in
Sect. 7.

178 J.-F. Couchot and F. Dadeau

B parameterized
specification

Why specification

Automatic
provers

All proofs
end?

All proofs
are valid?

Incriminated subformula
extraction

Parameters
instantiation

Constraints
solving (CLPS)

Sufficient
instantiation ?

Counter-example
computation

Finite trace
computation (B animator)

yes
no

no

yes

no

yes

Sat.

Unsat.

Fig. 1. Combining deductive and constraint-satisfaction approaches

2 Correction of a B Machine

The B formal method [1] was developed by J.-R. Abrial. It scopes the whole
software development process, from the abstract specification to the automatic
code generation into a classical programming language, such as C or Ada, by
using successive refinement steps. The first step details the software as a machine,
called abstract machine. It may contain abstract data, such as abstract sets or
parameters, which makes its behaviors undeterministic. These parameters have
to be precised in subsequent refinement steps.

Fig. 2 gives an example of an abstract parameterized machine in the scope of
this study.

Semantically, the abstract machine of Fig. 2 simulates the global behavior of
a set of processors running in parallel the distributed MESI [38] cache coherence
protocol. In this protocol, each processor manages its own cache that can be in
one of the following control states M, E, S and I. The global machine state is
then defined by the sets m, e, s and i that precise which cache among those of
c are respectively in the M, E, S and I control states.

Syntactically, such a B machine is composed of the following clauses:

• the MACHINE clause specifies the machine name and its parameters, that
may be finite sets. In the example, the machine is parameterized by c which
is the finite set of processors that follow the transition system detailed by
the machine.

• The VARIABLES clause contains all the machine state variables, that may
be modified by the operations.

Guiding the Correction of Parameterized Specifications 179

MACHINE
mesiSet(c)

VARIABLES
m, e, s , i

INVARIANT
m, e, s , i ∈ �(c) ∧
m ∪ e ∪ s ∪ i = c ∧∧j �=k

j ,k∈{m,e,s,i} j ∩ k = ∅ ∧
((∃ p1 . p1 ∈ c ∧ p1 ∈ s) ⇒
¬(∃ p2 . p2 ∈ c ∧ p2 ∈ m))

INITIALISATION
m, e, s , i := ∅, ∅, ∅, c

OPERATIONS
sendWriteInvalidate =

ANY p WHERE p ∈ c ∧ p ∈ s THEN

m, e, s , i :=
∅, {p}, ∅, i ∪ m ∪ e ∪ (s \ {p})

END;
sendRead =

ANY p WHERE p ∈ c ∧ p ∈ i THEN

m, e, s , i :=
∅, ∅,m ∪ e ∪ s ∪ {p}, i \ {p}

END;
write =

ANY p WHERE p ∈ c ∧ p ∈ e THEN

e,m := e \ {p},m ∪ {p}
END

END

Fig. 2. Set-Theoretical B Specification of the MESI Protocol

• The INVARIANT clause contains the I predicate that defines the properties
on the state variables that must be initially established and preserved by
each operation.

The first three lines of the INVARIANT specify that set variables m,
e, s and i describe a partition of set c, which means that each processor
is only in one control state at any time. These lines will be referred as
Inv type(m, e, s , i , c) in the remainder of the paper. The last two lines of
the INVARIANT express a cache coherence property: when a processor is
reading, (i.e., in the S control state), no other processor can modify its cache
(i.e., is in M). This property will be referred as Inv read(m, e, s , i , c) in the
following sections. Of course, Inv is the conjunction of Inv type and Inv read.

• The INITIALISATION and OPERATIONS clauses contain respectively a
(generalized) substitution U assigning an initial value to each state vari-
able and a collection SUBSTS of generalized substitutions that modify their
values.

Any processor can read in its own cache, except if it is in the Invalidate
state (I), which means that its content is not consistent with central memory.
In the Shared state (S), the cache content is a copy of central memory.
Before it is modified, a cache in state S asks others to be invalidated, by
invoking operation sendWriteInvalidate, and switches to Exclusive (E state).
This control state means that it owns the exclusiveness of writing into the
central memory and into the cache. This writing step is represented by the
write operation, that moves each cache into the Modified state (M). The
sendRead operation expresses that a processor with an invalidated cache (i.e.
in I state) that requires to read in central memory moves all the Modified
and Exclusive processors to the Shared state. Initially, all the processors are
Invalidated.

180 J.-F. Couchot and F. Dadeau

Notice that this example illustrates that sets are convenient structures to
express local transitions (by adding and removing a singleton), rendez-vous
transitions (by adding and removing two singletons), and broadcast transi-
tions (by building the union of sets), commonly used in distributed cache-
coherence algorithms.

ThePOsof aBabstractmachine ensure its consistencywith respect to the invari-
ant. They are syntacticallybased on a weakest precondition calculus (syntactically
written []) that transforms a predicate according to a generalized substitution. In-
tuitively, [S] I represents the set of states where all successors by S verify I .

POs can be separated into two classes. First, the PO [U] I that is valid if and
only if the invariant is established by the initialisation. Next, for each substitu-
tion S ∈ SUBSTS, the PO I ⇒ [S] I ensures that the operation defined by S
preserves the invariant.

The next section presents how we translate the B machines for the PO gen-
erator.

3 Translation into Why Language

In a previous work [19], we have shown how the POs expressing the consistency
of a B machine can be discharged into the haRVey prover. Even if this technique
is scalable, it is constrained to the evolution of this prover. Instead of developing
as many PO generators as there exists provers, we translate the B machine into
a Hoare-Floyd style program annotated with assertions corresponding to the
invariant and we let a generic tool producing the POs and sending them to
several provers.

The Why [24] tool presents this combination of features, allowing to dis-
charge the generated POs into a variety of provers such as Simplify, Zenon [22],
CVC-lite [8], Ergo [18], or SMT provers (Yices [23], mathsat [12], rv-sat [25]).
Furthermore, it makes it possible to declare logical models as sets of types, func-
tions, predicates and axioms declarations. The axiomatized symbols can be used
in both programs and annotations.

Intuitively, the translation of a B machine into the Why language consists, in
a first step, in axiomatizing the symbols and, in a second step, in translating the
general substitution language into an annotated language. We present hereafter
the intuitions of these two steps.

First of all, the theories that are commonly used in B are axiomatized in Why
syntax. For instance, here is how we define set theory with a set of axioms, called
SSET in [19]

∀ e . (e 	∈ ∅), (1)
∀ e . (e ∈ {e}), (2)

∀ e, f . (e 	= f ⇒ ¬e ∈ {f }), (3)
∀ e, s1, s2 . (e ∈ s1 ∪ s2 ⇔ (e ∈ s1 ∨ e ∈ s2)), (4)
∀ e, s1, s2 . (e ∈ s1 ∩ s2 ⇔ (e ∈ s1 ∧ e ∈ s2)), (5)

Guiding the Correction of Parameterized Specifications 181

∀ e, s1, s2 . (e ∈ s1 \ s2 ⇔ (e ∈ s1 ∧ ¬e ∈ s2)), (6)
∀ s1, s2 . (s1 ⊆ s2 ⇔ ∀ e.(e ∈ s1 ⇒ e ∈ s2)), (7)
∀ s1, s2 . (s1 = s2 ⇔ ∀ e.(e ∈ s1 ⇔ e ∈ s2)). (8)

Such axioms are polymorphic in the sense that they are defined for any element
e, f of sort α and any set s1, s2 is of sort α set. The typing variable α is
instantiated according to the formula it is applied to.

Each symbol of this theory gives rise to two symbols in Why, one for the
expression part and one for the predicative part.

For instance, union : α set × α set → α set, which expresses the union
function, is given by

parameter union_ : s1: ’a set → s2: ’a set →
{ } ’a set { set_equal(result,union(s1,s2)) }

which signifies that, given two sets of α elements, s1 and s2, the result of
(union s1 s2) is a set of α elements that is equal to the union which is
axiomatized with

axiom union_def :
forall s1: ’a set . forall s2: ’a set . forall el : ’a.
member(union(s1,s2),el) ↔ member(s1,el) or member(s2,el),

where member is also axiomatized, according to axioms (1), (2) and (3).
Total function theory is axiomatized by the theory of arrays [6], given by

∀ a, i , e . rd(wr(a, i , e), i) = e (9)
∀ a, i , j , e . i 	= j ⇒ rd(wr(a, i , e), j) = rd(a, j) (10)

∀ a, b . (∀ i . rd(a, i) = rd(b, i)) ⇔ a = b (11)

where a, b are arrays of sort (α, β)array, i , j are indexes of sort α, which allows
arrays to be indexed with any sorts, and e is a value of sort β. Other relations
(e.g. partial functions) are rewritten into sets of pairs, using symbols defined in
SSET and the theory of pairs [39],

∀ i , j . π1(〈i , j 〉) = i
∀ i , j . π2(〈i , j 〉) = j

∀ p . 〈π1(p), π2(p)〉 = p

where i is of sort α, j is of sort β, p is of sort (α, β)pair and 〈 〉 has the following
signature 〈 〉 : α× β → (α, β)pair.

We sketch here the translation of B operations into functions. First of all,
the predicate describing the INVARIANT clause is duplicated both in the pre-
condition and in the postcondition of each function encoding an operation. The
parameters of the function are those of the operation, plus the local variables in
the scope of an ANY operator. The generalized substitutions are directly trans-
lated into their counterpart in the Why programming language with assertions.

182 J.-F. Couchot and F. Dadeau

For instance, the precondition is moved in the precondition part of the function,
the if . . . then . . . else . . . structure is translated into its equivalent in Why. The
any . . .where . . . then . . . choice becomes an if . . . then . . . in Why as follows: the
declared variable is introduced as a parameter of the function and the condition
of the any is duplicated as in the if condition.

S || (S ′ || S ′′) = (S || S ′) || S ′′

S || S ′ = S ′ || S

skip || S = S

(P =⇒ S) || S ′ = P =⇒ (S || S ′)

(S []S ′) || S ′′ = (S || S ′′) [] (S ′ || S ′′)

(if P thenS else S ′) || S ′′ = if P then (S || S ′′) else (S ′ || S ′′)

(@x . S) || S ′ = (@x . (S || S ′)) if x is not free in S ′

where S , S ′, S ′′ are generalized substitutions, P is a predicate, x
is a variable.

Fig. 3. Reduction of the || operator

We now focus on the parallel substitution (‖), classically present in abstract
machines. Since this feature is not taken into account by the Why language, we
reduce this substitution following a method that is twofold. First, the parallel
substitution is reduced until it only concerns assignments, following the rules [9]
given in Fig. 3. Next, multiple assignments are classically rewritten into sequen-
tial ones by introducing temporary variables storing the expression on the right
part of the assignment. Such local variables declarations are encoded with a
let . . . in . . . structure in Why.

Back to MESI. The following code is the write function translated from the
write operation where the function parameter p results from the any translation
and the local variable t originates from ||.

let write (p : elem) =
{ Inv(m,e,s,i,c) }
if ((member_ !c p) && (member_ !e p) then
begin
let t = (minus_ !e (singleton_ p)) in
m := (union_ !m (singleton_ p));
e := t

end
{ Inv(m,e,s,i,c) }

The results of our experiments on discharging proof with provers that can
be plugged into Why are given in Fig. 4 with a timeout (TO) set to 10s for an
Intel Pentium 4, 1.7GHz with 756Mb of memory. They reveal how hard it is

Guiding the Correction of Parameterized Specifications 183

Proof Obligations Simplify Ergo Yices Zenon haRVey-sat haRVey-fol CVC-lite

sendWriteInvalidate yes yes yes TO no unknown unknown

sendRead yes yes yes TO no unknown unknown

write unknown no unknown TO no unknown unknown

Fig. 4. Results of discharging POs

to write a correct specification for first order provers that are not complete but
hopefully correct. They show that the write function does not seem to respect
the invariant: no prover succeeds in establishing the validity of the corresponding
proof obligation. In other words, the unsatisfiability of its negation, i.e.

Inv(m, e, s , i , c) ∧(
∃ p . (p ∈ c ∧ p ∈ e ∧ ¬Inv(m, e, s , i , c)

)[
m ← m ∪ {p}, e ← e \ {p}

]
,

(12)

can not be established by any prover.
The designer is then invited to correct the write operation or to strengthen

the invariant. If she/he guesses that the invariant is not inductive and uses an
automated method to strengthen it according to the write operation, she/he
obtains the following assertion

Inv(me, e, s , i , c) ∧ (∀ p . (p ∈ c ∧ p ∈ e) ⇒ Inv(m ∪ {p}, e \ {p}, s , i , c)) .
(13)

Although this approach is correct, it usually leads to invariance formulae that do
not make sense and, thus, produces what we absolutely want to avoid, namely
meaningless specifications.

The next section shows how to exhibit a counter-example, as a starting point
for debugging a specification.

4 Parameter Instantiation

This section suggests two methods for providing a counter-example from a (sat-
isfiable) formula. The first method combines a result in model theory with a
constraint solving procedure. The second one, coarser, follows the intuition by
applying incremental approach.

4.1 Sort-Based Instantiation

Intuitively, the sets used in a specification often originate from a partitioning of
a more general set, and hence, are generally pairwise disjoint. Such sets can be
seen as sorts and we are left to check the satisfiability of a formula in a multi-
sorted logic. For this formula, the Herbrand satisfiability method takes the sorts
into account and produces a finite model when it exists. Such model can be
seen as an instantiation of the initial set-theoretical formula. We now detail this
approach, composed of five steps.

184 J.-F. Couchot and F. Dadeau

The first step consists in syntactically extracting the sorts of the formula. Sets
declared as machine parameters are considered as primary sorts in a first phase.
Then, all abstract sets that are defined as subsets of a primary sort are checked
to be pairwise disjoint, and are considered as sorts in a second phase. Predicates
that define the sorts are then removed from the invariant formula and in the
inherited proof obligations.

The second step is a reduction of set-theoretical symbols: in the remaining
formula, all the uninterpreted symbols from the set-theory, except membership
(e.g. inclusion, union) are translated into formulas where the sole predicates are
equality between two elements of sort α and membership (by applying axioms
from (5) to (8) in the left to the right direction of implication). Similarly, equality
of arrays is reduced to equality between values by applying axiom (11).

The third step consists in assigning one sort to each variable. The two non
obvious cases are when a variable should have two sorts, which results from the
union of two sets, and when the variable belongs to a singleton. The former
case gives rise to splitting by introducing a fresh variable and duplicating the
corresponding subformula. The latter is interpreted by the fact that the variable
has the same sort as the element in the singleton. In what follows, p : τ denotes
that p is of sort τ .

Back to MESI. The PO corresponding to (12) in which sets are translated
into sorts is

((∃ p1 : s) ⇒ ¬(∃ p2 : m)) ∧
(∃ p : e) ∧ (∃ p3 : s) ∧
(∃ p4a : m) ∨ (∃ p4b : e)

where the last line is the result of the interpretation of (∃ p4 ∈ m ∪ {p}).

The fourth step exploits the multi-sorted Herbrand satisfiability method: we
classically start by considering a Skolem form of the formula and use the following
quantifier elimination result.

Theorem 1. ([26, Cor. 1]) Let τ be a sort such that there is no function symbol
f of signature τ1 ×· · ·×τn → τ , n 	 1, and let x be a variable of sort τ . Suppose
that ∀ x . Φ(x) is a closed formula in Skolem form, then ∀ x . Φ(x) is satisfiable if
and only if the finite conjunction

∧
c∈Hτ

Φ(c) is satisfiable, where Hτ is the set
of all well-sorted terms of sort τ .

Notice that this method might not be complete since all variables do not neces-
sarily occur in the formula. In that case, the remaining set variables are supposed
to be the empty set.

Furthermore, in addition to giving a counter-example when validity is not au-
tomatically proved, this instantiation technique provides an enumerated specifi-
cation as general as the parameterized one, since it yields an over approximation
of the specification parameters. For the details of the method, see [26]. Such
specification is called a general bounded specification in the following.

Guiding the Correction of Parameterized Specifications 185

Back to MESI. The multi-sorted Herbrand universe calculus gives the follow-
ing instantiation

m ⊆ {p4a} ∧ e ⊆ {p4b , p} ∧ s ⊆ {p3} ∧ i = ∅ ∧ c ⊆ {p, p3, p4a , p4b} (14)

for PO (12). When applied on other proof obligations, this calculus shows that a
set c of cardinality less or equal to 8 is sufficient to make the MESI be a general
bounded specification.

The fifth and last step uses the set-theoretical CLPS constraint solver [11] in
order to return a counter-example as explicit as possible. CLPS is natively able
to manage set-theoretical and relational structures based on the notion of pairs.
Thus, it manages relations and all kinds of functions. The native CLPS operators
are given in Fig. 5. All other operators from the B notation are rewritten in order
to match the solver syntax. For example, let X and Y two relations and consider
the B left overriding function X �− Y which defines the union between Y and
all the pairs (x , y) ∈ X such that x does not belong to the domain of X . Such
expression is substituted with the fresh variable Z , which is constraint by the
following set of literals:

{D2 = dom(Y),D1 = dom(X),D3 = D1–D2,D4 = D3 #X ,Z = D4 ∪ Y }

In this formula, dom and # are native CLPS operators.
This solver uses an AC-3 arc consistency algorithm, meaning that the consis-

tency of a constraint system can only be ensured by checking that a solution to
the constraint system described by this formula exists. Its strongest requirement
is the finiteness of the data domains, which is ensured by previous step.

Solver Primitive Usual definition Mathematical notation

A eq B Equality A = B
A neq B Disequality A �= B
A ins S Membership A ∈ S
A nin S Non Membership A �∈ S
S sub T Inclusion S ⊆ T
S # N Cardinality N = card(S)
rdom(Q,S,R) Domain Restriction Q = S � R
dom(S,R) Domain S = dom(R)
ran(S,R) Range S = ran(R)
inv(Q,R) Inverse relation Q = R−1

power(T,S) Powerset T = P(S)
pcart(S,T,U) Cartesian product S = T × U
couple(X,Y) Couple X
→ Y
S union T Union S ∪ T
S inter T Intersection S ∩ T
S setminus T Set difference S \T

Fig. 5. Operators of the CLPS set solver

186 J.-F. Couchot and F. Dadeau

Back to MESI. The ground formula (14) ∧ (12) is given to CLPS which con-
cludes that it is satisfiable for m = ∅, e = {p}, s = {p3} and i = ∅.

4.2 Incremental Instantiation

The instantiation technique presented in Sect. 4.1 is obtained by applying the
theorem given in [26]. This theorem requires several conditions to be applied.
When it is not applicable, our proposal is to automatically perform an incre-
mental instantiation of the abstract sets.

The idea is to consider arbitrarily finite sets for each abstract set. These
sets must be finite and contain a large number of constants. For instance, one
can start from a partial Herbrand instantiation if this one is infinite. Thus, the
data domains are finite. The conjunction of the formula with this instantiation
constraint is then given to CLPS, as previously, to check its satisfiability.

Back to MESI. Suppose that the prover was unable to conclude on the exam-
ple, an instantiation of c = {q̃1, q̃2, q̃3, . . . , q̃N } is computed by iterating over the
values of N . The instantiated formula is then given to CLPS which checks its
satisfiability.

Figure 6 shows the results of this experiment on PO formula (12), for which
we iterated over the size of c from 1 to 4. In this figure, each q̃i , 1
 i
 4, is a
fresh constant. The minimal counter-example is obtained for a set c containing
two elements, as in Sect. 4.1.

Value of c Satisfiability of (12) Example

{q̃1} no none

{q̃1, q̃2} yes s = {q̃1}, e = {q̃2}
{q̃1, q̃2, q̃3} yes s = {q̃1, q̃2}, e = {q̃3}

{q̃1, q̃2, q̃3, q̃4} yes s = {q̃1, q̃2, q̃3}, e = {q̃4}

Fig. 6. Results using an iterative instantiation on the example

The designer is left with the choice of strengthening the invariant or modifying
the operations. The next section shows how we can guide her/him in this choice.

5 Reaching the Counter-Example

The previous section ends with an instantiation of the state variables that makes
the invariant not inductive. Thus, all data in the B specification are finite and
different techniques, such as model-checking may be applied. We propose to first
integrate ProB [31] to find a counter-example. If the system is too complex for
the model-checking to be applied, we propose to use symbolic animation to reach
a counter-example. In this latter case, we use the symbolic animation engine of
the BZ-Testing-Tools [3,11] framework, in order to compute an execution trace

Guiding the Correction of Parameterized Specifications 187

that leads to the violation of the invariant. This engine has already been put
into practice in the framework of automated generation of boundary test cases
from set-theoretical B models [4,5].

The two animators impose a strong requirement that the model must be finite.
Such a requirement is compliant with our method, as presented in the previous
section which may produce a general bounded specification When the method
cannot be applied, an incremental instantiation of the parameters is repeatly
applied to check the reachability of the counter-example.

In this section, we first introduce ProB and we present its application on the
MESI example (Sect. 5.1). Then, in order to demonstrate the scalability of our
approach, we formalize the notion of symbolic animation (Sect. 5.2), we give
some efficiency keynotes on the BZ-Testing-Tools animator (Sect. 5.3) and we
show how to interpret the animation results, by pointing out of which part of
the specification should be modified (Sect. 5.4).

5.1 Using the ProB Model-Checker

ProB [31] is a model checker that relies on constraint solving technologies to
compute the transitions between states. From a given state, ProB compute all
the successors and checks whether the invariant is true or false within these
states. If the invariant is checked as false, it returns an execution path that
provides a counter-example. ProB offers heuristics to detect permutations in
states and is optimized to handle relatively large states spaces [32,33].

Back to MESI. We instantiate the MESI machine, setting the parameter c to
8 elements. ProB computes in 10 seconds the 270 states of the system execu-
tion, and does not find a violation of the invariant. Thus, we conclude that the
invariant is not inductive, but still, it is an invariant, which can not be violated
during the possible executions of the system.

Since ProB enumerates the complete reachability graph of the B specification
execution, it may face the problem of combinatorial explosion, when applied
to large systems. Therefore, we propose to use symbolic animation in order to
handle large state spaces.

5.2 Symbolic Animation

Symbolic animation consists in using an underlying constraint solver for repre-
senting symbolic states, each of which gather a possibly large number of concrete
states. Thus, it avoids the exhaustive enumeration of possible states, as done in
ProB [31], by providing an optimization that increases the scalability of the
approach.

A symbolic state is a constraints system over the state variables, that rep-
resents a set of concrete states, whose state variable values are the solutions
of this constraint system. Thus, a symbolic state is seen as a set of constraints
over the state variables. The consistency of these constraints guarantees that the
symbolic state represents at least one concrete state; there are as many concrete
state as solutions to the constraint system.

188 J.-F. Couchot and F. Dadeau

5.3 Efficiency Keynotes on the BZ-Testing-Tools Animator

This section presents the keynotes on the BZ-Testing-Tools animator. To show
how convenient the animator is for the task of checking the reachability of a
counter-example, we focus on its relevant features: behavior extraction and be-
havior animation heuristic.

First of all, the possible transitions are extracted from the B operations, as
a path through the control-flow graph of the considered operation. Intuitively,
an if . . . then . . . else . . . structure is split into two subparts, the first one repre-
senting the if . . . then part, the second one representing the else part.

Each B operation is then decomposed into behaviors, which represent a path
in the control-flow graph of the operation. A behavior b(P ,X ,X ′) is expressed
as a predicate over P , X and X ′ which respectively stand for the operation
parameters, the current values of state variables and their next values. Consider
for instance the B operation in Fig. 7, where x is a state variable of type BOOL.
It is composed of the two behaviors (p ∈ 0..1000 ∧ p ≤ 500 ∧ x ′ = TRUE) and
(p ∈ 0..1000 ∧ p > 500 ∧ x ′ = FALSE). Notice that on the MESI example,
given in Fig. 2, each operation has only one behavior.

Activating a behavior of an operation from a functional model is seen as
solving a constraint satisfaction problem between the state before the operation
and the constraints given by the transition of the operation. More formally, let
ρ1(X) be a symbolic state and let b(P ,X ,X ′) be a behavior extracted from
an operation, symbolic state ρ2(X ′) resulting from the activation of b in ρ1 is
defined by

ρ2(X ′) = ρ1(X) ∧ ∃P . b(P ,X ,X ′).

The behavior b is said to be activable in ρ1 if and only if the resulting constraint
system is satisfiable.

Back to MESI. Consider the MESI example, with a finite set c arbitrarily
instantiated to c = {q̃1, q̃2, q̃3, q̃4}. Let ρ1(m0, e0, s0, i0) be

m0 = ∅ ∧ e0 = ∅ ∧ s0 = ∅ ∧ i0 = {q̃1, q̃2, q̃3, q̃4}

op1(p) =̂
PRE

p ∈ 0..1000
THEN

IF p ≤ 500 THEN
x := TRUE

ELSE
x := FALSE

END
END

Fig. 7. A simple B operation with two behaviors

Guiding the Correction of Parameterized Specifications 189

i.e. the symbolic state representing the initial state. The set of symbolic states
resulting from the activation of the sendRead operation is defined by

ρ2(m1, e1, s1, i1) ≡ ρ1(m0, e0, s0, i0) ∧ ∃ p0 . p0 ∈ i0 ∧
m1 = m0 ∧ e1 = e0 ∧ s1 = s0 ∪ {p0} ∧ i1 = i0\{p0}

which is satisfiable, if and only if

ρ2(m1, e1, s1, i1) ≡ ρ1(m0, e0, s0, i0) ∧ p̃0 ∈ {q̃1, q̃2, q̃3, q̃4} ∧
m1 = ∅ ∧ e1 = ∅ ∧ s1 = {p̃0} ∧ i1 = {q̃1, q̃2, q̃3, q̃4}\{p̃0}

is, where p̃0 is the Skolem constant of p0. Such a predicate implicitly represents
4 concrete states, according to the value of p̃0 in {q̃1, q̃2, q̃3, q̃4}.

Symbolic animation consists in repeating this process at will, for each oper-
ation, until a pertinent state is reached. Notice that symbolic states are never
enumerated. This technique reduces the reachability graph size and delays combi-
natorial explosion. The BZ-Testing-Tools animator implements these principles.
It is provided with a Graphical User Interface, that makes it possible to validate
a B model. Nevertheless, it is also possible to use the API of the animator to
automatically animate a B model. In this case, the animation can be random-
ized, or guided by a target, reached by using heuristics as it is now described.
The heuristic aims at guiding the choice of behaviors –and, as the consequence,
of operations– to activate in order to reach the counter-example.

The counter-example trace computation uses the symbolic animation guided
by a “best-first” algorithm and a customized heuristic function. This algorithm
aims at defining whether a symbolic state is pertinent w.r.t. the given target or
not. The trace computation aims at reaching a state that satisfies the constraints
given by the predicate describing the counter-example. The parameters of the
activated operation are left unspecified until the search ends with a counter-
example that instantiates them. The heuristic we use consists in computing the
distance from the current symbolic state to the target to reach, also considered
as a symbolic state. The distance between two symbolic states is evaluated as
sum of the distances between the symbolic values of all variables in these states.

A symbolic variable is defined by a domain and associated constraints depend-
ing on other variables. The distance between two symbolic variables (represented
by Diff in the Fig. 8) is evaluated to 0 if and only if the domains of the two
variables intersect. Otherwise, the distance depends on the type of the data, and
the proximity of the two domains.

Figure 8 illustrates the concept of distance between two domains. In this
figure, “VarDom” represents the variable domain, “CurrVarDom” is the domain
of the current state variable, “TargetVarDom” is the domain of the variable in
the targeted state, and “UnifiedDom” is the unification of the two variables, i.e.,
the intersection of the latter two domains. Such heuristic has been shown to beat
other approaches in symbolic animation [17].

Back to MESI. Running the counter-example search algorithm does not de-
tect any counter-example for a depth of 6, in 17 seconds.

190 J.-F. Couchot and F. Dadeau

Fig. 8. Distance between two variables

Compared to ProB, this algorithm does not produce a better result on a small
example. Moreover, the result of the algorithm is partial (since it is bounded),
whereas in ProB it is absolute. Indeed, the computational complexity of the
algorithm is O(nd) where n is the number of behaviors extracted from the B
machine operations, and d is the search depth. Nevertheless, this heuristic is
useful. First, it makes it possible to handle large systems, and thus, it is possible
to provide a result even when ProB fails. In addition, it is important to notice
that this algorithm only aims at quickly and efficiently finding a trace, when
it exists. If the trace does not exist, as in the MESI example, the computation
of all symbolic paths of a given depth has to be performed before concluding,
matching the worst case computational complexity.

5.4 Interpreting the Reachability Result

Basically, there are three possible issues for the animation. The first case is when
the animator ends after having reached the counter-example. In this case, the
formula claimed to be an invariant is not one, let-alone an inductive invariant.
The spurious operations may be corrected by strengthening their guards.

The second case is when the analysis ends on the general bounded specifica-
tion with an unreachable counter-example, when the graph is small enough to
be completely explored. In this case, the method has computed the strongest
invariant, which is indeed inductive but may be meaningless for the specifier
(in the running example, it contains 270 states!). We propose that the specifier
strenghten the invariant by removing the states corresponding to the counter-
example.

The third case is when the bounded animator gives an unreachability answer
for an arbitrarily instantiated specification: since reachability is undecidable, the
search depth is bounded, and so, it is possible that no counter-example trace will
be found. What does it mean if the invariant has not been checked as inductive?
The states that cause the invariant to be violated can simply be unreachable,
and the B specification is still correct.

Guiding the Correction of Parameterized Specifications 191

The answer depends on the goal of the specification. If the specification aims
at establishing B refinement properties, it is mandatory that the invariant is
strengthened to be inductive. If the specification aims at verifying safety proper-
ties or generating test cases, the guarantee that the invariant cannot be violated
for a given execution depth k may be sufficient. Even in a test generation process,
it is still possible to run the generated tests (whose size is greater than k) on the
specification, and to check that no test provokes a violation of the invariant.

Back to MESI. We give to the animator the general bounded specification
MESI, such that c has cardinality less than or equal to 8. It concludes that the
counter-example cannot be reached. The designer is then invited to strenghten
the invariant by removing states where s and e are simultaneously non empty,
which is given by the new invariant

Inv type(m, e, s , i , c) ∧
(
(∃ p1 . p1 ∈ c ∧ p1 ∈ s) ⇒

(¬(∃ p2 . p2 ∈ c ∧ p2 ∈ m) ∧ ¬(∃ p3 . p3 ∈ c ∧ p3 ∈ e))
)
.

This invariant is both meaningful and inductive.

6 Related Work

To the best of our knowledge, the approach we present here is original and has
never been introduced previously.

Several works [7,13,26] have shown cases where all subtleties of a parameterized
system are already present in some instantiated version of it. As done in this paper,
these work strongly rely on the fact that the correctness of a small instantiated sys-
tem implies the correctnessof the parameterizedone. Unfortunately, such methods
build a consistency proof by providing strengthened invariants which may be to in-
volved for the designer tounderstand (it is even referred as invisible invariants in [7]
since they may not be seen). In this work, less ambitious but more pragmatic, the
model instantiation is computed thanks to sorts. By translating sets into sorts, we
follow the idea previously developed in [10].

Similar work exists on combining test generation and proof. In [30], the au-
thors describe a process that aims at increasing the confidence in a Java program
that has not been proved correct w.r.t. its JML specification. Indeed, when the
prover fails to establish the correctness of a piece of code, a large suite of tests
cases is produced. The process is different from our approach, since we sys-
tematically compute a reachable counter-example. Moreover, we only focus on
the specification itself, without having to take a particular implementation into
account.

The work we present in this paper is also related to bounded model-checking
(BMC) [14], in which a model execution is computed until a given depth to check
whether different properties are satisfied. In practice, BMC has been applied
to the verification of safety properties [40]. Our work differs from the other
animation/model-checking approaches, such as [15,36,31,35], in the sense that,
for us, the animation is only employed to find a counter-example. Indeed, most of

192 J.-F. Couchot and F. Dadeau

the other approaches consider animation itself as the answer to the verification
problem. For us, animation is complementary to proof techniques. Moreover,
our proposal makes it possible to deal with a parameterized models, that cannot
be treated by classical animators without being first instantiated. From that
point of view, the trinity Proof-Instantiation-Animation proposed here is clearly
original.

7 Conclusion and Future Work

This paper has presenteed strategies of collaboration between provers and sym-
bolic animators using constraint solving, in order to help the specifier dealing
with the answers given by these tools. The relevance of this help is illustrated in
the context of the correction of parameterized B machines.

First, the provers have to be automated, in order to avoid the hazard of having
to manually deal with some subtle proof obligations, that dismiss the modeller
from her/his initial specification work. Second, the goal of checking parameter-
ized systems makes it mandatory to resort to theorem proving techniques. Third,
parameter-related data are a burden for all theorem provers. Even when the ter-
mination of the computation is experimentally observed, it cannot in general be
theoretically determined. Thus, it is sometimes necessary to stop the execution
of the prover if it seems to diverge. Fourth, the unavoidable instantiation of
parameters makes it possible to compute a counter-example, and an associated
execution trace, using advanced constraint solving techniques.

Among the tools we have considered, the Why tool is especially interesting,
since it addresses a large variety of provers, working on different theories. This
increases the chances for a proof obligation not checked by one of the provers to
be checked by another one.

For the future, we are curently implementing a complete tool chain that aims
at automatically checking the correctness of B invariants by combining proof
and constraint solving, as described in Fig. 1. This will make it possible for us to
validate our approach on realistic and industrial case studies. Separated exper-
iments with Why tool [29] and BZ-Testing-Tools [3] that target the verification
or validation of large-scale systems are very promising.

References

1. Abrial, J.-R.: The B Book - Assigning Programs to Meanings, August 1996. Cam-
bridge University Press, Cambridge (1996)

2. Abrial, J.-R., Cansell, D.: Click’n’prove: Interactive proofs within set theory. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 1–24. Springer,
Heidelberg (2003)

3. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F.,
Vacelet, N., Utting, M.: BZ-TT: A tool-set for test generation from Z and B using
constraint logic programming. In: Proc. of Formal Approaches to Testing of Soft-
ware FATES 2002, co-located with CONCUR ’02, pp. 105–120, INRIA Technical
Report (August 2002)

Guiding the Correction of Parameterized Specifications 193

4. Ambert, F., Bouquet, F., Legeard, B., Peureux, F.: Automated boundary-value test
generation from specifications - method and tools. In: 4th Int. Conf. on Software
Testing, ICSTEST 2003, pp. 52–68 (2003)

5. Ambert, F., Bouquet, F., Legeard, B., Peureux, F., Py, L., Torrebore, E.: Auto-
mated Test Case and Test Driver Generation for Embedded Software. In: ICSSEA
- Int. Conf. on Software, System Engineering and Applications, December 2004,
pp. 34–49 (2004)

6. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Journal of Information and computation 183, 140–164 (2003) Special
Issue on the 12th International Conference on Rewriting Techniques and Applica-
tions (RTA’01) (2003)

7. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with
automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

8. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating valid-
ity checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, Springer,
Heidelberg (2004)

9. Bert, D., Potet, M.-L.: La méthode B. École Jeunes chercheurs en programmation
(May 2003)

10. Bodeveix, J.-P., Filali, M., Munoz, C.: A Formalization of the B method in Coq
Available at http://www.csl.sri.com/papers/pbs2/

11. Bouquet, F., Legeard, B., Peureux, F.: A constraint solver to animate a B spec-
ification. International Journal on Software Tools for Technology Transfer 6(2),
143–157 (2004)

12. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Schulz,
S., Sebastiani, S.: MathSAT: Tight integration of SAT and decision procedures.
Journal of Automated Reasoning 35, 265–293 (2005)

13. Chou, C.-T., Mannava, P.K., Park, S.: A simple method for parameterized veri-
fication of cache coherence protocols. In: Hu, A.J., Martin, A.K. (eds.) FMCAD
2004. LNCS, vol. 3312, pp. 382–398. Springer, Heidelberg (2004)

14. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods in System Design 19(1), 7–34 (2001)

15. Clarke, E.M., Grumberg, O., Peled, A.: Model Checking (CLA e 99:1 1.Ex). MIT
Press, Cambridge (1999)

16. ClearSy. Manuel de référence du langage B v.1.8.5. (2004) Available at
http://www.atelierb.societe.com/ressources/manrefb.185.fr.pdf

17. Colin, S.: Procédures de recherche en génération de tests à partir de modéles de
spécifications. PhD thesis, LIFC - University of Franche-Comté (2005)

18. Conchon, S., Contejean, E.: The Ergo automatic theorem prover (2006) Available
at http://ergo.lri.fr/

19. Couchot, J.-F., Déharbe, D., Giorgetti, A., Ranise, S.: Scalable automated prov-
ing and debugging of set-based specifications. Journal of the Brazilian Computer
Society 9(2), 17–36 (2003) ISSN 0104-6500

20. Déharbe, D., Ranise, S.: Light-weight theorem proving for debugging and verifying
units of code. In: 1st International Conference on Software Engineering and Formal
Methods (SEFM’03), pp. 220–228 (2003)

21. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

22. Doligez, D.: The zenon prover. Distributed with the Focal Project, at
http://focal.inria.fr/

http://www.csl.sri.com/papers/pbs2/
http://www.atelierb.societe.com/ressources/manrefb.185.fr.pdf
http://ergo.lri.fr/
http://focal.inria.fr/

194 J.-F. Couchot and F. Dadeau

23. Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Hei-
delberg (2006)

24. Filliâtre, J.-C.: Why: a multi-language multi-prover verification tool. Research Re-
port 1366, LRI, Université Paris Sud (March 2003)

25. Fontaine, P.: haRVey-sat (2006) Available at
http://harvey.loria.fr/haRVey.html

26. Fontaine, P., Gribomont, E.P.: Decidability of invariant validation for parameter-
ized systems. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003.
LNCS, vol. 2619, pp. 97–112. Springer, Heidelberg (2003)

27. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL (A theorem-proving
environment for higher order logic). Cambridge University Press, Cambridge (1993)

28. Holzmann, G.: The model checker SPIN. Software Engineering 23(5), 279–295
(1997)

29. Hubert, T., Marché, C.: A case study of C source code verification: the Schorr-
Waite algorithm. In: 3rd IEEE International Conference on Software Engineering
and Formal Methods (SEFM’05), pp. 190–199. IEEE Computer Society Press, Los
Alamitos (2005)

30. Ledru, Y., du Bousquet, L., Dadeau, F., Allouti, F.: A case study in matching
test and proof coverage. In: Proceedings of the Third International Workshop on
Model-Based Testing (MBT’07), co-located with ETAPS’07, to be pubilshed in
ENTCS (2007)

31. Leuschel, M., Butler, M.: Pro B: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

32. Leuschel, M., Butler, M., Spermann, C., Turner, E.: Symmetry reduction for B
by permutation flooding. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS,
vol. 4355, pp. 79–93. Springer, Heidelberg (2006)

33. Leuschel, M., Turner, E.: Visualising Larger State Spaces in ProB. In: Treharne,
H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp.
6–23. Springer, Heidelberg (2005)

34. The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, Version 8.0 (2004)

35. McMillan, K.L.: The SMV system. Carnegie-Mellon University (1992)
36. Miller, T., Strooper, P.: Animation can show only the presence of errors, never

their absence. In: ASWEC ’01: Proceedings of the 13th Australian Conference on
Software Engineering, p. 76. IEEE Computer Society Press, Los Alamitos (2001)

37. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) Automated Deduction - CADE-11. LNCS, vol. 607, pp. 748–752.
Springer, Heidelberg (1992)

38. Papamarcos, M.S., Patel, J.H.: A low-overhead coherence solution for multiproces-
sors with private cache memories. In: ISCA ’84: Proceedings of the 11th annual
international symposium on Computer architecture, pp. 348–354. ACM Press, New
York (1984)

39. Ranise, S.: Satisfiability solving for program verification: towards the efficient com-
bination of Automated Theorem Provers and Satisfiability Modulo Theory Tools.
In: Ahrendt, W., Baumgartner, P., de Nivelle, H. (eds.) Proc. of the DISPROVING:
Non-Validity, Non-Provability, co-located with IJCAR 2006, pp. 49–58 (2006)

40. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a sat-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

http://harvey.loria.fr/haRVey.html

Proving Linearizability Via Non-atomic

Refinement

John Derrick1, Gerhard Schellhorn2, and Heike Wehrheim3

1Department of Computing, University of Sheffield, Sheffield, UK
J.Derrick@dcs.shef.ac.uk

2Universität Augsburg, Institut für Informatik, 86135 Augsburg, Germany
schellhorn@informatik.uni-augsburg.de

3Universität Paderborn, Institut für Informatik, 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Linearizability is a correctness criterion for concurrent ob-
jects. In this paper, we prove linearizability of a concurrent lock-free
stack implementation by showing the implementation to be a non-atomic
refinement of an abstract stack. To this end, we develop a generalisation
of non-atomic refinement allowing one to refine a single (Z) operation
into a CSP process. Besides this extension, the definition furthermore
embodies a termination condition which permits one to prove starvation
freedom for the concurrent processes.

Keywords: Object-Z, CSP,refinement, concurrent access, linearizability.

1 Introduction

Linearizability was defined by Herlihy and Wing [14] as a correctness criterion
for objects shared by concurrent processes. Like serialisability for database trans-
actions, it permits one to view concurrent operations on objects as though they
occur in some sequential order. As Herlihy and Wing put it,

Linearizability provides the illusion that each operation applied by con-
current processes takes effect instantaneously at some point between its
invocation and its response.

Recently, Groves et al. [9,4] started work on verifying correctness (and more
specifically linearizability) of concurrent data structures using forward and back-
ward simulations between I/O-automata. Concurrent data structures allow con-
current access by several processes, the only atomic operations being the reading
of variables and an atomic compare-and-swap (atomically comparing the values
of two variables plus setting a variable). In general concurrent access increases
the level of parallelism in the use of the data structure but potentially introduces
flaws due to individual atomic operations being applied out of order (with respect
to what was required by the design). Linearizability is a correctness condition
that is used to check whether such flaws have been introduced, it is, however, not

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 195–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

196 J. Derrick, G. Schellhorn, and H. Wehrheim

trivial to demonstrate that linearizability holds. The approach taken by Groves
et al. uses I/O-automata to model the concurrent implementation as well as an
abstract data structure in which operations are taken to be atomic. Correctness
of the implementation is shown via forward and backward simulations between
these automata (with proofs conducted in PVS), that is, the simulations guaran-
tee linearizability, and the allowable orderings of concrete operations is described
via program counters.

In this paper, we investigate the use of (Object-)Z refinement [7,20] as a means
for showing the correctness, and in particular linearizability, of concurrent imple-
mentations of abstract data structures. However, in moving between an abstract
data structure and its concurrent implementation the granularity of operations
completely change, we therefore have to employ non-atomic refinement as the
correctness criteria. Non-atomic refinement as defined in [5,6] allows an abstract
operation to be implemented by a sequence of concrete operations. We generalise
this here since our objective is to encode the orderings of concrete operations not
via program counters or sequences but more naturally by process descriptions,
and we use CSP [15] to model this. The description of the concurrent imple-
mentation is thus given in a combination of CSP and Object-Z (in CSP-OZ
[11]). As a consequence, the existing definition of non-atomic refinement (only
allowing for fixed sequences of concrete operations) is generalised to include op-
eration decompositions given as CSP processes. We prove that this definition of
non-atomic refinement guarantees linearizability.

In addition to linearizability, we study progress properties for concurrent data
structures. As the concurrent implementations need to guarantee interference-
freedom for concurrent accesses, operations which have already been partly car-
ried out might need to be reset or retried. This potentially introduces starvation
of processes. While Groves et al. are concerned with proving safety properties,
i.e. linearizability, we, in addition, show that a particular form of starvation free-
dom to be also guaranteed by definition of non-atomic refinement that we use.
To do this, we introduce a condition on a variant in our simulation rules, similar
to variants employed in Event B [2]. The whole approach is exemplified by the
example of a concurrent stack implementation from [4].

The paper is structured as follows. The next section introduces our running
example of a concurrent stack modelled in a combination of Object-Z and CSP.
Section 3 sets the ground for our investigations, giving amongst others the ex-
isting definition of non-atomic refinement in Z, more specifically the forward
simulation rules. This definition is then generalised in Section 4 to allow refine-
ments of a single operation into a whole CSP process. In Section 5 we show that
this generalised definition of non-atomic refinement guarantees linearizability.
The last section concludes and discusses related work.

2 An Abstract and a Concrete Stack

As an example of a data structure and its concurrent implementation we take
the lock-free implementation of a stack as treated in [4]. Abstractly, the stack is a

Proving Linearizability Via Non-atomic Refinement 197

sequence of elements of some given type T (containing some dedicated element
empty) together with two operations push and pop. Here, we will use plain
Object-Z [10,19] to describe the abstract stack and a combination of Object-Z
and CSP (CSP-OZ [11]) for the implementation.

In Object-Z, a class specification consists of a state schema defining the vari-
ables of the class, an initialisation schema giving constraints for initial states
and a number of operation schemas. An operation schema defines the variables
to be changed by the operation (in a Δ-list), declares inputs and outputs (with
? and !, respectively) and gives constraints on the allowed changes. Primed vari-
ables in these predicates refer to after states. For instance, operation pop below
is allowed to change stack , has an output variable v ! and defines the output to
be empty when the stack is empty, and to be the head of the stack otherwise.
In the former case the stack remains unchanged, in the latter the top element is
removed.

A

stack : seqT
Init
stack = 〈 〉

push
Δ(stack)
v? : T

stack ′ = 〈v?〉 � stack

pop
Δ(stack)
v ! : T

stack = 〈 〉 ⇒
v ! = empty ∧ stack ′ = stack

stack 	= 〈 〉 ⇒
v ! = head stack ∧ stack ′ = tail stack

Next, the stack is implemented by a linked list of nodes. A node consists of a
value val : T and a pointer next to the next node in the list. The pointer may also
be empty (value null). A variable head is used to keep track of the current head
of the list. Operations push and pop are split into several smaller operations,
making new nodes, swapping pointers etc.. There is one operation atomically
carrying out a comparison of values and an assignment: CAS (mem, exp,new)
(Compare-and-swap) compares mem to exp; if this succeeds mem is set to new
and CAS returns true, otherwise the CAS fails, leaves mem unchanged and
returns false. Below the implementations of pop and push are first given in
pseudo-code. (Note, that pop continues on the next page.)

push(v : T): pop(): T:
1 n:= new(Node); 1 repeat
2 n.val := n; 2 ss:= Head;
3 repeat 3 if ss = null then
4 ss:= Head; 4 return empty;
5 n.next := ss; 5 ssn := ss.next;

198 J. Derrick, G. Schellhorn, and H. Wehrheim

6 until CAS(Head,ss,n) 6 lv := ss.val
7 until CAS(Head,ss,ssn);
8 return lv

The push operation first creates a new node with the value to be pushed onto
the stack. It then repeatedly sets a local variable ss to head and the pointer
of the new node to ss . This ends once the final CAS detects that head (still)
equals ss upon which head is set to the new node n. Note that the CAS in push
does not necessarily succeed: in case of a concurrent pop, head might have been
changed in between. The pop is similar: it memorizes the head it started with
in ss , then determines the remaining list and the output value. If head is still
equal to ss in the end, the pop takes effect and the output value is returned.

For an Object-Z description of this, we first have to define an appropriate free
type for the linked list and operations for extracting values from nodes in the
list.

Node ::= node〈〈T × Node〉〉 | null

first : Node �→ T

∀ t : T ,n : Node •
first node(t ,n) = t

second : Node �→ T

∀ t : T ,n : Node •
second node(t ,n) = n

collect : Node �→ seqT

collect = λN . if N = null then 〈〉 else 〈first(N)〉 � collect(second(N))

collect(N) constructs the sequence of nodes reachable from N . It is undefined for
cyclic structures. Since in our example cyclic structures are not used, we assume
all equations collect(N) = stack to imply definedness of collect implicitly.

The class specifying the implementation of the stack contains an Object-Z part
describing all the operations of the above given pseudo-code. The numbering is
according to line numbers in the pseudo-code, but where we have sometimes
merged two operations into one (e.g., psh2 incorporates lines 1 and 2).

In addition to the Object-Z, we have a number of CSP process equations
describing the possible orderings of these operations. We use a small fragment
of CSP, specifically, → stands for the prefix operator of CSP (sequencing) and
� is the external choice. The main process, main = U ||| O , specifies that the
push and pop operations are to be executed concurrently, since processes O and
U specify that every stack object should continously allow pop’s and push’s.
Finally, the CSP processes PUSH and POP model one execution of the above
pseudo-code programs, respectively.

C
main = U ||| O U = PUSH ; U O = POP ; O
PUSH = psh2 → Rep
Rep = psh4 → psh5 → (CAStpsh → Skip

� CASf psh → Rep)

Proving Linearizability Via Non-atomic Refinement 199

POP = pop2 → (pop3t → Skip
� pop3f → pop5 → pop6 → (CAStpop → Skip

� CASf pop → POP))

head , sso, ssu, ssn,n : Node
lv : T

Init
head = null

psh2
Δ(n)
v? : T

n ′ = node(v?,null)

psh4
Δ(ssu)

ssu ′ = head

psh5
Δ(n)

n ′ = node(first n, ssu)

CAStpsh
Δ(head)

head = ssu
head ′ = n

CASf psh

head 	= ssu

pop2
Δ(sso)

sso′ = head

pop3t
v ! : T

sso = null ∧ v ! = empty

pop3f

sso 	= null

pop5
Δ(ssn)

ssn ′ = second sso

pop6
Δ(lv)

lv ′ = first sso

CAStpop
Δ(head)
v ! : T

head = sso ∧ head ′ = ssn
v ! = lv

CASf pop

head 	= sso

The semantics of this combination of CSP and Object-Z can best be under-
stood as a parallel composition of the CSP and the Object-Z semantics: at any

200 J. Derrick, G. Schellhorn, and H. Wehrheim

point in time there are certain operations which the CSP process currently al-
lows and others which the Object-Z part allows; if an operation is allowed by
both the object can execute it and thereby progresses to a new Object-Z state
and a new (the remaining) CSP process. Note that the CSP process is making
no restrictions on the values of inputs and outputs, these solely depend on the
Object-Z part. For a formal definition of the semantics see [11].

The objective in this paper is to show that the data structure C is linearizable
with respect to A. Linearizability requires that each operation appears to occur
atomically at some point between its invocation and its response. For this, we
first have to fix a linearization point for every operation, saying which operation
in the implementation is the one where the effect ”seemingly instantaneous”
takes place. For both push and pop these are the CASt operations, and for pop
it is, in addition, pop3t . Once the linearization operation has been executed
the effect has taken place. For the proof of linearizability we proceed in two
steps: we first show that C is a non-atomic refinement of A (in a sense yet
to be defined) and then in general prove that non-atomic refinements imply
linearizability.

3 Background

The general idea of the correctness proof is to show linearizability via a refine-
ment proof. A prominent property of the stack example is the fact that a single
abstract operation is split into several concrete operations. There are currently
two notions of refinement for Z (or Object-Z) which can cope with this issue:
weak refinement [8,7] and non-atomic refinement [5,6]. The former assumes that
all but one of these operations abstractly correspond to a skip, that is, has
no effect. The latter, however, allows one to really split an abstract operation,
here into a sequence of two concrete operations. This latter definition is thus
our starting point, however, one which we will later generalise to allow a con-
crete decomposition where several concrete operations are ordered according to
a CSP process. We thus start by explaining the current version of non-atomic
refinement as given in [5,6].

The following definition applies to pure Object-Z specifications C and A,
where we (as usual) use a blocking interpretation of preconditions. It assumes
that every abstract operation AOp is split into exactly two operations COp1

o
9

COp2. It extends the standard conditions of forward simulation with additional
conditions dealing with the new states where the sequence COp1

o
9COp2 has been

started but not yet terminated, where we record this information in a sequence S .
For example, S might be 〈COp1〉 denoting the fact that COp1

o
9 COp2 has begun

but not yet terminated. Furthermore, at the concrete level, these decompositions
might well be interleaved. Thus, DOp1, say, occurs after COp1 but before COp2,
S would then be 〈COp1,DOp1〉. For every such sequence we use a specific retrieve
relation RS , which records the partial effects which might already have been
achieved in the concrete specification.

Proving Linearizability Via Non-atomic Refinement 201

Definition 1
A specification C is a non-atomic forward simulation of the specification A if
there is a retrieve relation R such that every abstract operation AOp is recast
into a sequence of concrete operations COp1

o
9 COp2, and there is a family of

retrieve relations RS such that the following hold.

I CState • CInit ⇒ (∃AState • AInit • R)
C R〈 〉 = R
S1. ∀AState, CState, CState ′ • RS ∧ COp1 ⇒ ∃AState ′ • ΞAState ∧ (RS�〈COp1〉)′

S2 Start.
∀AState; CState • R ⇒ (preAOp ⇐⇒ preCOp1)

S2 Continue.
∀AState,CState • RS ∧ COp1 ∈ S ⇒ preCOp2

S3. ∀AState,CState,CState ′ • RS ∧ COp2 ⇒
COp1 ∈ S ∧ ∃AState ′ • AOp ∧ (RS\〈COp1〉)′ �

We briefly explain every condition. Condition I is the usual initialisation and
condition C describes a coupling between the retrieve relations: when the se-
quence S is empty, RS coincides with the usual retrieve relation. Condition S1
is used to record the started but not yet finished refinements in RS : once a COp1

has been executed we are in an intermediate state which is related to the same
abstract state as before, however, under a retrieve relation RS with COp1 at-
tached to the end of the sequence. The conditions S2 are applicability conditions:
the start condition guarantees that COp1 can be executed whenever the corre-
sponding abstract operation is enabled, and the continue condition guarantees
that started refinement may always be completed. Condition S3 (correctness
condition) rules out that refinements can be started ”in the middle”, i.e., that
a COp2 occurs with no previous (uncompleted) COp1, and in addition does the
matching with the abstract operation. It furthermore (upon completion of the se-
quence) removes the first operation from RS . These conditions are schematically
represented in Figure 1.

Condition I and C Condition S1 Condition S3

AInit

CInit

I

<>
R = R

COp1

R
s R

s^<COp1>

COp1 COp2

AOp

R
s

R
S \ COp1

Fig. 1. Conditions required for non-atomic refinement

202 J. Derrick, G. Schellhorn, and H. Wehrheim

Examples of the definition of non-atomic refinement are given in [6], which
also shows that it is sound with respect to an action refinement definition of
CSP failures refinement.

Our aim is to derive a definition of non-atomic refinement that is (i) applicable
to examples such as the stack, and (ii) guarantees linearizability. For Definition
1, linearizability is already guaranteed: if a concrete specification has executions
where operations interfere in an undesired way, it is not possible to match the
concrete operations with the abstract specification and the conditions for this
non-atomic refinement are not satisfied. However, this notion of non-atomic re-
finement isn’t applicable to our example as it stands: we need to split abstract
operations into CSP processes, not just sequences of two operations.

In the next section, we generalise Definition 1 to derive a definition of non-
atomic forward simulation that ensures linearizability. Before doing so we first
have to define some notations about CSP processes that we need later in the
paper.

Notation and Conventions. We assume that the abstract operation to be split
will always be named AOp, its CSP process is AOP . The operations in AOP
are usually COp1, . . . ,COpn . In our example, AOp might be push and the CSP
process PUSH would then be AOP . In the CSP process describing the refinement
of an abstract operation we only use the CSP fragment consisting of →, ;
(sequencing), � (external choice) and process calls to occur. Hence we essentially
allow regular expressions here. These CSP processes are then combined using
interleaving (|||, parallel composition with no synchronisation). In the CSP terms
we will only have operation names, never values of inputs and outputs. We
assume the main process of our specification to be defined as main = Q1 || . . . ||
Qn , where every Qk is Qk = AOPk ; Qk . Thus all implementations of abstract
operations are running in parallel, AOPk describes one execution of the abstract
operation’s implementation.

Definition 2
The traces (viz: executions) of CSP processes are defined via its operational se-
mantics (see e.g., [18]). The set of terminating traces of a CSP process P is
Term(P) = {tr | tr � 〈√〉 ∈ traces(P)}. An operation op itself is terminal if it
is last in a terminal trace: op = last(tr) for some tr ∈ Term(P), otherwise it is
non-terminal.

The initial operations of some CSP process P are denoted by init(P) = {Op |
P −Op−→}, and the CSP processes after executing a trace tr are P after tr = {P ′ |
P −tr−→ P ′}. We let init be defined on sets of processes as well. �

For example, terminated traces of PUSH include 〈psh2, psh4, psh5,CAStpsh〉
as well as 〈psh2, psh4, psh5,CASf psh, psh4, psh5,CAStpsh〉, and CAStpsh is the
only terminal operation of PUSH .

For POP we have, e.g., init(POP) = {pop2}, and POP after 〈pop2, pop3f ,
pop5〉 is pop6 → (CAStpop → skip � CASf pop → POP).

Proving Linearizability Via Non-atomic Refinement 203

4 Generalised Non-atomic Refinement

There are several aspects we need to take into account when we generalise non-
atomic refinement from a decomposition of two operations in sequence to arbi-
trary CSP processes. The most important point is that when an arbitrary CSP
process is used, it may restrict the allowed order of operations (over and above
a fixed sequential decomposition). Hence for the applicability and correctness
conditions we have to look at both the current Z state and the current CSP
process.

Definition 3 below is based on the same ideas as the previous definition of
non-atomic refinement: we have a family of relations RS , R〈 〉 representing the
usual abstraction relation and for a nonempty S , RS are retrieve relations for
the intermediate states in the concrete implementation.

The sequence S represents initial parts of the CSP processes, where operations
coming from different abstract operations can be mixed (depending on the order
in which they have taken place). For instance, a possible sequence S for our
stack example could be 〈psh2, psh4, pop2, psh5〉 (i.e., the parts of PUSH and
POP that have already been executed). When projecting such a sequence onto
the alphabet of a particular CSP process (i.e., S α(AOP)), we see the projection
to the operations belonging to one abstract operation.

In deriving the correct forward simulation conditions there are different situ-
ations which have to be covered:

S2 Start. S α(AOP) might be empty for some AOP , that is, there is currently
no refinement started for AOP . In this situation we have to guarantee that
the process AOP can start if and only if the abstract operation is enabled.

S2 Continuation. S α(AOP) might not be empty but also is not a terminated
trace, and here we need to ensure continuation.

S1 and S3. Some started but not yet terminated trace in a refinement is con-
tinued with a concrete operation (note that this requires the operation to
be enabled in the current state as well as allowed next in the CSP process).
If this continuation does not lead to termination, this is abstractly matched
by an empty step, however, we record the effect of the operation in RS .
If this continuation leads to termination, the correct match with a corre-
sponding abstract operation has to take place and the whole completed trace
is removed from S (condition S3).

We are led to the following definition, where conditions C and I are the coupling
of abstraction relations and the initialisation condition, respectively. Condition
S4 is discussed below.

Definition 3. A specification C is a generalised non-atomic forward simulation
of the specification A if there is a retrieve relation R such that every abstract
operation AOp is recast into a CSP process AOP, and there is a family of sim-
ulation relations RS and an ordering relation <WF such that the following hold.

204 J. Derrick, G. Schellhorn, and H. Wehrheim

C R〈 〉 = R
I ∀CState • CInit ⇒ (∃AState • AInit ∧ R〈 〉)
S1 ∀ non-terminal COpi • ∀AState; CState; CState ′ •

RS ∧ COpi ∧ (S � 〈COpi〉) α(AOP) ∈ traces(AOP)

⇒ ∃AState ′ • ΞAState ∧ (RS�〈COpi〉)′

S2 Start
∀AState; CState •
RS ∧ (S α(AOP) = 〈 〉) ⇒ (preAOp ⇔ ∃COpi ∈ init(AOP) • preCOpi)

S2 Continuation
∀AState; CState • RS ∧ S α(AOP) 	∈ Term(AOP) ∧ (S α(AOP) 	= 〈 〉)

⇒ ∃COpi ∈ init(AOP after (S α(AOP))) • preCOpi

S3 ∀ terminal COpt • ∀AState; CState; CState ′ •
RS ∧ COpt ∧ (S � 〈COpt 〉 α(AOP) ∈ Term(AOP)

⇒ ∃AState ′ • AOp ∧ (RS\(S�〈COpt 〉α(AOP)))′

S4 ∀AState; CState; CState ′ •
RS ∧ COpi ∧ S α(AOP) 	= 〈〉 ∧ (S � 〈COpi〉) α(AOP) ∈ traces(AOP)

⇒ (S � 〈COpi〉,CState ′) <WF (S ,CState) �

Condition S4 is a completely new condition ensuring progress in a refinement.
To understand the need for a progress condition, consider the following ’decom-
position’ of a single abstract operation AOp, given here as a CSP process:

P = Invoke → (COp1 → P
�

COp2 → skip)

It is easy to define R = R〈 〉 and a family of simulations R〈Invoke〉

= R〈Invoke,COp1〉 = R〈Invoke,COp1,COp1〉 = . . . pictured as in Figure 2.
Without condition S4 this example satisfies the requirements of a generalised

forward simulation, and thus would be seen as an acceptable implementation of
AOp, even though we have introduced non-termination - potentially Invoke and
COp1 can be applied indefinitely.

Fig. 2. Potential non-termination in a non-atomic refinement

Proving Linearizability Via Non-atomic Refinement 205

Condition S4 ensures that this type of non-progression cannot be introduced,
not even when several operations are in progress. It requires the existence of a
well-founded ordering over S×CState (that is, the existence of a well-founded set
(WF , <WF)) such that every ’progression’ lowers its value, and S4 expresses this
requirement. The precondition S α(AOP) 	= 〈〉 excludes invoking operations
that start a new process from this condition.

Taken together, the roles of the individual conditions can be expressed as in
Figure 3.

Fig. 3. The roles of the conditions in a generalised forward simulation

We now show how the definition can be applied to our running example of a
concurrent implementation of a stack.

4.1 Example

The definition of generalised non-atomic forward simulation requires, in addi-
tion to the standard retrieve relation between abstract and concrete states, the
existence of a number of simulation relations for each abstract operation be-
ing decomposed. To derive these, one needs to understand how the concurrent
implementation evolves as it performs its individual steps.

Consider first push. This first performs the updates as pictured in Figure 4.
Initially, and after every completed push and pop, head in C should point to

the same list as stack , we thus have:

R
AState
CState

collect(head) = stack

The effect of any of the concrete components psh2, psh4 and psh5 is to update
the concrete state, but still preserving the invariant collect(head) = stack . The

206 J. Derrick, G. Schellhorn, and H. Wehrheim

Fig. 4. The concrete push operation

latter can only change after a ’visible’ concrete effect, that is, a linearisation
point. We thus have the following.

R〈psh2〉

AState
CState
v? : T

collect(head) = stack
n = node(v?,null)

R〈psh2,psh4〉

AState
CState
v? : T

collect(head) = stack
n = node(v?,null)

R〈psh2,psh4,psh5〉

AState
CState
v? : T

collect(head) = stack
ssu = head
n = node(first v?, ssu)

R〈psh2,psh4,psh5,CASf psh〉 = R〈psh2〉

R〈psh2,psh4,psh5,CAStpsh〉 = R

Note that head = ssu is established by psh4 but not recorded in R〈psh2,psh4〉,
since executing CAStpop will destroy this property. We do not need this property
since CAStpsh checks if the head is still ssu. Note also that we record and
preserve the input value v? received in psh2 in the simulation relations. Thereby
we are able to move it forwards through the triangular diagrams set up by
condition S1 until we are able to check equality with the abstract input in
condition S3.

The relations for push are conjunctively combined with simulations for pop.
These latter ones can be derived in a similar fashion where R = R〈pop2〉, and
others such as

Proving Linearizability Via Non-atomic Refinement 207

R〈pop2,pop3f 〉

AState
CState

collect(head) = stack
sso 	= null

R〈pop2,pop3f ,pop5〉

AState
CState

collect(head) = stack
sso 	= null
ssn = second sso

R〈pop2,pop3f ,pop5,pop6〉

AState
CState

collect(head) = stack
sso 	= null
ssn = second sso
lv = first sso

R〈pop2,pop3f ,pop5,pop6,CASf pop〉

AState
CState

collect(head) = stack
sso 	= head

Note that at the end of the loop, when CASf pop has just been executed, we
need the information that the test has been negative1. Again:

R〈pop2,pop3f ,pop5,pop6,CASf pop,pop2〉 = R〈pop2〉

R〈pop2,pop3f ,pop5,pop6,CAStpop〉 = R = R〈pop2,pop3t〉

The superscripts of the simulations intuitively correspond to values of the
program counter of the pseudo-code for push and pop given in Section 2.
Given any S ∈ init(PUSH ||| POP) the necessary superscript S1 for the
push operation is the longest postfix of S α(PUSH) that is a prefix of
〈psh2, psh4, psh5,CAStpush〉 or 〈psh2, psh4, psh5,CASf psh〉. Similarly S2 is de-
fined as the longest postfix of S α(POP) that is a prefix of one of 〈pop2, pop3t〉,
〈pop2, pop3f , pop5, pop6,CASf pop〉 or 〈pop2, pop3f , pop5, pop6,CAStpop〉. The
family RS of relations needed for the proof obligations is defined as

RS := RS1 ∧ RS2

It is easy, but tedious, to verify conditions C, I, S1, S2 start, S2 continu-
ation and S3.

The basic idea to establish termination via condition S4 is that starting the
push loop will establish head = ssu in psh4. The equation will subsequently be
invalidated only when the pop process executes CAStpop. But then the POP
process has terminated, and the next iteration of the push loop will terminate
too, since an intervening CAStpop is no longer possible.

This fact can be exploited to define an order that decreases in every step as
follows:

– first, the number of instructions left that the push/pop process must execute
to reach the end of the push/pop loop is relevant, since it decreases during

1 This is required for the lifeness proof only. For safety R〈〉 would be sufficient.

208 J. Derrick, G. Schellhorn, and H. Wehrheim

execution of every instruction within the loop. This distance to the end of
the loop can be defined as

pushdist(S) := 4 − length(S1),
popdist(S) = 5 − length(S2)

– second, the pop loop (5 instructions) will be executed once more, when the
push program is in its “critical section” after ssu has been set to be head in
psh4, but when head = ssu is false again. Therefore we define a predicate
critpush(S) which is true, if last(S1) is one of psh4 or psh5. Dually, predicate
critpop(S) is true iff last(S2) ∈ {pop3f , pop5, pop6,CASf pop}.

– Finally, if none of the two processes has finished, then as argued above, one of
them can modify head , so that the other must go once more through the loop
(4 or 5 instructions). That the push processes has finished is characterised
by last(S1) = CAStpsh and similarly for the pop process as last(S2) ∈
{pop3t ,CAStpop}.

Altogether we can define an upper bound on the maximal number of instruction
needed to finish both loops (identifying boolean values true and falsewith1 and 0)

#(S ,CState) := pushdist(S) + popdist(S)
+ 4 ∗ (head 	= ssu ∧ critpush(S))
+ 5 ∗ (head 	= sso ∧ critpop(S))
+ 5 ∗ (last(S1) 	= CAStpsh ∧ last(S2) 	∈ {pop3t ,CAStpop})

and use this number to define

(S ′,CState ′) <WF (S ,CState)iff #(S ′,CState ′) < #(S ,CState)

The order decreases for every step executed by the pop process.

– For CAStpop and pop3t popdist(S) decreases and head 	= ssu may become
true. This may add 4 when critpush(S) holds, but then last(S1) 	= CAStpsh,
so the last summand no longer adds 5, since last(S2) enters {pop3t ,CAStpop}.

– When pop3f , pop5 or pop6 are executed, popdist(S) decreases and everything
else remains constant.

– Executing pop2 has only to be considered when the loop is repeated, i.e. when
S2 = 〈pop2, pop3f , pop5, pop6,CASf pop〉. In this case RS2 implies head 	=
sso (CASf pop has just been executed) and popdist(S) increases from 0 to 4.
The critical section of pop is entered, and pop2 sets sso = head . Therefore
the fourth summand no longer adds 5 and #(S ,CState) decreases in this
case too.

For push operations the argument is as follows:

– For CAStpsh pushdist(S) decreases and head 	= sso may become true. This
may add 5 when critpop(S) holds, but then last(S2) 	∈ {pop3t ,CAStpop}.
Since last(S1) enters CAStpsh, the last summand no longer adds 5.

Proving Linearizability Via Non-atomic Refinement 209

– When psh4 or psh5 are executed pushdist(S) decreases. All other summands
remain unchanged: for psh4 citpush(S) becomes true, but since head = ssu
after the operation, the third summand remains unchanged.

– Executing CASf psh restarts the loop of the push program, and increases
pushdist(S) from 1 to 3. Since head 	= ssu remains true and critpush(S)
becomes false, the third summand no longer adds 4.

– Executing psh2 does not need not to be considered, since it is only executed
to start a push (when S α(PUSH) = 〈〉).

Summarising this proves condition S4: every step that does not start a new push
or pop process leads to a smaller pair (S ,CState). With no new processes started
the running ones will terminate after a finite number of steps, livelock is absent.

5 Linearizability

Finally, we come to linearizability. Rather than attempt an additional proof, we
show linearizability by proving that generalised non-atomic refinement implies
it. The results of the previous section are then enough to show all we set out to
do.

For the rest of this section we assume that A = (AState,AInit , (AOpj)j∈J)
is the Z component of the abstract specification. A is implemented by a specifi-
cation C which includes a CSP component. Then, for every abstract operation
AOpj we have some CSP process AOP which consists of a number of concrete
operations from α(AOP) implementing it. The set of operations (COpi)i∈I is
thus partitioned into a disjoint set of operations, one for each abstract operation.

To prove that refinement implies linearizability, we need to formalize the latter,
which we do by realising that it is a correctness criterion which requires a com-
parison of histories or runs of specifications. Thus we need to give an operational
semantics defining the runs of our classes, and we do this now.

Definition 4. Let C be a a combined CSP and Object-Z specification with some
dedicated main process main and some Object-Z part (CState,CInit , (COpi)i∈I).
A run of C is a transition sequence

(cs0,P0) −COpi0 .in0.out0−−−−−−−−−→ (cs1,P1) −COpi1 .in1.out1−−−−−−−−−→ . . .

such that

– initialisation: cs0 ∈ CInit and P0 = main, and
– succession: (csj , inj , outj , csj+1) ∈ COpij and Pj −

COpij−−−→ Pj+1.

From a run (cs0,P0) −COpi0 .in0.out0−−−−−−−−−→ (cs1,P1) −COpi1 .in1.out1−−−−−−−−−→ . . . we can derive
its history H = COpi0 .in0.out0 COpi1 .in1.out1 �

Note that the in’s and out ’s can also be empty. The difference between the histo-
ries and traces of a CSP process is that the former include input and output values.

210 J. Derrick, G. Schellhorn, and H. Wehrheim

We write traces(H) to denote the sequence of operation names, without any in-
put and output values. We assume that there are no τ -transitions generated from
the CSP part, that is, the Object-Z and CSP components progress jointly, which
can be guaranteed if we exclude internal choice from the CSP fragment used, and
use a specific semantics for process identifiers. For specifications without a CSP
process, runs are defined similarly, simply leaving out the CSP component.

For linearizability we have to fix when an operation starts and when it ends.
Thus we assume that we have fixed operations standing for the invocation and
the return of an abstract operation. For instance, pop2 is the invocation of an
abstract Pop and pop3t and CAStpop are possible returns. Inputs are passed
upon invocation and outputs upon return. Particular instantiations of operations
with inputs or outputs give us events: for example, pop2.5 and pop3t .empty are
possible events. The set of all invocation events is Inv , those specific to some
operation AOp are Inv(AOp), i.e., Inv =

⋃
j∈J Inv(AOpj). Similarly, Ret is the

set of all return events and Ret(AOp) those of some operation AOp.

Definition 5. A history is sequential if it can be divided into subsequences be-
longing to one abstract operation AOp, such that they start with an invocation
from Inv(AOp), end with a return from Ret(AOp) and, in between, have only
operations of α(AOP) (this is the completed part). The last such subsequence
can possibly end without being completed (a pending operation). The history is
complete if every invocation operation is eventually followed by a corresponding
return. �

For example, H = 〈psh2.2, psh4, pop2, psh5,CAStpsh, pop3f , psh2.8〉 is not se-
quential since in the initial subsequence 〈psh2.2, psh4〉, although psh2.2 ∈
Inv(Push), psh4 is not a return of Push.

In general, histories need not be sequential but might contain arbitrary inter-
leavings of implementations of (abstract) operations (as far as the specification
allows). A history H is thus an interleaving of some sequential histories, each de-
scribing the invocations of one operation which currently have taken place. Some
invocations can be completed (viz. followed by a return), but others cannot. We
let rem(H) denote those subsequences of H containing only the non-completed
parts. For instance, for H = 〈psh2.2, psh4, pop2, psh5,CAStpsh, pop3f , psh2.8〉
the remaining non-completed part is rem(H) = 〈pop2, pop3f , psh2.8〉. This is
almost those part of the current run that we keep in the sequence S of our re-
lations RS . Almost, but not quite, since we do not have values of inputs and
outputs in S . We let rem ′(H) be the sequence without input and output values.

For linearizability, we are interested in the global order of abstract operation
execution, and this will be determined by the order of their linearization points,
which - in our case - are the terminal operations. This gives rise to the following
notion of equivalence on histories.

Definition 6. Two histories H1 and H2 are equivalent iff the following hold:

1. H1 Ret = H2 Ret and
2. ∀AOp • H1 Inv(AOp) = H2 Inv(AOp). �

Proving Linearizability Via Non-atomic Refinement 211

Requirement (2) states that the individual operations are invoked with the same
inputs. Requirement (1) states a similar property for returns and outputs (thus
the same inputs lead to the same outputs), and, in addition, requires that the
overall ordering of returns is the same in H1 and H2. Strictly speaking, this
is a little stronger than is required by linearizability (which only requires that
the partial orders defined by returns and invocations are consistent), but it is
guaranteed by non-atomic refinement and easier to state.

Definition 7. A history H is linearizable if it can be extended by zero or more
events to give a history H ′ such that

1. H ′ is complete, and
2. H ′ is equivalent to some complete sequential history G.

A specification is linearizable if all its histories are. �

This allows us to finally state the result.

Theorem 1. Let A,C be Object-Z specifications, C with and A without a CSP
component. If C is a generalised non-atomic refinement of A, then C is lineariz-
able.

Proof
We show that

1. every history H of C can be completed to some history H ′,
2. for H ′ there is some corresponding history HA of A,
3. from HA we can easily construct a sequential history G of C which is equiv-

alent to H ′.

Proof of 2):
Let H be a complete history and RS the family of retrieve relations proving C
to be a generalised non-atomic refinement of A. For the history H there is an
associated run

(cs0,P0) −COp0.in0,out0−−−−−−−−−→ (cs1,P1) . . .

We inductively show that we can construct a corresponding run of A.

Base case. Using condition I we can find a state as0 such that as0 ∈ AInit and
(as0, cs0) ∈ R〈 〉.

Induction step. For our induction step we assume the following hypothesis
(which is also fulfilled by the base case). The current CSP process is always
of the form Pk = Pk ,1; Q1 || . . . || Pk ,n ; Qn . If we have constructed the
abstract run as0 −COp0.in0,out0−−−−−−−−−→ as1 . . . ask and have a history Hk so far, then
we have for S = rem ′(Hk) that (ask , csk) ∈ RS , main −trace(Hk)−−−−−−→ Pk and for

all j , 1 ≤ j ≤ n, AOPj −trace(Hk)α(AOPj)−−−−−−−−−−−−→ Pk ,j .
By definition of the semantics we know that Pk −COpk−−−→ Pk+1 and (csk , ink ,

outk , csk+1) ∈ COpk . Assume COpk ∈ α(AOpj). Since AOPj −Sα(AOPj)−−−−−−−→
Pk ,j we get (S � 〈COpk 〉) α(AOPj) ∈ traces(AOPj). Now we have to
consider two cases:

212 J. Derrick, G. Schellhorn, and H. Wehrheim

– COpk is non-terminal:

Then by condition S1 of the refinement (ask , csk+1) ∈ RS�COpk and the
abstract run is not extended further.

– COpk is terminal:
We know Pk −COpk−−−→ Pk+1 and hence (definition of terminal) Pk ,j −COpk−−−→
skip and (S � 〈COpk 〉) α(AOPj) ∈ Term(AOPj). By condition S3 of
the refinement we thus find ask+1 such that for ink being the input value
of the last invocation stored in RS and outk being the output value in
COpk .outk we have (ask , ink , outk , ask+1) ∈ AOPj and (ask+1, csk+1) ∈
RS\((S�〈COpk 〉)α(AOPj)).

Proof of 1):
Let H be a non-completed history of C . Consider its run, ending in state csk .
With the same argument as above we can construct a corresponding abstract
run of A, i.e., we have a state ask and a relation RS such that (ask , csk) ∈ RS

and S has all the properties we assumed in the induction above. Let AOpj

be an operation whose implementation is not completed. Then S α(AOPj) 	∈
Term(AOPj) nor is S α(AOPj) = 〈 〉. Hence by condition S2 Continuation
there is a COpi ∈ α(AOPj) which is enabled and the run can be continued
with this operation. By condition S4 this continuation of one abstract operation
eventually ends; then we continue with the next pending operation.
Proof of 3):
Straightforward: the abstract sequence constructed in 2) has an ordering con-
sistent with the returns and has the same inputs and outputs. Thus we just
construct the corresponding sequential run out of it; its history will be equiva-
lent to the one we started with. �

This completes the proof that generalized non-atomic refinement implies lin-
earizability, and that, for example, our concrete implementation of the stack
possesses this property.

6 Conclusion

There are a number of (related) approaches to showing that concurrent imple-
mentations are correct. To some extent these depend on the mechanisms used in
the algorithms, for example whether locks are used to provide critical sections.

Our starting point is the recent work of Groves and Colvin who have been
considering verification of concurrent implementations which use ’compare and
swap’ instructions to avoid the potential bottlenecks of lock-based algorithms.

Specifically, we have taken the core of the algorithm in [4] and reformulated it
using an integration of Object-Z and CSP. In [4] specifications are based on two
IO-automata. One roughly corresponds to our concrete model with interleaved
runs, while the other corresponds to runs with sequential histories G that we
construct in the linearization proof of Section 5. Linearization is shown using
refinement of IO Automata using forwards and backwards simulation and was

Proving Linearizability Via Non-atomic Refinement 213

mechanized in PVS. The basic proof principle common to our and their approach
is induction over the length of histories.

However, our approach differs from theirs, in that we start with an abstract
level containing atomic stack operations. We also have embedded sufficient con-
ditions into our generalised forward simulation so that it alone guarantees both
refinement as well as linearizability.

Further work by Groves and Colvin includes [12], where they verify an im-
proved version of an algorithm of Hendler et al [13] (which in turn extends the
algorithm of [4]) using a new approach based on action systems. This approach,
like ours starts with an abstract level of atomic push and pop operations.

The approach uses a different proof technique than our and their earlier work.
Specifically, it works by induction over the number of completed abstract runs
(traces in Term(POP) or Term(PUSH)) contained in a history, and it is based
on the approaches of Lipton [17] and Lamport and Schneider [16].

Both [4] and [12] consider safety only, while we also consider absence of live-
lock. For action systems, the extension of the framework of [16] to considering
termination described in [3] should be analogous to our consideration of livelock.

Additional relevant work in state-based formalisms includes [1], where the
correctness of a concurrent queue algorithm using Event B is shown. There, in-
stead of verifying a given implementation, correctness is achieved by construction
involving only correct refinement steps.

Acknowledgements

We would like to thank Simon Bäumler for discussions on ideas in this paper.
John Derrick was supported by the Leverhulme Trust via a Research Fellowship
for this work.

References

1. Abrial, J.-R., Cansell, D.: Formal Construction of a Non-blocking Concurrent
Queue Algorithm (a Case Study in Atomicity). Journal of Universal Computer
Science 11(5), 744–770 (2005)

2. Abrial, J.-R., Cansell, D., Mery, D.: Refinement and Reachability in Event B.
In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS,
vol. 3455, pp. 222–241. Springer, Heidelberg (2005)

3. Back, R.-J.: Atomicity refinement in a refinement calculus framework. Reports on
Computer Science and Mathematics 141, Abo Akademi (1993)

4. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simu-
lation. ENTCS 137, 93–110 (2005)

5. Derrick, J., Wehrheim, H.: Using coupled simulations in non-atomic refinement.
In: Bert, D., Bowen, J.P., King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 127–147.
Springer, Heidelberg (2003)

6. Derrick, J., Wehrheim, H.: Non-atomic refinement in Z and CSP. In: Treharne, H.,
King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, Springer,
Heidelberg (2005)

214 J. Derrick, G. Schellhorn, and H. Wehrheim

7. Derrick, J., Boiten, E. (eds.): Refinement in Z and Object-Z: Foundations and Ad-
vanced Applications, May 2001. Formal Approaches to Computing and Information
Technology. Springer, Berlin Heidelberg (2001)

8. Derrick, J., Boiten, E., Bowman, H., Steen, M.: Specifying and Refining Internal
Operations in Z. Formal Aspects of Computing 10, 125–159 (1998)

9. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical
lock-free queue algorithm. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

10. Duke, R., Rose, G., Smith, G.: Object-Z: A specification language advocated for the
description of standards. Computer Standards and Interfaces 17, 511–533 (1995)

11. Fischer, C.: CSP-OZ - a combination of CSP and Object-Z. In: Bowman, H., Der-
rick, J. (eds.) Second IFIP International conference on Formal Methods for Open
Object-based Distributed Systems, July 1997, pp. 423–438. Chapman & Hall, Syd-
ney (1997)

12. Groves, L., Colvin, R.: Derivation of a scalable lock-free stack algorithm. ENTCS
(To appear, 2007)

13. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
SPAA ’04: Proceedings of the sixteenth annual ACM symposium on Parallelism in
algorithms and architectures, pp. 206–215. ACM Press, New York (2004)

14. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12(3), 463–
492 (1990)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

16. Lamport, L., Schneider, F.B.: Pretending atomicity. Technical Report TR89-1005,
SRC Digital (1989)

17. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

18. Roscoe, A.W.: The Theory and Practice of Concurrency. International Series in
Computer Science. Prentice-Hall, Englewood Cliffs (1998)

19. Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers,
Dordrecht (2000)

20. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Refinement, and Proof.
Prentice-Hall, Englewood Cliffs (1996)

Lifting General Correctness into Partial

Correctness is ok

Steve Dunne and Andy Galloway

School of Computing, University of Teesside
Middlesbrough, TS1 3BA, UK

s.e.dunne@tees.ac.uk
High Integrity Systems Engineering, Department of Computer Science,

University of York, UK
andyg@cs.york.ac.uk

Abstract. Commands interpreted in general correctness are usually
characterised by their wp and wlp predicate transformer effects. We de-
scribe a way to ascribe to such commands a single predicate transformer
semantics which embodies both their wp and wlp characteristics. The
new single predicate transformer describes an everywhere-terminating
“lifted” computation in an ok -enriched variable space, where ok is in-
spired by Hoare and He’s UTP but has the novelty here that it enjoys
the same status as the other state variables, so that it can be manipulated
directly in the lifted computation itself.

The relational model of this lifted computation is not, however, simply
the canonical UTP relation of the original underlying computation, since
this turns out to yield too cumbersome a lifted computation to permit
reasoning about efficiently with the mechanised tools available. Instead
we adopt a slightly less constrained model, which we are able to show is
nevertheless still effective for our purpose, and yet admits a much more
efficient form of mechanised reasoning with the tools available.

1 Introduction

We adopt a general-correctness1 [21] perspective on computations and reconcile
the UTP-style relational characterisation of computations in this perspective as
described in [11] with their more familiar Dijkstra-style predicate-transformer
characterisation. This general-correctness perspective allows us to describe ac-
curately the behaviour of what we might call contingently-terminating compu-
tations, which are guaranteed to terminate with specified results from some
starting states, permitted but not guaranteed to terminate with specified re-
sults from certain other states, and guaranteed not to terminate from yet other
starting states.

To provide a concrete syntax in which to describe these computations we will
employ the AbstractCommandLanguage [12,10]. We will describe away to ascribe

1 Chen [4] calls it factual correctness, while Hesselink [19] and Nelson [26] both use a
similar semantics in their analyses of programs without explicitly naming it.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 215–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

216 S. Dunne and A. Galloway

to such commands a single predicate-transformer semantics which embodies both
their wp and wlp characteristics. The new single predicate transformer describes
an everywhere-terminating “lifted” computation in an ok -enriched variable space,
where ok is inspired by Hoare and He’s Unifying Theories of Programming (UTP)
[20] but with the novelty that it enjoys the same status as the other state variables,
so that it can be manipulated directly by the lifted computation itself.

The relational model of this lifted computation is not, however, simply the
canonical UTP relation of the original underlying computation, since this turns
out to yield too cumbersome a lifted computation to permit reasoning about ef-
ficiently with the mechanised tools available. Instead we adopt a slightly less
constrained model, which we will prove is nevertheless still effective for our
purpose, yet admits a much more efficient form of mechanised reasoning with
the tools available. We seek to model our contingently-terminating computa-
tions in this way so that to reason about them we can thereby make direct
use of existing support tools such as the BToolkit [2], AtelierB [5] or ProB [22]
without any modification, even though they were all designed to support only
total-correctness reasoning. We do this by using such tools to reason about the
corresponding lifted computations rather than directly about the underlying
computations themselves.

In Section 2 we set out some necessary terminology, definitions and nota-
tion that we employ in the rest of the paper. In Section 3 we review the no-
tion of general correctness and introduce abstract commands as a formal lan-
guage for writing contingently-terminating programs, together with some ele-
ments of the theory which underpins them. In Section 4 we summarise the al-
ternative UTP-inspired representation of contingently-terminating computations
originally given in [11], and show how to reconcile this with the wp-wlp predicate-
transformer representation. We also extend the class of relations called prescrip-
tions identified in [11] by introducing the new notion of pseudo-prescription, and
show that this extended class is closed under disjunction and relational compo-
sition as well as retaining a vital property we call compositionality. In Section
5 we reach the heart of the matter where we explore what we actually require
of any lifting scheme. Finally, we propose our particular lifting scheme, showing
that this does indeed fulfil our requirements, and illustrate its application by
means of a small example.

2 Preliminaries

Following established UTP practice we deal extensively in this paper with alpha-
betised relations, i.e. relations expressed as predicates over an explicitly given or
understood alphabet of variables. Often this alphabet includes Boolean-valued
variables ok and ok ′, and then for conciseness we frequently take the liberty of
treating these variables themselves as predicates, for example writing just ¬ ok ′

instead of ok ′ = FALSE. We refer interchangeably to a relation and its predicate
providing its alphabet is understood. We define the following partial order on
relations A and B sharing the same alphabet α :

Lifting General Correctness into Partial Correctness is ok 217

Definition 1. (Implication Ordering on Predicates)

A ≤ B =df ∀α. B ⇒ A

The constant predicates true and false are respectively the bottom and top of
this lattice. For any predicate A we therefore have true ≤ A ≤ false . We deem
relations A and B to be equal if their predicates are true of precisely the same
bindings of the variables of their common alphabet:

Definition 2. (Equality for predicates)

A = B =df (A ≤ B) ∧ (B ≤ A)

Binary Relations and Conditions. A homogeneous binary relation is one
whose alphabet is of the form (v , v ′) where v is a list of undashed variables and v ′ is
a corresponding list of dashed versions of these. The undashed variables v represent
the relation’s input states while the dashed variables v ′ represent its output states.
A condition is a relation whose predicate constrains only undashed variables.

Syntactic Substitution. If A is a predicate expression over an alphabet which
includes a list of variables u, and E is list of appropriately typed expressions
corresponding to u, we write A[E/u] to denote the predicate derived from A by
replacing each free occurrence of each of the variables of u with the corresponding
expression from E . Note that syntactic substitution distributes through the basic
logical connectives such as conjunction and disjunction, so that for example

(A ∨ B)[E/u] = A[E/u] ∨ B [E/u]

Some Convenient Relational Abbreviations. If A is a predicate expres-
sion over alphabet (w , ok ,w ′, ok ′) we will write Att , Atf , Aft and Aff as abbre-
viations for A[true, true/ok , ok ′], A[true, false/ok , ok ′], A[false, true/ok , ok ′] and
A[false, false/ok , ok ′] respectively.

Composition of Relations. Let A and B be homogeneous binary relations
with a common alphabet (v , v ′). Then we have

Definition 3. (Relational Composition)

A ; B =df ∃ v ′′ . A[v ′′/v ′] ∧ B [v ′′/v]

where v ′′ is a fresh list of variables corresponding with those of v . In particular,
relational composition gives us a convenient way of formally expressing that
a relation A is a condition, namely that A ; true = A. Among the important
algabraic properties of relational composition are that it is associative and left-
and right-distributes through disjunction, so that, for example, for homogeneous
binary relations A, B and C on a common alphabet we have

(A ; B) ; C = A ; (B ; C)
(A ∨ B) ; C = (A ; C) ∨ (B ; C)
A ; (B ∨ C) = (A ; B) ∨ (A ; C)

218 S. Dunne and A. Galloway

Relational Algebra. We will make use of the identities expressed by the fol-
lowing proposition

Proposition 2.1. (Some useful relational identities)

(1) (A ; B)tt = (Att ; Btt) ∨ (Atf ; Bft)
(2) (A ; B)tf = (Atf ; Bff) ∨ (Att ; Btf)
(3) (A ; B)ft = (Aft ; Btt) ∨ (Aff ; Bft)
(4) (A ; B)ff = (Aff ; Bff) ∨ (Aft ; Btf)

Proof: By defn of “ ;” and appropriate true and false case splits for ok and ok ′.
�

3 General Correctness and Abstract Commands

General correctness separates for a computation the respective issues of (a) its re-
liable termination and (b) the correctness of its result should it (whether reliably
or even fortuitously) terminate, treating these two concerns quite orthogonally.
As such it discriminates between computations more finely than total correctness,
which simply superimposes (a) on (b), thereby equating all behaviour other than
reliably terminating as indistinguishably pathological. Thus general correctness
not only allows the specifier to express the conditions required for guaranteed
termination of a computation and constrain its result in those circumstances, it
also allows him to constrain its result in cases where termination is not guaran-
teed, even to the point of sometimes forbidding fortuitous termination altogether,
thereby demanding actual non-termination.

3.1 The Interactive Era

One of the reviewers of the draft version of this paper was sceptical of the value
of considering general correctness at all, describing it as “a mere cul-de-sac in
the history of computing”. While it is certainly true that total correctness has
predominated almost absolutely until recently in all the prominent refinement
and program-correctness theories such as [24,1,3,20], we believe this reflects a
historical pre-occupation with pure sequential computation, which has in fact
been largely superseded by the current focus on interactive computing. Even in
1998 Milner [23] was already pointing out that computing is interaction. This has
important implications for software developers. No longer are we always neces-
sarily exclusively concerned with the result of executing our sequential programs
through to successful termination. Such programs now often provide the individ-
ual interacting threads of today’s complex distributed processing systems, and
thus we may require them to behave reliably even in situations where termina-
tion is not even in prospect. A channel-listener, for example, must idle until it
detects an incoming message, then deal effectively with such a message if and
when it arrives. But since there is never a guarantee that such a message will
ever arrive, our channel-listener must be capable in principle of idling indefi-
nitely. There are circumstances, therefore, where non-termination is precisely

Lifting General Correctness into Partial Correctness is ok 219

what we demand. As formal software specifiers and designers we must have a
specification language in which we can formally articulate such a requirement,
and a design calculus with which we can prove that a given program meets such
a specification. To quote from [18]:

With the addition of communication, non-terminating executions can
perform useful computation, so a semantics that does not insist on ter-
mination is useful.

We might go further and say we need a semantics in which we can insist on non-
termination in certain conditions. In short, we must learn to work in the context
of general correctness. In this regard it is also salient to point to work under-
taken by various authors in the field of timed refinement, for example [14,15],
and [16,17]. Such work invariably exhibits the quintessential general-correctness
characteristic that actual non-termination is precisely characterisable. Total cor-
rectness, on the other hand, can only subsume non-termination into the com-
pletely unpredictable behaviour known as divergence or chaos.

3.2 Abstract Commands

We first introduced abstract commands [12], as an adaptation of Abrial’s gener-
alised substitutions [1], to express computations in general correctness, and sub-
sequently further developed them by introducing the notion of frames [10]. Daw-
son [6] later formalised our resulting theory of abstract commands in Isabelle/
HOL to confirm its soundness. In this paper, however, we confine ourselves to
commands sharing a common frame w of all state variables in the context of dis-
course. Each such command S is fully characterised by its termination predicate
trm(S), which defines from which starting states it can be relied on to terminate,
and its weakest liberal precondition wlp(S ,Q) which defines from which starting
states it must if it does terminate establish any particular postcondition Q . The
trm-wlp semantics of each of our basic abstract commands is given in Table 1.
The weakest-precondition (wp) and weakest-liberal-precondition (wlp) predicate
transformers were of course invented by Dijkstra [8,9] who linked them by the
healthiness rule

wp(S ,Q) = wp(S , true) ∧ wlp(S ,Q)

In our approach, however, we choose to treat wp(S , true) as primitive and denote
it by trm(S), so that wp(S ,Q) can then be obtained using Dijkstra’s rule as

wp(S ,Q) =df trm(S) ∧ wlp(S ,Q)

3.3 Normal Form of an Abstract Command

The before-after predicate prd(S) of an abstract command S operating in a state
space characterised by state variable(s) w is defined as

prd(S) =df ¬ wlp(S ,w ′ 	= w)

220 S. Dunne and A. Galloway

Table 1. Basic abstract commands

name of C syntax trm(C) wlp(C ,Q)

skip skip true Q

assignment u := E true Q [E/u]

termination P |S P ∧ trm(S) wlp(S ,Q)
precondition

guard P −→ S P ⇒ trm(S) P ⇒ wlp(S ,Q)

bounded choice S � T trm(S) ∧ trm(T) wlp(S ,Q) ∧ wlp(T ,Q)

unbounded choice @z . S ∀ z . trm(S) ∀ z . wlp(S ,Q)

sequential S ; T trm(S) ∧ wlp(S , wlp(T ,Q))
composition wlp(S , trm(T))

It relates each initial state w to the possible final states w ′ which of S might
yield. Indeed S can be expressed in normal form as

S = trm(S) | @w ′ . prd(S) −→ w := w ′

This normal form embodies the following identities which follow from our defi-
nitions of prd(S) and wp(S ,Q) :

wlp(S ,Q) = ∀w ′ . prd(S) ⇒ Q [w ′/w]
wp(S ,Q) = trm(S) ∧ ∀w ′ . prd(S) ⇒ Q [w ′/w]

3.4 Indeterminate Assignment

Given a relation R on (w ,w ′) we also define the following useful derived com-
mand we call an indeterminate assignment :

w : R =df @w ′ . R −→ w := w ′

Our operational intuition of w : R is that from each starting state it assigns to w
a nondeterministically-chosen final state from among those related by R to that
starting state. Where the starting state in question has no related final states
the assignment is miraculous (i.e. unenabled). We note that trm(w : R) = true
and prd(w : R) = R. Our indeterminate assignment w : R corresponds with
what Back and von Wright [3], working in total correctness, call the demonic
relational update on R and denote by [R].

Using indeterminate assignment we can express the normal form of an abstract
command S more succinctly as

S = trm(S) | w : prd(S)

Lifting General Correctness into Partial Correctness is ok 221

4 General Correctness and UTP

In [11] we introduced the notion of a prescription as the general-correctness
counterpart of Hoare and He’s total-correctness notion of a design [20], and
developed a corresponding theory for these. They have subsequently attracted
the interest of other authors [13,7] who have incorporated them into their own
investigations.

Let w be the state variable(s) of our state space and ok be an auxiliary
Boolean variable which when initially true signifies the computation has started
and when finally true signifies it has terminated. We recall from [11] that a
prescription is an alphabetised relation over (w , ok ,w ′, ok ′) whose predicate can
be expressed in the form

(ok ∧ P ⇒ ok ′) ∧ (ok ′ ⇒ R ∧ ok)

where P and R are subsidiary predicates not containing ok or ok ′. We abbreviate
it as P .. R . Conversely, for any prescription A over (w , ok ,w ′, ok ′) we have that

A = ¬ Atf .. Att

If P is simply a condition – i.e. it constrains only the undashed state variables
w – then we call P .. R a normal prescription, and interpret it operationally
as If the program starts in a state satisfying P it must eventually terminate;
moreover, if it terminates R will be satisfied, and it must have started, though
not necessarily from a state satisfying P. In this case we call P the termination
condition of P .. R . In the rest of this paper all the prescriptions we encounter
will be normal ones in this sense.

4.1 Prescriptions versus Predicate Transformers

We can reconcile the predicate-transformer (abstract command) and relational
(prescription) representations of a computation in general correctness by noting
that the computation represented imperatively by any abstract command S is
represented relationally by the normal prescription trm(S) .. prd(S).

Conversely, we know that any normal prescription A represents a computation
in general correctness, and that this is also characterised by its pair of predicate
transformers wp and wlp, which can be derived from A by

wp(A,Q) =df ¬ (A ; ¬ (ok ∧ Q))[true/ok]
wlp(A,Q) =df ¬ (A ; ¬ (ok ⇒ Q))[true/ok]

Equivalently, we could instead first introduce the notion of a rich condition
as a predicate over (w , ok) and then define a weakest-rich-precondition (wrp)
predicate transformer for A, such that for any rich postcondition R

wrp(A,R) =df ¬ (A ; ¬ R)

222 S. Dunne and A. Galloway

A’s wp and wlp can then be derived from its wrp as

wp(A,Q) = wrp(A, (ok ∧ Q))[true/ok]
wlp(A,Q) = wrp(A, (ok ⇒ Q))[true/ok]

thus achieving a unification of wp and wlp arguably more transparent than that
offered in [25]. And indeed since (ok ⇒ Q) ≤ Q ≤ (ok ∧ Q) in the lattice of
rich conditions we might even be tempted to define an intermediate predicate
transformer “whp”, as it were “halfway” between wp and wlp, by

whp(A,Q) =df wrp(A,Q)[true/ok]

Curiously, it turns out this is indistinguishable from wp, save that unlike wp it
has the property that whp(A, true) = true for every A .

4.2 Pseudo-prescriptions

Prescriptions are canonical relational representations of computations in general
correctness, in the sense that any two distinct normal prescriptions will represent
distinct computations. There are several equivalent convenient healthiness tests
to determine whether a relation over (w , ok ,w ′, ok ′) is actually a prescription.
For example, a relation A over (w , ok ,w ′, ok ′) is a prescription if and only if
A[false/ok] = ¬ ok ′ [11, Thm 1]. Equivalently, A is a prescription if and only if
Aft = false and Aff = true.

We note that any relation A over (w , ok ,w ′, ok ′) in a sense “encodes” the
normal prescription ¬ (Atf ; true) .. Att . We call the latter A’s intrinsic pre-
scription and denote it more compactly by P(A). Indeed, echoing established
UTP practice in [20] we can regard our P() as an idempotent “healthifying”
function on relations whose fixed points are precisely the normal prescriptions
over (w , ok ,w ′, ok ′) .

Unfortunately arbitrary relations suffer the shortcoming that their intrinsic
prescriptions are not in general compositional with respect to relational com-
position. That is to say, for arbitrary relations A and B over (w , ok ,w ′, ok ′) it
is not always the case that P(A ; B) = P(A) ; P(B). We can, however, define a
class of relations called pseudo-prescriptions somewhat larger than that of pre-
scriptions, which are compositional with respect to their intrinsic prescriptions.
We say that a relation A over (w , ok ,w ′, ok ′) is a pseudo-prescription if and
only if Aft = false and Aff ; true = true. Our pseudo-prescriptions enjoy some
important properties as expressed in the following two propositions:

Proposition 4.2.1 (Closure of pseudo-prescriptions)
Pseudo-prescriptions are closed under disjunction and relational composition.

Proof: The closure of pseudo-prescriptions under disjunction follows trivially
from the distributivity of syntactic substitution through disjunction, giving that
(A ∨ B)ft = Aft ∨ Bft , and (A ∨ B)ff = Aff ∨ Bff , and then the left-
distributivity of “ ;” through disjunction, giving that

(A ∨ B)ff ; true = (Aff ∨ Bff) ; true = (Aff ; true) ∨ (Bff ; true)

Lifting General Correctness into Partial Correctness is ok 223

Their closure under relational composition is shown by
(A ; B)ft

= { Prop 2.1.(3) }
(Aft ; Btt) ∨ (Aff ; Bft)

= { A and B are pseudo-prescriptions so Aft = Bft = false }
(false ; Btt) ∨ (Aff ; false)

= { relational algebra and logic }
false

and then
(A ; B)ff ; true

= { Prop 2.1.(4) }
((Aff ; Bff) ∨ (Aft ; Btf)) ; true

= { A is pseudo-prescription so Aft = false }
((Aff ; Bff) ∨ (false ; Btf)) ; true

= { relational algebra and logic }
(Aff ; Bff) ; true

= { “ ;” is associative }
Aff ; Bff ; true

= { B is pseudo-prescription so Bff ; true = true }
Aff ; true

= { A is pseudo-prescription so Aff ; true = true }
true �

The next proposition establishes that, at least when applied to pseudo-
prescriptions, our intrinsic-prescription extractor function P() is compositional
with respect to “ ; ”. The significance of this is that we can safely use pseudo-
prescriptions as surrogates for the computations embodied in their intrinsic
prescriptions, since when we compose them we know the result will accurately
encode the actual compositions of the original underlying computations.

Proposition 4.2.2 (Compositionality of pseudo-prescriptions)
Let A and B be relations over (w , ok ,w ′, ok ′) such that Aft = Bft = false and
Aff ; true = Bff ; true = true. Then P(A ; B) = P(A) ; P(B).

Proof:
P(A ; B)

= { defn of intrinsic prescription }
¬ ((A ; B)tf ; true) .. (A ; B)tt

= { Props. 2.1.(1), 2.1.(2) }
¬ (((Atf ; Bff) ∨ (Att ; Btf)) ; true) .. (Att ; Btt) ∨ (Atf ; Bft)

= { composition distributes through ∨ }
¬ ((Atf ; Bff ; true) ∨ (Att ; Btf ; true)) .. (Att ; Btt) ∨ (Atf ; Bft)

224 S. Dunne and A. Galloway

= { Bff ; true = true and Bft = false }
¬ ((Atf ; true) ∨ (Att ; Btf ; true)) .. (Att ; Btt) ∨ (Atf ; false)

= { relational algebra and logic }
¬ (Atf ; true) ∧ ¬ (Att ; Btf ; true) .. Att ; Btt

= { composition of normal prescriptions [11, Cor. 6.1] }
(¬ (Atf ; true) .. Att) ; (¬ (Btf ; true) .. Btt)

= { defn of intrinsic prescription }
P(A) ; P(B) �

Pseudo-prescriptions certainly still represent computations in general correct-
ness, though those representations are clearly no longer canonical since distinct
pseudo-prescriptions can share the same intrinsic prescription and therefore
represent the same computation. In the next section we will see how pseudo-
prescriptions play a fundamental role in validating that our lifting of abstract
commands into partial-correctness computations is sound.

5 Lifting a Computation

The notion of lifting a computation is motivated by the crucial insight that a
computation on an underlying space w with a contingent termination behaviour
can be modelled by an always-terminating one on the enriched state (w , ok).
Providing our lifting scheme is sound, then by reasoning about its lifted coun-
terpart we can thereby indirectly arrive at valid conclusions about the underlying
computation itself.

Because the lifted computation is acting on the enriched state it can manip-
ulate ok as an ordinary program variable. An always-terminating computation
is of course completely described by its partial-correctness semantics, and is
therefore fully characterised in predicate-transformer terms by its wlp, and in
relational terms by its before-after state relation.

Since we now have two state spaces so to speak in play at the same time,
namely an underlying state space characterised by w alone and an enriched one
characterised by (w , ok). we must be careful to keep track over which of these
our various predicate transformers are ranging. To help us do this we adopt the
convention that the bold-font version wlp of our weakest-liberal-precondition
predicate transformer ranges over the enriched state (w , ok), thereby character-
ising computations on this enriched state, whereas the ordinary-font wp and wlp
predicate transformers range over the underlying state w and so characterise
ordinary computations on that underlying state.

Note that if C is an abstract command over enriched state (w , ok), then

prd(C) = ¬ wlp(C , (w , ok) 	= (w ′, ok ′))
= ¬ wlp(C , w 	= w ′ ∨ ok 	= ok ′)

Table 2 lists the explicitly derived prds of some typical commands over the
enriched state (w , ok).

Lifting General Correctness into Partial Correctness is ok 225

Table 2. Derived prds of commands over enriched state (w , ok)

name syntax prd

skip skip w ′ = w ∧ ok ′ = ok

assignment u := E u ′ = E ∧ y ′ = y ∧ ok ′ = ok
where u ⊆ w where y is w\u

assignment ok := false w ′ = w ∧ ¬ ok ′

termination P |C prd(C)
precondition

guard G −→ C G ∧ prd(C)

bounded choice C � D prd(C) ∨ prd(D)

unbounded choice @z . C ∃ z , z ′ . prd(C)

sequential C ; D prd(C) ; prd(D)
composition

5.1 Lifting Abstract Commands

We seek to associate with each abstract command S acting on a state w an
always-terminating one C acting on an enriched state (w , ok), in such a way
that S ’s wp and wlp effects can be recovered from C by

wp(S ,Q) = wlp(C , ok ∧ Q)[true/ok]
wlp(S ,Q) = wlp(C , ok ⇒ Q)[true/ok]

In relational terms this is equivalent to requiring that

trm(S) .. prd(S) = P(prd(C))

We will call a lifting scheme with this property effective. A canonical way to
derive such an C would be to define it as an indeterminate assignment based on
the characteristic prescription of S , as in

C =df w , ok : (trm(S) .. prd(S))

since then prd(C) would be trm(S) .. prd(S) which as a normal prescription is
a fixed point of P(). Such a lifting scheme, though, is impractical since it yields
cumbersome lifted computations which cannot be reasoned about efficiently with
the available mechanised support tools.

Instead we propose the lifting scheme L detailed in Table 3. The merit of this
scheme is that it is very easy to mechanise, and yields lifted commands hardly any

226 S. Dunne and A. Galloway

Table 3. Lifting Scheme L for Abstract Commands

name of C syntax L(C)

skip skip skip

assignment u := E u := E

termination P |S (¬ P −→ ok := false) � L(S)
precondition

guard G −→ S (ok ⇒ G) −→ L(S)

bounded choice S � T L(S) � L(T)

unbounded choice @z . S @z . L(S)

sequential S ; T L(S) ; L(T)
composition

more complex in form than the underlying commands concerned, which are thus
very amenable to efficient mechanised reasoning via the tools available. Clearly,
though, our lifting scheme L is not canonical since it lifts some semantically-
equivalent commands to distinct lifted commands. For example, it is easy to
show that skip and w : w ′ = w are semantically equivalent, yet L(skip) is skip
while L(w : w ′ = w) turns out to be

(¬ ok −→ @w ′ . w := w ′) ! skip

which is clearly not the same as skip. Nevertheless, our lifting scheme does have
the vital property expressed by the following proposition:

Proposition 5.1.1 (Compositionality of lifting scheme L)
For any abstract command expression S the lifting scheme L in Table 3 ensures
that prd(L(S)) is a pseudo-prescription.

Proof: By structural induction over the syntax of abstract commands. For ex-
ample, in the case of P | S we have

prd(L(P | S))
= { Table 3 }

prd((¬ P −→ ok := false) ! L(S))
= { Table 2 }

prd(¬ P −→ ok := false) ∨ prd(L(S))
= { Table 2 }

(¬ P ∧ prd(ok := false)) ∨ prd(L(S))

Lifting General Correctness into Partial Correctness is ok 227

= { Table 2 }
(¬ P ∧ w ′ = w ∧ ¬ ok ′) ∨ prd(L(S)) (1)

and now substituting [false, true/ok , ok ′] in (1) yields
(¬ P ∧ w ′ = w ∧ ¬ true) ∨ prd(L(S))ft

= { logic }
false ∨ prd(L(S))ft

= { logic }
prd(L(S))ft

= { by inductive assumption prd(L(S)) is a pseudo-prescription }
false { thus establishing that prd(L(P | S))ft = false }

On the other hand, substituting [false, false/ok , ok ′] in (1) yields
(¬ P ∧ w ′ = w ∧ ¬ false) ∨ prd(L(S))ff

= { logic }
(¬ P ∧ w ′ = w) ∨ prd(L(S))ff (2)

and then composing (2) with true yields
((¬ P ∧ w ′ = w) ∨ prd(L(S))ff) ; true

= { “ ;” left-distributes through ∨ }
((¬ P ∧ w ′ = w) ; true) ∨ (prd(L(S))ff ; true)

= { by inductive assumption prd(L(S)) is a pseudo-prescription }
((¬ P ∧ w ′ = w) ; true) ∨ true

= { logic }
true { thus also establishing that prd(L(P | S))ff ; true = true }

We conclude that prd(L(P | S)) is indeed a pseudo-prescription if L(S) is. �

This in turn leads to our main result:

Proposition 5.1.2 (Effectiveness of lifting scheme L)
For any abstract command expression S the lifting scheme L in Table 3 ensures
that

wp(S ,Q) = wlp(L(S), ok ∧ Q)[true/ok]
wlp(S ,Q) = wlp(L(S), ok ⇒ Q)[true/ok]

Proof: Again, by structural induction over the syntax of abstract commands. In
particular, the demonstration for sequential composition follows from the com-
positionality of pseudo-prescriptions via Props 4.2.1, 4.2.2 and 5.1.1 . �

5.2 An Example

The archetypal extreme contingently-terminating computation is perhaps the
infinite loop known variously as loop [26], never [11] or abort2 [9,25]. which is
2 Not to be confused with its total-correctness namesake which may or may not ter-

minate.

228 S. Dunne and A. Galloway

in fact nowhere allowed to terminate. It is expressed in UTP relational terms
by the prescription false .. false, or equivalently in abstract-command terms
as false | false −→ skip. It is never actually obliged to terminate (termination
condition false), and in fact to do so it would have to achieve the impossible
(postcondition false), so we can conclude it never does so. Reasoning formally
directly in the abstract-command semantics of Table 1 we have

trm(never)
= { defn of never as an abstract command }

trm(false | false −→ skip)
= { defn of termination precondition in Table 1 }

false ∧ trm(false −→ skip)
= { logic }

false

meaning it is never guaranteed to terminate, while

wlp(never, false)
= { defn of never as an abstract command }

wlp(false | false −→ skip , false)
= { defn of termination precondition in Table 1 }

wlp(false −→ skip , false)
= { defn of guard in Table 1 }

false ⇒ wlp(skip, false)
= { logic }

true

meaning if it did so it would always establish the impossible (postcondition false),
from which we can conclude it can never do so.

Now we repeat our reasoning, but this time we proceed indirectly. First we lift
never using Table 3 and then we extract trm(never) and wlp(never, false) from
its lifted counterpart using Prop. 5.1.2 :

L(never)
= { defn of never }

L(false | false −→ skip)
= { Table 3 lifting a termination precondition }

(¬ false −→ ok := false) ! L(false −→ skip)
= { logic }

(true −→ ok := false) ! L(false −→ skip)
= { discard trivial guard }

ok := false ! L(false −→ skip)
= { Table 3 lifting a guard }

ok := false ! (ok ⇒ false) −→ L(skip)

Lifting General Correctness into Partial Correctness is ok 229

= { logic }
ok := false ! ¬ ok −→ L(skip)

= { Table 3 lifting skip }
ok := false ! ¬ ok −→ skip

And now having obtained L(never) we proceed to derive trm(never) and
wlp(never, false) :

trm(never)
= { for any command S trm(S) = wp(S , true) }

wp(never, true)
= { Prop. 5.1.2 }

wlp(L(never) , ok ∧ true)[true/ok]
= { logic }

wlp(L(never) , ok)[true/ok]
= { derivation of L(never) above }

wlp(ok := false ! ¬ ok −→ skip , ok)[true/ok]
= { defn of ! in Table 1 }

(wlp(ok := false, ok) ∧ wlp(¬ ok −→ skip, ok))[true/ok]
= { defn of := in Table 1 }

(false ∧ wlp(¬ ok −→ skip, ok))[true/ok]
= { logic }

false

as we would expect. And then we have

wlp(never, false)
= { Prop. 5.1.2 }

wlp(L(never) , ok ⇒ false)[true/ok]
= { logic }

wlp(L(never) , ¬ ok)[true/ok]
= { derivation of L(never) above }

wlp(ok := false ! ¬ ok −→ skip , ¬ ok)[true/ok]
= { defn of ! in Table 1 }

(wlp(ok := false,¬ ok) ∧ wlp(¬ ok −→ skip,¬ ok))[true/ok]
= { defn of := in Table 1 }

(¬ false ∧ wlp(¬ ok −→ skip,¬ ok))[true/ok]
= { logic }

wlp(¬ ok −→ skip,¬ ok)[true/ok]
= { defn of guard in Table 1 }

(¬ ok ⇒ wlp(skip,¬ ok))[true/ok]
= { defn of skip in Table 1 }

230 S. Dunne and A. Galloway

(¬ ok ⇒ ¬ ok)[true/ok]
= { logic }

true

again as we would expect. This illustrates how reasoning about our infinite loop
never, as it were vicariously, through its lifted always-terminating counterpart
ok := false ! ¬ ok −→ skip is both effective and sound.

6 Conclusion

We have shown how a contingently-terminating computation expressed by an
abstract command can be equivalently expressed as a prescription. Conversely,
we have shown how a prescription can be interpreted as an abstract command
by extracting its wp and wlp predicate-transformer effects. We also showed how
each of these can be regarded as particular cases of a higher-level predicate
transformer wrp also extractible from the prescription, which works on “rich
conditions” rather than ordinary conditions, thus achieving a interesting unifi-
cation of wp and wlp.

We defined the new notion of the intrinsic prescription encoded within an
arbitrary relation over (w , ok ,w ′, ok ′) and used this to define our idempotent
“healthifying” function P() applying to all such relations and yielding normal
prescriptions. We identified a class of relations over (w , ok ,w ′, ok ′) called pseudo-
prescriptions subsuming prescriptions and showed that not only are these closed
under disjunction and relational composition, but that they also have the im-
portant property of compositionality with respect to their intrinsic prescriptions.
We defined an efficient easily-mechanisable lifting scheme for abstract commands
whose lifted counterparts correspond to pseudo-prescriptions whose composi-
tionality guarantees the effectiveness of the scheme. The importance of such a
scheme is that it gives us the means to reason in general correctness about our
abstract-command programs with existing support tools only designed to reason
in total or partial correctness, without needing to modify these at all.

From a theoretical point of view it is interesting to note that we know our
pseudo-prescriptions are not the least-constrained effective encodings of our
contingently-terminating computations. It remains to characterise these least-
constrained such encodings, and investigate whether they might offer any ad-
vantages over pseudo-prescriptions.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. B-Core. The B-Toolkit. http://www.b-core.com
3. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.

Springer, Berlin Heidelberg (1998)
4. Chen, Y.: A fixpoint theory for non-monotonic parallelism. Theoretical Computer

Science 308, 367–392 (2003)

http://www.b-core.com

Lifting General Correctness into Partial Correctness is ok 231

5. ClearSy. Atelierb. http://www.atelierb.societe.com
6. Dawson, J.E.: Formalising general correctness. In: Computing: The Australasian

Theory Symposium 2004. Electronic Notes in Theoretical Computer Science,
vol. 91, pp. 46–65. Elsevier, Amsterdam (2004)

7. Deutsch, M., Henson, M.C.: A relational investigation of UTP designs and per-
scriptions. In: Dunne, S.E., Stoddart, W.J. (eds.) UTP 2006. LNCS, vol. 4010, pp.
101–122. Springer, Heidelberg (2006)

8. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

9. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, Berlin Heidelberg (1990)

10. Dunne, S.E.: Abstract commands: a uniform notation for specifications and imple-
mentations. In: Fidge, C.J. (ed.) Computing: The Australasian Theory Symposium
2001. Electronic Notes in Theoretical Computer Science, vol. 42, Elsevier, Amster-
dam (2001) http://www.elsevier.nl/locate/entcs

11. Dunne, S.E.: Recasting Hoare and He’s unifying theory of programs in
the context of general correctness. In: Butterfield, A., Strong, G., Pahl, C.
(eds.) Proceedings of the 5th Irish Workshop in Formal Methods, IWFM
2001, Workshops in Computing, British Computer Society, Vancouver (2001),
http://ewic.bcs.org/conferences/2001/5thformal/papers

12. Dunne, S.E., Stoddart, W.J., Galloway, A.J.: Specification and refinement in gen-
eral correctness. In: Evans, A., Duke, D., Clark, A. (eds.) Proceedings of the 3rd
Northern Formal Methods Workshop. BCS Electronic Workshops in Computing
(1998) http://www.ewic.org.uk/ewic/workshop/view.cfm/NFM-98

13. Guttmann, W., Mőller, B.: Modal design algebra. In: Dunne, S.E., Stoddart, W.J.
(eds.) UTP 2006. LNCS, vol. 4010, pp. 236–256. Springer, Heidelberg (2006)

14. Hayes, I.J.: Separating timing and calculation in real-time refinement. In: Grundy,
J., Schwenke, M., Vickers, T. (eds.) International Refinement Workshop and Formal
Methods Pacific 1998, pp. 1–16. Springer, Heidelberg (1998)

15. Hayes, I.J.: Reasoning about non-terminating loops using deadline commands.
In: Backhouse, R., Oliveira, J. (eds) Mathematics of Program Construc-
tion (MPC2000), (2000) Also available as Technical Report UQ-SVRC-00-02,
http://svrc.it.uq.edu.au

16. Hehner, E.C.R.: Termination is timing. In: van de Snepscheut, J.L.A. (ed.) Mathe-
matics of Program Construction. LNCS, vol. 375, pp. 36–47. Springer, Heidelberg
(1989)

17. Hehner, E.C.R.: A Practical Theory of Programming. Springer, Heidelberg (1993)
18. Hehner, E.C.R., Gravell, A.M.: Refinement semantics and loop rules. In: Woodcock,

J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1497–1510.
Springer, Heidelberg (1999)

19. Hesselink, W.H.: Programs, Recursion and Unbounded Choice. Cambridge Tracts
in Theoretical Computer Science, vol. 27. Cambridge University Press, Cambridge
(1992)

20. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall, En-
glewood Cliffs (1998)

21. Jacobs, D., Gries, D.: General correctness: a unification of partial and total cor-
rectness. Acta. Informatica 22, 67–83 (1985)

22. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

http://www.atelierb.societe.com
http://www.elsevier.nl/locate/entcs
http://ewic.bcs.org/conferences/2001/5thformal/papers
http://www.ewic.org.uk/ewic/workshop/view.cfm/NFM-98
http://svrc.it.uq.edu.au

232 S. Dunne and A. Galloway

23. Milner, A.J.R.G.: Computing is interaction. Invited address FACS 21st Anniver-
sary Symposium, December 2, 1998. The Royal Society, London (1998)

24. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice Hall Interna-
tional, Englewood Cliffs (1994)

25. Morgan, C.C., McIver, A.: Unifying wp and wlp. Information Processing Letters 59,
159–163 (1996)

26. Nelson, G.: A generalisation of Dijkstra’s calculus. ACM Transactions on Pro-
grammg Languages and Systems, vol. 11(4) (1989)

Verifying CSP-OZ-DC Specifications with

Complex Data Types and Timing Parameters�

Johannes Faber1, Swen Jacobs2, and Viorica Sofronie-Stokkermans2

1 Department of Computing Science, University of Oldenburg, Germany
j.faber@uni-oldenburg.de

2 Max-Planck-Institut Informatik, Saarbrücken, Germany
{sjacobs,sofronie}@mpi-sb.mpg.de

Abstract. We extend existing verification methods for CSP-OZ-DC to
reason about real-time systems with complex data types and timing pa-
rameters. We show that important properties of systems can be encoded
in well-behaved logical theories in which hierarchic reasoning is possible.
Thus, testing invariants and bounded model checking can be reduced to
checking satisfiability of ground formulae over a simple base theory. We
illustrate the ideas by means of a simplified version of a case study from
the European Train Control System standard.

1 Introduction

Complex real-time systems, consisting of several components that interact, arise
in a natural way in a wide range of applications. In order to verify these systems,
one needs, on the one hand, to find a suitable specification language, and on the
other hand, to develop efficient techniques for their verification.

In the specification of complex systems, one needs to take several aspects
into account: control flow, data changes, and timing aspects. Motivated by this
necessity, in [HO02, Hoe06] a specification language CSP-OZ-DC (COD) is de-
fined, which combines Communicating Sequential Processes (CSP), Object-Z
(OZ) and the Duration Calculus (DC). Verification tasks (e.g., invariant check-
ing or bounded model checking) can usually be reduced to proof tasks in theories
associated to the COD specification. These theories can be combinations of con-
crete theories (e.g., integer, rational or real numbers) and abstract theories (e.g.,
theories of functions or of data structures). Existing verification techniques for
COD [HM05, MFR06] do not incorporate efficient reasoning in complex theories,
which is essential to perform such verification tasks efficiently.

In this paper, we analyse both aspects mentioned above. We use COD specifi-
cations of systems, with complex data types and timing parameters, and analyse
possibilities for efficient invariant checking and bounded model checking in these
systems. The main contributions of the paper can be described as follows.

� This work was partly supported by the German Research Council (DFG) under
grant SFB/TR 14 AVACS. See http://www.avacs.org for more information.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 233–252, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.avacs.org

234 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

Specification: We extend existing work in which COD specifications were used
[HO02, Hoe06, MFR06] in two ways:
(i) We use abstract data structures for representing and storing information

about an unspecified parametric number of components of the systems.
This allows us to pass in an elegant way from verification of several finite
instances of a verification problem (for 2, 3, 4, ... components) to general
verification results, in which the number of components is a parameter.

(ii) In order to refer to time constants also within the specification’s data
(OZ) part, we introduce timing parameters. This allows for more flexible
specifications of timing constraints.

Verification: We show that, in this context, invariant checking or bounded
model checking can be reduced to proving in complex theories. We analyse
the theories that occur in relationship with a given COD specification, and
present a sound and efficient method for hierarchic reasoning in such theories.
We identify situations where the method is sound and complete (i.e., where
the specific properties of systems define chains of local theory extensions).

Applications: Our running example is an extension of a case study that we
considered in [JSS07] (in which we first applied hierarchic reasoning in the
verification of train control systems). Here, we additionally encompass ef-
ficient handling of emergency messages and illustrate the full procedure –
starting from a COD description of the case study to the verification.

Structure of the paper. We illustrate the idea of our approach by means of a case
study, which will be our running example (Sect. 1.1). Section 2 introduces the
specification language COD and discusses an extension with timing parameters.
Section 3 presents an operational semantics of COD specifications, in terms
of Phase Event Automata (PEA), and discusses some simplifications for PEA.
Section 4 presents a verification method for COD specifications: the associated
PEA are translated into transition constraint systems; verification is reduced to
satisfiability checking in combinations of theories. We identify some theories, in
which hierarchic reasoning is possible, occurring frequently in applications.

1.1 Illustration

RBC

braking distance

Fig. 1. Emergencies in the ETCS

We here give a general description of a
case study inspired by the specification
of the European Train Control System
(ETCS) standard [ERT02]. We explain
the tools we used for modelling the ex-
ample and give the idea of the method
for checking safety. This will be used as a
running example throughout the paper.
Related ETCS scenarios have been stud-
ied in [HJU05, FM06, MFR06, TZ06].
The example we consider has a less complicated control structure than those
in [FM06, MFR06]. Instead, it considers an arbitrary number of trains, and
hence, needs to use more realistic and sophisticated data types.

Verifying CSP-OZ-DC Specifications 235

The RBC Case Study. We consider a radio block centre (RBC), which com-
municates with all trains on a given track segment. The situation is sketched
in Fig. 1. Every train reports its position to the RBC in given time intervals
and the RBC communicates to every train how far it can safely move, based
on the position of the preceding train; the trains adjust their speed between
given minimum and maximum speeds. If a train has to stop suddenly, it sends
an emergency message. The RBC handles the message sent by a train (which
we refer to as emergency train) by instructing each train behind the emergency
train on the track to stop too.

Idea. In this case study, the following aspects need to be considered:

(1) The scenario describes processes running in parallel.
(2) We need to specify the state space and the pre- and postconditions of actions.
(3) There are timing constraints on the duration of system states.

For encompassing all these aspects, we use the specification language COD,
that allows to express the control flow of the systems (expressed in CSP), data
structures used for modelling state and state change (OZ) and time constraints
(DC). We pass from specification to verification as follows:

– We associate so-called Phase Event Automata ACSP ,AOZ ,ADC with the
CSP, OZ and DC part, respectively. Their parallel composition A represents
the semantics of the COD specification.

– From A we derive a family of transition constraints that describe the prop-
erties of the transitions in the system.

– We use this set of transition constraints for checking given safety properties.

This last verification step is highly non-trivial. Transition constraints may com-
bine constraints over various theories. In our case, we need to reason in a com-
bination of a theory of integers (indices of trains), reals (for modelling speeds or
distances), arrays (in which the current speed and reported positions of the trains
are stored), and functions (e.g., associating with each speed an upper bound for
the optimal braking distance at that speed). Many of these data structures have
additional properties, which need to be specified as axioms in first-order logic
with quantifiers. We show that properties of systems can be encoded in well-
behaved logical theories in which efficient reasoning is possible.

2 CSP-OZ-DC: A High-Level Specification Language

In order to capture the control flow, data changes, and timing aspects of the
systems we want to verify, we use the high-level specification language CSP-OZ-
DC (COD) [HM05, Hoe06], which integrates three well-investigated formalisms:
Communicating Sequential Processes [Hoa85], Object-Z [Smi00], and Duration
Calculus [ZH04], allowing the compositional and declarative specification of each
aspect by means of the best-suited formalism. In particular, data and data
changes are specified in a constraint-based representation (using OZ). In this

236 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

paper, we use this advantage of the COD representation and extend the known
verification procedures for COD [HM05, MFR06] to combination of theories.

We give an intuition of the formalism and its advantages using our case study:
We model a radio block centre (RBC) that controls the railway traffic on a single
(to simplify matters infinite) track segment. This RBC controls n consecutive
trains, represented by their position and speed values. The full COD specification
is given in Fig. 2, that we explain in the remainder of this section.

The specification begins with the declaration of a timing parameter T PR
(cf. Sect. 2.1), followed by the interface part, in which methods are declared.
These methods are used in all parts (CSP, OZ, DC) of the COD specification,
and provide the functionality of the COD class.

Interface:
method positionReport
method detectEmergency : [trainNumber : N]

CSP. We use CSP [Hoa85] to specify the control flow of a system using processes
over events. The interface part declares all possible events.

CSP:
main

c
= Driveability ||| Detection

Driveability c
= positionReport → Driveability

Detection c
= detectEmergency → Detection

The main process of our specification comprises an interleaving of two subpro-
cesses, Driveability and Detection, for controlling the trains and incoming emer-
gency messages synchronously. The Detection process detects emergencies using
detectEmergency events, while the Driveability process regularly updates the
train positions using positionReport events.

OZ. The data space and its changes are specified with OZ schemata [Smi00].
The OZ part of the running example begins with the state schema defining the
state space of the RBC. Positions and speed values of the trains are given by
sequences train : seqPosition and speed : seq Speed , where the types are given by
reals: Position == R,Speed == R+. Sequences, in the sense of OZ, are partial
functions train : N → Position, that are defined for all i ≤ n. A third data type
is Acceleration, which is also real-valued: Acceleration == R+.

State space:
train : seqPosition emergencyTrain : N

speed : seq Speed maxDec : Acceleration
maxSpeed , minSpeed : Speed d : Position
brakingDist : Speed → Position n : N

The variable emergencyTrain is a pointer to the first train on the track that re-
ported an emergency. We also define some important constants, for the maximal
speed, for the minimal speed (without emergencies), the number of trains n, and
the safety margin between trains d . Next follow axioms for the data structures
defined in the state schema.

Verifying CSP-OZ-DC Specifications 237

Axioms:
0 < minSpeed < maxSpeed
n = #train = #speed
0 < d = brakingDist(maxSpeed)

∀ s : Speed • brakingDist(s) ≥ s2

2∗maxDec
∀ s1, s2 : Speed | s1 < s2 • brakingDist(s1) < brakingDist(s2)
brakingDist(0) = 0

The latter three axioms ensure a safety distance between the trains. The function
brakingDist yields for a given speed value the distance needed by a train in order
to stop if the emergency brakes are applied. For the constant maximal deceler-
ation maxDec, the minimal braking distance for a speed value spd is spd2

2∗maxDec .
Since the trains can not always reach their maximal deceleration, we define this
term as a lower bound for our braking function. We require monotonicity of
brakingDist and specify its value for a speed value of 0.

Every COD class has an Init schema (cf. Fig. 2) that constrains initial values
of state variables, and communication schemata which define state changes. Ev-
ery communication schema (prefix com) belongs to a CSP event as given by the
interface of a class. Every time a CSP event occurs the state space is changed
according to the constraints of the appropriate communication schema.

com detectEmergency
Δ(speed , emergencyTrain)
newEmergencyTrain? : N

newEmergencyTrain? ≤ n
emergencyTrain ′ = min{newEmergencyTrain?, emergencyTrain}
speed ′(emergencyTrain ′) = 0
∀ i ∈ N | i �= emergencyTrain ′ • speed ′(i) = speed(i)

Consider for instance the schema for detectEmergency. The first line identifies
state variables that are changed by this schema, the remaining variables im-
plicitly stay unchanged. The expression newEmergencyTrain? (second line) rep-
resents an input variable. The following lines constrain state changes (primed
variables denote the post-state while unprimed variables refer to the pre-state).
For example emergencyTrain ′ = min{newEmergencyTrain?, emergencyTrain}
sets the new value for emergencyTrain. (The train with the lowest number is
the first on the track. So, emergencyTrain always points to the first train on
the track that reported an emergency.) The schema com positionReport (Fig. 2)
sets the speed values for all trains and calculates their new positions: without
an emergency train in front, the speed can be arbitrary between minSpeed and
maxSpeed , unless the distance to the previous train is too small (< d); in this
case the speed is set to minSpeed . In case of an emergency, the trains behind the
emergency train brake with maximal deceleration.

DC. The duration calculus (DC) is an interval-based dense real-time logic[ZH04].
Important operators of the DC are the chop operator � that splits an interval

238 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

into subintervals, the operator � yielding the length of an interval, and the every-
where operator �p� specifying that a predicate p holds everywhere on an interval.
An explicit time constant t ∈ Q+ or a symbolic constant T are used to define
interval lengths. Since DC is undecidable we use a decidable sub-class (counter-
example formulae). We apply the algorithm of [Hoe06] to generate automata
from DC specifications of this subclass.

DC:
¬(true � � positionReport � (� < T PR) � � positionReport � true)

¬(true � � positionReport ∧ (� > T PR) � true)

In the DC specification above, the first formula specifies that it will never be
the case (¬) that two positionReport events (�) are separated (�) by an interval
with a length (�) smaller than T PR. (So there will be at least T PR time units
between two position reports.) In the second formula, � describes an interval in
which no position report event is detected. The formula states that there is no
interval of a length greater than T PR without a positionReport event. Together
the formulae define the exact periodicity of positionReport .

2.1 Timing Parameters in COD

The original definition of COD in [Hoe06] only allows for using rational num-
bers to define interval lengths. This restriction results in a loss of generality: a
developer always has to define exact values for every interval, even if the speci-
fication does not depend on an exact length. In our example, one has to replace
the T PR constant in the DC formulae with a fixed rational to get a valid COD
specification. To overcome this problem, we introduce timing parameters as an
extension for COD. That is, we allow the usage of symbolic constants for the
interval definitions in the DC part, like T PR in our example. These symbolic
constants are declared as generic constants (parameters of the class) and also
are accessible in the OZ part. For instance, we use T PR in the schema of
positionReport . That allows us to use the same (undetermined) interval length
in the OZ and in the DC part.

3 Operational Semantics of COD Specifications

In this section, we present a translation from COD specifications to PEA. We ex-
tend existing translations from COD to PEA to also deal with timing parameters
and study possibilities of simplifying the PEA obtained this way.

3.1 Translation of COD Specifications into PEA

Phase Event Automata (PEA) are timed automata [AD94] involving both data
and timing aspects. Our definition of PEA is based on [Hoe06], but differs in
that we also allow symbolic constants to occur in clock invariants Lc(C). In
what follows, let L(V) be a subset of the language of OZ predicates.1 For a
1 Ideally, L(V) should be expressive enough so that specifications with complex data

types can be translated, but should permit automatic verification.

Verifying CSP-OZ-DC Specifications 239

︸
︷︷

︸

In
te

r-
fa

c
e

︸
︷︷

︸

C
S
P

p
a
rt

︸
︷︷

︸
O

Z
p
a
rt

︸
︷︷

︸

D
C

p
a
rt

RBC [T PR : Q+]
method positionReport
method detectEmergency : [trainNumber : N]

main c
= Driveability ||| Detection

Driveability c
= positionReport → Driveability

Detection c
= detectEmergency → Detection

train : seqPosition emergencyTrain : N

speed : seqSpeed maxDec : Acceleration
maxSpeed,minSpeed : Speed d : Position
brakingDist : Speed → Position n : N

0 < minSpeed < maxSpeed
n = #train = #speed
0 < d = brakingDist(maxSpeed) (1)

∀ s : Speed • brakingDist(s) ≥ s2
2∗maxDec

∀ s1, s2 : Speed | s1 < s2 • brakingDist(s1) < brakingDist(s2)
brakingDist(0) = 0

Init
emergencyTrain > n
∀ i : dom speed • minSpeed ≤ speed(i) ≤ maxSpeed
∀ i : dom train | i �= 1

• train(i) < train(i − 1) − brakingDist(speed(i))

com positionReport
Δ(train, speed)

∀ i : dom train | i = 1 ∧ i < emergencyTrain
• minSpeed ≤ speed′(i) ≤ maxSpeed

∀ i : dom train | 1 < i < emergencyTrain ∧ train(i − 1) − train(i) ≥ d
• minSpeed ≤ speed′(i) ≤ maxSpeed

∀ i : dom train | 1 < i < emergencyTrain ∧ train(i − 1) − train(i) < d
• minSpeed = speed′(i)

∀ i : dom train | i ≥ emergencyTrain
• speed′(i) = max{speed(i) − maxDec ∗ T PR, 0}

∀ i : dom train • train′(i) = train(i) + speed′(i) ∗ T PR

com detectEmergency
Δ(speed, emergencyTrain)
newEmergencyTrain? : N

newEmergencyTrain? ≤ n
emergencyTrain′ = min{newEmergencyTrain?, emergencyTrain}
speed′(emergencyTrain′) = 0
∀ i ∈ N | i �= emergencyTrain′ • speed′(i) = speed(i)

¬(true �
 positionReport � (� < T PR) �
 positionReport � true)

¬(true � � positionReport ∧ (� > T PR) � true)

Fig. 2. The COD specification for the emergency case study

set C of clock variables and timing parameters T , the set Lc(C ,T) of (convex)
clock constraints with constants is defined by the following BNF grammar:

δ ::= c < t | c ≤ t | c < z | c ≤ z | δ ∧ δ,

where c ∈ C is a clock, t ∈ Q+ is a rational constant, and z ∈ T is a timing
parameter. The semantics is given by clock valuations γ : C → R+ assign-
ing non-negative reals to clocks. The semantics of a timing parameter z is an

240 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

interpretation I : T → Q+. We write γ, I |= δ iff δ holds for γ and I. For a set of
clocks X , we denote by (γ+ t) the increasing of clocks, i.e., (γ+ t)(c) := γ(c)+ t ,
and by γ[X := 0] the valuation, where each clock in X is set to zero and the
values of the remaining clocks are given by γ.

Definition 1 (Phase Event Automaton). A phase event automaton (PEA)
is a tuple (P ,V ,A,C ,E , s , I ,P0), where P is a finite set of locations (phases)
with initial locations P0 ⊆ P; V ,A,C are finite sets of real-valued variables,
events, and real-valued clocks, respectively; s : P → L(V), I : P → Lc(C ,T)
assign state invariants resp. clock invariants to phases. The set of edges is E ⊆
P×L(V∪V ′∪A∪C)×P(C)×P. We assume that a stuttering edge (p,

∧
e∈A¬e∧∧

v∈V v ′=v ,∅, p) (empty transition) exists for every phase p.
The operational semantics of PEA is defined by infinite runs of configurations

〈(p0, β0, γ0, t0,Y0), (p1, β1, γ1, t1,Y1), · · · 〉, where initially p0 ∈ P0 and γ0(c) = 0
for c ∈ C. For i ∈ N and variable valuations βi (with βi(v) = β′i(v

′)) we demand
β(i) |= s(pi) and γi + ti , I |= I (pi) and ti > 0. For transitions (pi , g,X , pi+1) ∈
E we further require βi , β

′
i+1, γi + ti ,Yi |= g and γi+1 = (γi + ti)[X := 0].

Thus, a PEA is an automaton enriched by constraints to define data changes and
clocks to measure time (similar to a timed automaton). An edge (p1, g,X , p2)
represents a transition from p1 to p2 with a guard g over (possibly primed)
variables, clocks, and events, and a set X of clocks that are to be reset. Primed
variables v ′ denote the post-state of v whereas the unprimed v always refers to
the pre-state. In the parallel composition of PEA, we consider conjunctions of
guards of transitions and invariants of locations.

Definition 2 (Parallel Composition). The parallel composition of two PEA
A1 and A2, where Ai = (Pi ,Vi ,Ai ,Ci ,Ei , si , Ii ,P0

i), is defined by

A1 || A2 := (P1 × P2,V1 ∪V2,A1 ∪ A2,C1 ∪ C2,E , s1 ∧ s2, I1 ∧ I2,P0
1 × P0

2),

where ((p1, p2), g1∧g2,X1∪X2, (p′
1, p

′
2)) ∈ E iff (pi , gi ,Xi , p′

i) ∈ Ei with i = 1, 2.

The translation of COD specifications into PEA is compositional: every part
of the specification is translated separately into PEA; the semantics for the
entire specification is the parallel composition of the automata for every part:
A(COD) = A(CSP) ‖ A(OZ) ‖ A(DC).

Translation of the CSP part. The translation of the CSP part into PEA is
based on the structured operational semantics of CSP [Ros98]. If this semantics
of the CSP part is given as a labelled transition system (Q ,A, q0,−→) with
locations Q and events A from the COD specification, its PEA is A(CSP) =
(Q ,∅,A,∅,E , s , I , {q0}), where s(q) = true, I (q) = true for all q ∈ Q and

E = {(p, only(e),∅, p′) | p e−→ p′} ∪ {(p, only(τ),∅, p) | p ∈ Q}.

The predicate only(e) demands that only the event e is communicated whereas
only(τ) demands that no event is communicated. That is, E consists of transi-
tions for every transition in the original transition system and of stuttering edges
for every location. The PEA of our example’s CSP part is pictured in Fig. 3.

Verifying CSP-OZ-DC Specifications 241

Translation of the OZ part. The OZ part of a COD specification is translated
into a PEA with two locations: one for setting the initial values of state variables
and one for the running system, with a transition for each state changing event.
The variables of the PEA are the variables Var(State) declared in the state
schema. The set A of events of the PEA consists of all COD events for which a
communication schema com c exists. For each such event the automaton has a
transition executing the state change as defined in the associated communication
schema. The resulting PEA is A(OZ)=({p0, p1},Var(State),A,∅,E , s , I , {q0}),
where s(p0) = Init (invariant from the initial schema), s(p1) = State (invariant
from the state schema), I (pi) = true for i = 1,2, and

E = {(p1, only(c) ∧ com c,∅, p1) | c ∈ A} ∪
{(pi , only(τ) ∧ ΞState,∅, pi) | i = 1, 2} ∪ {(p0, only(τ) ∧ ΞState,∅, p1)}.

The OZ predicateΞState demands that the state space is not changed:ΞState :⇔∧
v∈Var(State) v ′ = v . The formula com c only changes the state of the variables

occurring in the Δ list of the corresponding operation schema; the remaining
variables remain implicitly unchanged. The OZ part PEA of the RBC is illus-
trated in Fig. 3. Formula (1) refers to the state schema from Fig. 2. The operation
schemata, e.g., com positionReport refer to the constraints of the specification.

Translation of the DC part. Each formula of the DC part is translated into
an individual PEA. The translation of counter-example formulae (cf. Sect. 2),
e.g., ¬(phase0

� event1 � phase1
� · · · � phasen), into PEA is similar to

the translation of a non-deterministic finite automaton into a deterministic one:
every location of the resulting automaton represents a subset of DC phases.
Every run of the automaton leading to a location labelled with phasei accepts
the prefix of the DC counter-example up to phasei . In addition, phasei may have
an upper or lower time bound. In this case, the automaton includes a clock ci
measuring the duration of the phase. Event expressions eventi separating two DC
phases constitute the guards that restrict transitions from phasei−1 to phasei .
Technical details of the construction can be found in [Hoe06]. The automata for
the DC part of the RBC specification are displayed in Fig. 3(c). For instance,
the upper automaton enforces the behaviour defined by the second DC formulae
of our example (Fig. 2). It consists of one location with a clock invariant, i.e, the
automaton stays in this location for at most T PR time units – the only way to
reset the clock c1 is the transition that synchronises on positionReport . By this,
every positionReport event has to occur in time.

3.2 PEA with Timing Parameters

As we allow timing parameters to occur in the DC part and in convex clock
expressions, we need to adapt the translation of the DC part into PEA given in
[Hoe06]: since the original translation does not depend on concrete values of ra-
tional constants, we can treat timing parameters exactly like rational constants.
The clock constraints generated by the translation are then convex as before.

242 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

only(positionReport)

only(detectEmergency)

true
main

Drive‖|Detect

(a) CSP part

¬positionReport ∧
¬detectEmergency ∧
ΞState

com detectEmergency
only(detectEmergency) ∧

com positionReport
only(positionReport) ∧

(1)

(1) ∧ Init

(b) OZ part

¬positionReport
c2 < T PR

¬positionReport
∧ c2 ≥ T PR

positionReport
{c2}

{c1}
positionReport

¬positionReport
∧ c1 < T PR

positionReport
∧ c2 ≥ T PR
{c2}

¬positionReport

c2 ≤ T PR

c1 ≤ T PR

(c) DC part

Fig. 3. PEA for the RBC case study. Boxes around formulae indicate state invariants;
braces ({c1},{c2}) indicate clock resets.; Ξ is defined on page 241.

Important properties of PEA, e.g., the translation into TCS (cf. Sect. 4), only
depend on the convexity of clock constraints. We thus obtain:

Theorem 1. The translation from COD with complex data types and timing
parameters to PEA described here is sound (i.e., the PEA runs are exactly the
system runs admitted by the CSP, OZ, and DC part) and compositional.

3.3 Simplifications of PEA

As mentioned in Section 3.1, the operational semantics of the whole COD speci-
fication is given by the parallel product of the individual PEA. This product can
grow very large: theoretically, its size is the product of the size of all individual
automata, both in terms of locations and in terms of transitions. We propose
the following simplifications for the product PEA:

– Transitions whose combined guards evaluate to false can be removed, as
can be locations that are not connected to an initial state. We can also
remove all events from the PEA, as these are only used for synchronising
the individual automata [Hoe06].

– Consider the case that we have several clocks in the product automaton.
All clocks run at the same speed and can be reset to 0 by transitions. If we
have two (or more) clocks for which the set of transitions that resets them is
the same, we can identify them, i.e., remove one clock and replace it by the
other in all guards. This not only gives us a system with one variable less,
but may also remove additional transitions by making their guards false.

Theorem 2. Let A = (P ,V ,A,C ,E , s , I ,P0) be a PEA, c1, c2 ∈ C. If
{(p1, g,X , p2) ∈ E | c1 ∈ X } = {(p1, g,X , p2) ∈ E | c2 ∈ X }, then A is equiva-
lent to A′ = (P ,V ,A,C \ {c2} ,E ′, s ′, I ′,P0), where E ′, s ′ and I ′ result from
E , s and I by replacing all occurrences of c2 by c1.

Verifying CSP-OZ-DC Specifications 243

c1 < T PR ∧
c2 < T PR ∧
Ξ

∧ c2 ≥ 1 {c1,c2}
com positionReport

c1 < T PR ∧ c2 < T PR ∧
com detectEmergency

{c1,c2}
com positionReport

c1 < T PR ∧
com detectEmergency

c1 < T PR
∧ Ξ

c1 < T PR
∧ Ξ

(1) ∧ c1 ≤ T PR

(1) ∧ c1 ≤ T PR

(1) ∧ Init ∧
c1 ≤ T PR

c1 ≤ T PR ∧
c2 ≤ T PR ∧ (1)

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

c1 < T PR ∧ Ξ

(1) ∧ Init ∧ c1 ≤ T PR

Fig. 4. Simplified product PEA

Applied to the running example, the first simplification reduces the product
automaton from 8 locations and 90 transitions (without stuttering edges) to 5
locations and 10 transitions. With the second one, we remove one clock variable
and one additional transition from the product automaton. The entire product
automaton with simplifications is pictured in Fig. 4. It basically comprises four
locations representing slightly different possibilities to initialise the system and
one dead end location in the lower right corner. The latter is eventually en-
tered and can be interpreted as the main state of the system. Here the trains
periodically report their positions to the RBC and emergencies may be detected.

4 Verification of COD Specifications

In this section, we elaborate on verifying safety properties of systems with com-
plex data types specified in COD, based on their translation to PEA. We define
transition constraint systems (TCS) and show how to extract a TCS from a
PEA. We introduce the verification tasks that we consider. After an intuitive
presentation of our idea for efficient verification, we formally analyse situations
where verification problems can be reduced to checking satisfiability of ground
formulae over a simple theory. The method is illustrated on the running example.

Language and theory associated with a COD specification. Let S be
a COD specification. The signature of S , ΣS consists of all sorts, functions
and predicates declared in the OZ specification either implicitly (by mentioning
standard theories) or explicitly. The theory of S , TS is constructed by extending
the (many-sorted) combination T0 of all standard theories used in the OZ and DC
specification with the functions declared in the OZ part and the axioms for the
data structures specified at the beginning of the OZ part (which we will denote
by Ax). In what follows, the theory TS will be considered to be a background
theory: even if we do not refer to it explicitly, it is always taken into account.

244 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

4.1 Translation of PEA to TCS

Let Σ be a signature, V a set of (typed) variables, and V ′ a copy of corresponding
primed variables. Let F(X) be the family of all Σ-formulae in the variables X .

Definition 3 (Transition Constraint Systems). A transition constraint sys-
tem T is a tuple (V , Θ, Φ) with Θ ∈ F(V) and Φ ∈ F(V ∪ V ′). The formula Θ
characterises the initial states of T, Φ the transition constraints of T (i.e., the
relationships between the variables V and V ′ – before and after transitions).

A translation from PEA to TCS has been developed by Hoenicke and Maier
[HM05, Hoe06]. We use the simplified translation from [Hoe06].

Let S be a COD specification and AS = (P ,V ,A,C ,E , s , I ,P0) the PEA
associated with S . We associate with AS the TCS T (AS) = (V , Θ, Φ), where:

– V = V ∪ A ∪ C ∪ {len, pc}, where len is a real-valued variable representing
the time spent in the current state, and pc is the program counter that is
interpreted over P and represents the current location (phase) of the system.

– Θ =
∨

p∈P0
pc=p ∧ len>0∧

∧
c∈C c=len∧ s(p)∧ I (p). Θ requires that there

exists an initial location p in which a positive time len is spent, all clocks are
set to len and both the state and the clock invariant of the location p hold.

– Φ=
∨

(p1,g,X ,p2)∈E pc=p1∧pc′=p2∧g∧s ′(p2)∧I ′(p2)∧len′>0∧
∧

c∈X c′=len′∧
∧

c∈C\X c′=c + len′, where s ′ and I ′ represent s and I with unprimed vari-
ables replaced by primed ones. The formula Φ states that there exists a
transition (p1, g,X , p2) such that the program counter is p1 before and p2

after the transition, the guard g of the transition as well as the state and
clock invariant of location p2 are satisfied, the system will remain in p2 for
some positive time, and clocks are incremented by len′ if they are not reset
by the transition (otherwise they are set to len′).

We thus obtain a representation of the original COD specification S in terms
of first-order formulae over the signature ΣS and theory TS of S . We encode
states of the system by formulae over V . If σ, σ′ are states (encoded as formulae
over V , and V ′ respectively), we say that σ is reachable in one step from σ in
TS = (V , Θ, Φ) w.r.t. TS if TS , σ, σ

′ |= Φ. A run of TS is a sequence of states
〈σ1, . . . σm 〉 such that TS , σ1 |= Θ and σi+1 is reachable in one step from σi .

As a consequence of the results in [Hoe06] we obtain:

Corollary 1. The translation from PEA to TCS preserves the semantics: every
run in the TCS can be mapped to a run of the PEA; the mapping is surjective.

Example 1. Consider the RBC example discussed in Sect. 1.1. We use the simpli-
fied PEA A = (P ,V ,A,C ,E , s , I ,P0) developed in Sect. 3.3, where A = ∅ and
C = {x1}. The TCS T (A) = (V , Θ, Φ) associated with A is defined as follows2:

(1) V = V ∪ A ∪ C ∪ {len, pc}. For technical reasons we model the variables of
type sequence (e.g. train, speed) as functions of sort i → num.

2 We will use a sans serif font for all symbols in the signature of the TCS T (A).

Verifying CSP-OZ-DC Specifications 245

The following formulae (extracted from the OZ specification) help define T (A):
φinput = newEmergencyTrain′ > 0,
φclock = x1<1 ∧ len′>0 ∧ x ′

1=x1 + len′ ∧ x ′
1≤1,

φinit = (∀ i : 1<i≤n → train(i)<train(i − 1)−brakingDist(speed(i)))∧
(∀ i : 1≤i≤n → minSpeed≤speed(i)≤maxSpeed) ∧ (emergencyTrain>n),

φemerg = newEmergencyTrain ≤ n ∧
emergencyTrain′ = min {newEmergencyTrain, emergencyTrain} ∧
speed′(emergencyTrain′) = 0 ∧
∀ i : i 	= emergencyTrain′ → speed′(i) = speed(i),

φposRep = ∀ i : i=1 ∧ emergencyTrain>i → minSpeed≤speed′(i)≤maxSpeed ∧
∀ i : 1<i<emergencyTrain ∧ train(i − 1)−train(i)≥d

→ minSpeed≤speed′(i)≤maxSpeed ∧
∀ i : 1<i<emergencyTrain ∧ train(i − 1)−train(i)<d

→ speed′(i)=minSpeed ∧
∀ i : i≥emergencyTrain→speed′(i)=max {speed(i)−maxDec∗T PR, 0}∧
∀ i : 1≤i≤n → train′(i)=train(i)+speed′(i)∗T PR,

φconst =
∧

c∈const c
′ = c, where const = {maxDec,maxSpeed,minSpeed, n, d,T PR}

is the set of all variables in V that do not change during execution.

(2) The initial predicate is Θ = pc = 1 ∧ len > 0 ∧ x1 = len ∧ φinit.
(3) We describe the transition relation Φ in terms of the individual transitions.

Several transitions change only the clock, but no state variables. Let S1 =
{(1, 1), (1, 3), (3, 3)} ,S2 = {(1, 2), (1, 4), (2, 2), (2, 4), (4, 4)} ⊂ P × P , and

φ(i,j) =
{

(pc=i ∧ pc′=j ∧ φclock ∧ φinit ∧ φconst ∧ φinput) if (i , j) ∈ S1

(pc=i ∧ pc′=j ∧ φclock ∧ φconst ∧ φinput) if (i , j) ∈ S2
.

Finally, we have the following transitions that change the state variables:
φ1 = (pc=4 ∧ pc′=4 ∧ φemerg ∧ φclock ∧ φconst ∧ φinput),
φ2 = (pc=4 ∧ pc′=5 ∧ φposRep ∧ len′>0 ∧ x ′

1=0 ∧ x ′
1 ≤ 1 ∧ φconst ∧ φinput),

φ3 = (pc=5 ∧ pc′=5 ∧ φemerg ∧ φclock ∧ φconst ∧ φinput),
φ4 = (pc=5 ∧ pc′=5 ∧ φposRep ∧ len′>0 ∧ x ′

1=0 ∧ x ′
1≤1 ∧ φconst ∧ φinput).

Altogether, Φ =
∨

(i,j)∈S1∪S2
φ(i,j) ∨

∨4
i=1 φi .

4.2 Verification of TCS

The verification problems we consider are invariant checking and bounded model
checking. We explain the problems which occur in this context, and present an
idea that allows to solve these problems in certain situations. We illustrate the
problems as well as the verification methods on our case study.

Invariant checking. We can check whether a formula Ψ is an inductive invari-
ant of a TCS T=(V , Θ, Φ) in two steps: (1) prove that TS , Θ |= Ψ ; (2) prove that
TS , Ψ, Φ |= Ψ ′, where Ψ ′ results from Ψ by replacing every x ∈ V by x ′. Failure
to prove (2) means that Ψ is not an invariant, or Ψ is not inductive w.r.t. T .3

3 Proving that a Ψ is an invariant of the system in general requires to find a stronger
formula Γ (i.e., T0 |= Γ → Ψ) and prove that Γ is an inductive invariant.

246 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

Example 2. For the system described in Sect. 1.1, let Ψ be the formula that
states that the distance between two trains must always be greater than the
sum of the braking distances of the trains in between (Ψ is a safety condition):

Ψ = ∀ i : 1 < i ≤ n → train(i) < train(i − 1) − brakingDist(speed(i)).

To check that Ψ is an inductive invariant, we need to check that:

(1) The initial states of the system, given by Θ, satisfy the safety property Ψ .
(2) Assuming that a given state σ satisfies Ψ , any state σ′ reachable from σ

using the transition predicate Φ satisfies Ψ ′.

Checking (1) is not a problem. For (2) we need to show TS |= Ψ ∧ Φ → Ψ ′,
where TS is the theory associated with the COD specification, an extension of
T0 (many-sorted combination of real arithmetic (sort num) with an index theory
describing precedence of trains (sort i)), with the set of definitions Def ⊆ Ax for
global constants of the system (Ax are the axioms in the OZ specification) and
with function symbols brakingDist, train, train′, speed, speed′ fulfilling the axioms
specified in Ax, Ψ , and Φ. We need to show that T0 ∧ Ax ∧ Ψ ∧ Φ ∧ ¬Ψ ′ |=⊥.

Bounded model checking. We check whether, for a fixed k , unsafe states
are reachable by runs of T=(V , Θ, Φ) of length at most k . Formally, we check
whether:

TS ∧Θ0 ∧
j∧

i=1

Φi ∧ ¬Ψj |=⊥ for all 0 ≤ j ≤ k ,

where Φi is obtained from Φ by replacing all variables x ∈ V by xi , and all
variables x ′ ∈ V ′ by xi+1; Θ0 is Θ with x0 replacing x ∈ V ; and Ψi is Ψ with xi

replacing x ∈ V .

Problem. Standard combination methods [NO79, Ghi04] allow for testing sa-
tisfiability in certain combinations of theories, but only for ground formulae.
Our problem contains several non-ground formulae: the global axioms Ax, the
invariant Ψ and the transition relation Φ. Only ¬Ψ ′ corresponds to a ground set of
clauses. Thus, standard methods are not directly applicable. We want to reduce
the problem above to a ground satisfiability problem over decidable theories. To
this end, we may replace quantified formulae by a number of ground instances,
giving a decidable ground satisfiability problem over the base theory T0 (plus
free function symbols). This approach is sound, but in general not complete. In
what follows, we identify situations when this method is complete.

Our idea. In order to overcome the problem mentioned above we proceed as
follows. We start from a base theory T0 associated with the COD specification S
(usually a many-sorted combination of standard theories, e.g., integers or reals).
For the case of invariant checking we consider the following successive extensions
of T0 and study possibilities of efficient reasoning in these extensions:

– the extension T1 of T0 with the definitions and axioms in the OZ part of the
COD specification for variables which do not occur in Φ (i.e., do not change);

Verifying CSP-OZ-DC Specifications 247

– the extension T2 of T1 with the remaining variables in a set V (including
those of sort sequence, modelled by functions) which occur in Φ and satisfy
Ψ (together with the corresponding definitions and axioms);

– the extension T3 of T2 with primed variables V ′ (including primed versions
of functions for the variables of sort sequence) satisfying Φ.

Example 3. Again consider the running example. We consider successive exten-
sions of T0, a many-sorted combination of real arithmetic (for reasoning about
time, positions and speed, sort num) with an index theory (for describing prece-
dence between trains, sort i). For the case of invariant checking, we have:

– the extension T1 of T0 with a monotone and bounded function brakingDist
as well as global constants, defined by Def ⊆ Ax,

– the extension T4 of T1 with V-variables from Φ, satisfying Ψ , defined by:
– Let T2 be the extension of T1 with the (free) function speed.
– Let T3 be the extension of T2 with the binary function secure defined for

every 0 < i < j < n by secure(i , j) =
∑j

k=i+1 brakingDist(speed(k)).
– T4 is the extension of T3 with function train satisfying Ψ (equivalent to Ψ):

Ψ = ∀ i , j (0 < i < j ≤ n → train(j) < train(i) − secure(i , j)),

– the extension T5 of T4 with functions train′ and speed′ satisfying Φ.

We show that for all of these extensions hierarchic reasoning is possible (cf.
Sect. 4.3).4 This allows us to reduce problem (2) to testing satisfiability of ground
clauses in T0, for which standard methods for reasoning in combinations of theo-
ries can be applied. A similar method can be used for bounded model checking.

4.3 Efficient Reasoning in Complex Theories: Locality

In the following, we identify situations in which we can give sound, complete
and efficient methods for reasoning in theory extensions.

Local theory extensions. Let T0 be a theory with signatureΠ0 =(S0, Σ0,Pred).
We consider extensions with new sorts S1 and new function symbols Σ1 con-
strained by a set K of (universally quantified) clauses in signatureΠ=(S , Σ,Pred),
where S = S0 ∪ S1 and Σ = Σ0 ∪Σ1. We are interested in checking satisfiability
of sets of ground clauses G with respect to such theory extensions.

When referring to sets G of ground clauses we assume they are in the signature
Πc = (S , Σ ∪Σc ,Pred) where Σc is a set of new constants. An extension T0 ⊆
T0 ∪ K is local if satisfiability of a set G of clauses w.r.t. T0 ∪ K only depends
on T0 and those instances K[G] of K in which the terms starting with extension
functions are in the set st(K,G) of ground terms which already occur in G or
K. Formally, the extension T0 ⊆ T0 ∪ K is local if condition (Loc) holds:
4 We consider extensions with axiom Ψ instead of Ψ since Ψ defines a local theory

extension, and hence it allows for hierarchic reasoning (cf. Sect. 4.3), whereas Ψ
does not have this property. We are currently studying possibilities of automatically
recognising local theory extensions, and of automatically generating (equivalent) sets
of axioms defining local extensions from given sets of axioms.

248 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

(Loc) For every set G of ground clauses, T0 ∧ K ∧G is unsatisfiable iff T0∧
K[G] ∧G has no partial model where all terms in st(K,G) are defined

A partial model of T0∧K[G]∧G is a partial Πc-structure P s.t. P|Π0 is a total
model of T0 and P satisfies all clauses in K[G]∧G where all terms are defined.

We give examples of local theory extensions relevant for the verification tasks
we consider. Some appear in [GSSW06, SS05, SS06], some are new.

Theorem 3. The extension of any theory with free function symbols is local.

In addition, assume the base theory has a reflexive partial ordering ≤. Then:

(1) Extensions of T0 with axioms of the following type are also local:

(GBoundt
f) ∀ x1, . . . , xn(φ(x1, . . . , xn) → f (x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a term, φ(x1, . . . , xn) a conjunction of literals, both in
the base signature Π0 and with variables among x1, . . . , xn .

(2) For i ∈ {1, . . . ,m}, let ti(x1, . . . , xn) and si(x1, . . . , xn) be terms and let
φi(x1, . . . , xn) be conjunctions of literals, all of them in the base signature
Π0, with variables among x1, . . . , xn , such that for every i 	= j , φi ∧φj |=T0⊥.
Any “piecewise-bounded” extension T0∧(GBoundf), where f is an extension
symbol, is local. Here (GBoundf) =

∧m
i=1(GBound[si ,ti],φi

f);

(GBound[si ,ti],φi
f) ∀ x(φi (x) → si(x) ≤ f (x) ≤ ti(x)).

(3) For many ordered theories including the reals (for a complete list see [SS05,
SS06, JSS07]), extensions with (possibly strictly) monotone functions are
local. Combinations with boundedness axioms (GBoundt

f), where t has the
same monotonicity as f , do not destroy locality.

Hierarchic reasoning in local theory extensions. Let T0 ⊆ T1=T0 ∪ K be
a local theory extension. To check the satisfiability of a set G of ground clauses
w.r.t. T1 we can proceed as follows (for details cf. [SS05]):

Step 1: Use locality. By the locality condition, G is unsatisfiable w.r.t. T1 iff
K[G]∧G has no partial model in which all the subterms of K[G]∧G are defined,
and whose restriction to Π0 is a total model of T0.

Step 2: Flattening and purification. We purify and flatten K[G]∧G by introduc-
ing new constants for the arguments of the extension functions as well as for the
(sub)terms t = f (g1, . . . , gn) starting with extension functions f ∈ Σ1, together
with corresponding new definitions ct ≈ t . The set of clauses thus obtained has
the form K0 ∧ G0 ∧ D , where D is a set of ground unit clauses of the form
f (c1, . . . , cn) ≈ c, where f ∈ Σ1 and c1, . . . , cn , c are constants, and K0,G0 are
clause sets without function symbols in Σ1.

Step 3: Reduction to testing satisfiability in T0. We reduce the problem to testing
satisfiability in T0 by replacing D with the following set of clauses:

N0 =
∧

{
n∧

i=1

ci = di → c = d | f (c1, . . . , cn) = c, f (d1, . . . , dn) = d ∈ D}.

Verifying CSP-OZ-DC Specifications 249

Theorem 4 ([SS05]). Assume that T0 ∪K is a local extension of T0. With the
notations above, G is satisfiable in T0 ∪K iff K0 ∧G0 ∧N0 is satisfiable in T0.

The method above is easy to implement and efficient. If all the variables in K are
guarded by extension functions then the size of K0∧G0∧N0 is polynomial in the
size of G. Thus, the complexity of checking the satisfiability of G w.r.t. T0 ∧ K
is g(nk) (where k depends on K cf. e.g. [SS05]) where g(n) is the complexity of
checking the satisfiability of a set of ground clauses of size n in T0.

Application to parametric verification of COD specifications. A sound
but potentially incomplete method for checking whether T0∧Ax∧Ψ∧Φ∧¬Ψ ′ |= ⊥,
which can always be used, is to take into account only certain ground instances
of the universally quantified formulae in Ax∧Ψ∧Φ, related to the ground formula
G = ¬Ψ ′. However complete approaches can often be obtained, because many
axioms used in verification problems define chains of local extensions of T0:

– definitions for constants can be expressed by axioms of the type GBoundt
f ;

– often, transition relations which reflect updates of variables or of a sequence
f according to mutually exclusive “modes of operation” are axiomatised by
axioms of the form (GBoundf) as defined in Theorem 3(2) and 3(3).

If a complete approach can be given, the method for hierarchic reasoning de-
scribed above can be used in two ways. If the constraints on the parameters of
the systems are completely specified in the COD specification, then it allows us
to reduce the problem of checking whether a system property Ψ is an inductive
invariant to the problem of deciding satisfiability of a set of constraints in T0.
Alternatively, we may choose not to specify all constraints on the parameters.
As a side effect, after the reduction of the problem to a satisfiability problem in
the base theory, one can automatically determine constraints on the parameters
(in the running example these are, e.g., T PR,minSpeed,maxSpeed, ...), which
guarantee that the property is an inductive invariant and are sufficient for this.
(This can be achieved for instance using quantifier elimination.)

4.4 Example: The RBC Case Study

We show how the verification method based on hierarchic reasoning can be
applied to our case study. The following is a consequence of Theorem 3.

Theorem 5. Let T0 be the (many-sorted) combination of real arithmetic (for
reasoning about time, positions and speed, sort num) with an index theory (for
describing precedence between trains, sort i).

(1) The extension T1 of T0 with a monotone and bounded function brakingDist
as well as global constants, with definitions Def ⊆ Ax, is local.

(2) The extension T2 of T1 with the (free) function speed is local.
(3) The extension T3 of T2 with the function secure (cf. Example 3) is local.
(4) The extension T4 of T3 with functions train satisfying Ψ (Example 3) is local.
(5) The extension T5 of T4 with functions train′ and speed′ satisfying Φ is local.

250 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

We follow the steps in the method for hierarchic reasoning in Sect. 4.3 and
reduce the verification task to a satisfiability problem in the base theory T0. To
make our task slightly simpler, we split the transition relation and look at every
φi separately. Those φi that do not change the state variables train and speed
are sure to preserve the invariant. Furthermore, the program counters do not
interfere with the invariant. As a result, we have two interesting cases:

Φ1 = φemerg ∧ φclock ∧ φconst ∧ φinput,

Φ2 = φposRep ∧ len′ > 0 ∧ x ′
1 = 0 ∧ x ′

1 ≤ 1 ∧ φconst ∧ φinput.

We start with the first transition. We have to prove T0 ∧ Def ∧ Defsecure ∧ Ψ ∧
Φ1 ∧ ¬Ψ ′ |=⊥. This is a satisfiability problem over T4 ∧ Φ1. In a first reduction,
this problem is reduced to a problem over T4 = T0 ∧ Def ∧ Defsecure ∧ Ψ :

Step 1: Use locality. For this step, the set of ground clauses we consider is G =
¬Ψ ′ = {1 < k1, k1 ≤ n, k2 = k1 + 1, s = speed′(k1), train′(k1) ≥ train′(k2) −
brakingDist(s)}. Of the extension symbols train′ and speed′, only speed′ occurs in
Φ1. Ground terms with speed′ are speed′(k1) in G and speed′(emergencyTrain′)
in Φ1. Thus, Φ1[G] consists of two instances of Φ1: one with i instantiated to
k1, the other with i instantiated to emergencyTrain′ (we remove clauses that are
generated in both instantiations such that they only appear once):

Φ1[G] = φclock ∧ φinput ∧ φconst ∧ newEmergencyTrain ≤ n ∧
emergencyTrain′ = min {newEmergencyTrain, emergencyTrain} ∧
speed′(emergencyTrain′) = 0 ∧
k1 	= emergencyTrain′ → speed′(k1) = speed(k1) ∧
emergencyTrain′ 	= emergencyTrain′

→ speed′(emergencyTrain′) = speed(emergencyTrain′).

Step 2: Flattening and purification. Φ1[G] ∧ G is already flat with respect to
speed′ and train′. We purify the set of clauses by replacing every ground term
with speed′ or train′ at the root with new constants c1, . . . , c4 and obtain a set
of definitions D = {speed′(emergencyTrain′) = c1, speed′(k1) = c2, train′(k1) =
c3, train′(k2) = c4}, together with the purified sets of clauses

G0 = {1 < k1, k1 ≤ n, k2 = k1 + 1, s = c2, c3 ≥ c4 − brakingDist(s)}
Φ1[G]0 = φclock ∧ φinput ∧ φconst ∧ newEmergencyTrain ≤ n ∧

emergencyTrain′ = min {newEmergencyTrain, emergencyTrain} ∧
c1 = 0 ∧ k1 	= emergencyTrain′ → c2 = speed(k1) ∧
emergencyTrain′ 	= emergencyTrain′ → c1 = speed(emergencyTrain′).

Step 3: Reduction to satisfiability in T4. We add the set of clauses N0 =
{emergencyTrain′ = k1 → c1 = c2, k1 = k2 → c3 = c4}. This allows us to remove
D and obtain a ground satisfiability problem in T4 : Φ1[G]0 ∧ G0 ∧ N0. In four
further reduction steps, we reduce this problem (using a similar procedure) to
a ground satisfiability problems over T0. This set of clauses can now directly be
handed to a decision procedure for the combination of the theories of reals and
indices. In the same way, the transition Φ2 can be handled.

Verifying CSP-OZ-DC Specifications 251

5 Conclusions

In this paper, we presented a method for invariant checking and bounded model
checking for complex specifications of systems containing information about pro-
cesses, data, and time. In order to represent these specifications in full generality,
we used the specification language CSP-OZ-DC (COD) [HO02, Hoe06]. Similar
combined specification formalisms are, e.g., [MD99, Smi02, Süh02] but we prefer
COD due to its strict separation of control, data, and time, and to its composi-
tionality (cf. Sect. 3), that is essential for automatic verification.

One of our goals was to model complex systems with a parametric number of
components. For this, it was essential to use complex data structures (e.g., arrays,
functions). Therefore, in this paper we needed to extend existing verification
techniques for COD [HM05, MFR06] to situations when abstract data structures
appear. Also, in order to achieve a tighter binding of the OZ to the DC part, we
introduced timing parameters, allowing for more flexible specifications.

We showed that, in this context, invariant checking or bounded model check-
ing can be reduced to proving in complex theories. This was done using transla-
tions from COD to PEA (and then to simplified PEA) and from PEA to TCS
(these translations can be fully automated – we already have tool support for
them). We then analysed the type of theories that occur in relationship with a
given COD specification, and presented a sound method for efficient reasoning
in these theories. At the same time, we identified situations when the method
is sound and complete (i.e., when the specific properties of “position updates”
can be expressed by using chains of local theory extensions). All these ideas
were illustrated by means of a running example complementing scenarios stud-
ied in [FM06, MFR06] (as now we consider an arbitrary number of trains) and
in [JSS07] (as now we also encompass efficient handling of emergency messages).
We kept the running example relatively easy in order to ensure clarity of presen-
tation. More complicated scenarios can be handled similarly (we also considered,
e.g., situations in which time passes between position and speed updates).

In ongoing work, we investigate possibilities to use methods for abstraction-
based model checking and invariant generation for this type of models.

References

[AD94] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994)

[ERT02] ERTMS User Group, UNISIG. ERTMS/ETCS System requirements spec-
ification. Version 2.2.2 (2002) http://www.aeif.org/ccm/default.asp

[FM06] Faber, J., Meyer, R.: Model checking data-dependent real-time properties
of the European Train Control System. In: FMCAD, pp. 76–77. IEEE
Computer Society Press, Los Alamitos (2006)

[Ghi04] Ghilardi, S.: Model theoretic methods in combined constraint satisfiability.
Journal of Automated Reasoning 33(3–4), 221–249 (2004)

[GSSW06] Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof
systems for partial functions with Evans equality. Information and Com-
putation 204(10), 1453–1492 (2006)

http://www.aeif.org/ccm/default.asp

252 J. Faber, S. Jacobs, and V. Sofronie-Stokkermans

[HJU05] Hermanns, H., Jansen, D.N., Usenko, Y.S.: From StoCharts to MoDeST: a
comparative reliability analysis of train radio communications. In: Work-
shop on Software and Performance, pp. 13–23. ACM Press, New York
(2005)

[HM05] Hoenicke, J., Maier, P.: Model-checking of specifications integrating pro-
cesses, data and time. In: Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.)
FM 2005. LNCS, vol. 3582, Springer, Heidelberg (2005)

[HO02] Hoenicke, J., Olderog, E.-R.: CSP-OZ-DC: A combination of specification
techniques for processes, data and time. Nordic Journal of Computing 9(4),
301–334 (March 2003)

[Hoa85] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, En-
glewood Cliffs (1985)

[Hoe06] Hoenicke, J.: Combination of Processes, Data, and Time. PhD thesis, Uni-
versity of Oldenburg, Germany (2006)

[JSS07] Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchic reasoning
in the verification of complex systems. ENTCS (special issue dedicated to
PDPAR 2006), 15 pages (To appear, 2007)

[MD99] Mahony, B.P., Dong, J.S.: Overview of the semantics of TCOZ. In: IFM,
pp. 66–85. Springer, Heidelberg (1999)

[MFR06] Meyer, R., Faber, J., Rybalchenko, A.: Model checking duration calculus:
A practical approach. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.)
ICTAC 2006. LNCS, vol. 4281, pp. 332–346. Springer, Heidelberg (2006)

[NO79] Nelson, G., Oppen, D.C.: Simplification by cooperating decision proce-
dures. ACM TOPLAS 1(2), 245–257 (1979)

[Ros98] Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Engle-
wood Cliffs (1998)

[Smi00] Smith, G.: The Object Z Specification Language. Kluwer Academic Pub-
lishers, Dordrecht (2000)

[Smi02] Smith, G.: An integration of real-time Object-Z and CSP for specifying
concurrent real-time systems. In: Butler, M., Petre, L., Sere, K. (eds.) IFM
2002. LNCS, vol. 2335, pp. 267–285. Springer, Heidelberg (2002)

[SS05] Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory exten-
sions. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS
(LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005)

[SS06] Sofronie-Stokkermans, V.: Interpolation in local theory extensions. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
235–250. Springer, Heidelberg (2006)

[Süh02] Sühl, C.: An overview of the integrated formalism RT-Z. Formal Asp.
Comput 13(2), 94–110 (2002)

[TZ06] Trowitzsch, J., Zimmermann, A.: Using UML state machines and petri
nets for the quantitative investigation of ETCS. In: VALUETOOLS, pp.
1–34. ACM Press, New York (2006)

[ZH04] Zhou, C., Hansen, M.R.: Duration Calculus. Springer, Heidelberg (2004)

Modelling and Verification of the LMAC

Protocol for Wireless Sensor Networks

Ansgar Fehnker1,�, Lodewijk van Hoesel2, and Angelika Mader2,��

1 National ICT Australia and University of New South Wales, Australia
ansgar.fehnker@nicta.com.au

2 Department of Computer Science, University of Twente, The Netherlands
l.f.w.vanhoesel@utwente.nl, mader@ewi.utwente.nl

Abstract. In this paper we report on modelling and verification of a
medium access control protocol for wireless sensor networks, the LMAC
protocol. Our approach is to systematically investigate all possible con-
nected topologies consisting of four and of five nodes. The analysis is
performed by timed automaton model checking using Uppaal. The prop-
erty of main interest is detecting and resolving collision. Evaluation of
this property for all connected topologies requires more than 8000 model
checking runs. Increasing the number of nodes would not only lead in-
crease the state space, but to a greater extent cause an instance explosion
problem. Despite the small number of nodes this approach gave valuable
insight in the protocol and the scenarios that lead to collisions not de-
tected by the protocol, and it increased the confidence in the adequacy
of the protocol.

1 Introduction

In this paper we report about modelling and verification of a medium access con-
trol protocol for wireless sensor networks, the LMAC protocol [10]. The LMAC
protocol is designed to function in a multi-hop, energy-constrained wireless sen-
sor network. It targets especially energy-efficiency, self-configuration and dis-
tributed operation. In order to avoid energy-wasting effects, like idle listening,
hidden terminal problem or collision of packets, the communication is scheduled.
Each node gets periodically a time interval (slot) in which it is allowed to con-
trol the wireless medium according its own requirements and needs. Here, we
concentrate on the part of the protocol that is responsible for the distributed
and localised strategy of choosing a time slot for nodes.

Although, the basic idea of the protocol is quite simple, the possible be-
haviours get quickly too complex to be overseen by pure insight. Therefore, we
chose a model checking technique for the formal analysis of the protocol. We
apply model checking in an experimental approach [4,6]: formal analysis can
only increase the confidence in the correctness of an implementation, but not
� National ICT Australia is funded through the Australian Government’s Backing

Australia’s Ability initiative, in part through the Australian Research Council.
�� supported by NWO project 632.001.202, Methods for modelling embedded systems.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 253–272, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 A. Fehnker, L. van Hoesel, and A. Mader

guarantee it. This has two reasons: first, a formal correctness proof is only about
a model, and not about the implementation. Second, we will (and can) not prove
correctness for the general case, but only for instances of topologies.

Model checking as a way to increase the confidence comes also into play, as
we do not aim to prove that the protocol is correct for all considered topologies.
This is in contrast to related work on verification of communication protocols,
such as [1]. It is known beforehand that there exist problematic topologies for
which the LMAC protocol cannot satisfy all relevant properties. The aim is to
iteratively improve the model, and to reduce the number of topologies for which
the protocol may fail. This is an important quantitative aspect of the model
checking experiments presented in this paper.

In order to get meaningful results from model checking we follow two lines:

Model checking experiments: We systematically investigate all possible con-
nected topologies of 4 and 5 nodes, which are in total 11, and 61 respectively. For
12 different models and 6 properties we performed about 8000 model checking
runs using the model checker Uppaal [2,3]. There are the following reasons for
the choice of the model checking approach considering all topologies:

(1) Relevant faults appear already in networks with a small number of nodes.
Of course, possible faults that involve more nodes are not detected here.

(2) It is not enough to investigate only representative topologies, because
it is difficult to decide what “representative” is. It turned out that topologies
that look very “similar” behave differently, in the sense that in one collision can
occur, which does not in the other. This suggests that the systematic way to
investigate all topologies gives more reliable results. This forms a contrast to
similar approaches such as [8] which considers only representative topologies,
and the work in [5], which considers only very regular topologies.

(3) By model checking all possible scenarios are traversed exhaustively. It
turned out that scenarios leading to collisions are complex, and are unlikely to
be found by a simulator. On the other hand, simulations can deal with much
higher numbers of nodes. We believe that both, verification and simulation, can
increase the confidence in a protocol, but in complementary ways.

Systematic model construction: The quality of results gained from model
checking cannot be higher than the quality of models that is used. We con-
structed the models systematically, which is presented in sufficient detail. We
regard it as relevant that the decisions that went into the model construction
are explicit, such that they can be questioned and discussed. It also makes it
easier to interpret the result of the model checking experiments, i.e. to identify
what was proven, and what not. The reader who is not interested in the details
of the model should skip therefore Section 4.

The goal of the protocol is to find a mapping of time slots to nodes that pre-
vents collisions. To this end it is necessary that not only direct neighbours have
different slots, but also that all neighbours of a node have pairwise different slots.
Neighbours of neighbours will be called second-order neighbours. The problem

Modelling and Verification of the LMAC Protocol 255

is at least NP-hard [7,9]: each solution to the slot-mapping problem is also a
solution to the graph colouring problem, but not vice versa.

When starting the protocol analysis using Uppaal, the protocol had been
developed [10], implemented and analysed by simulation. The specification con-
sisted of the publication mentioned, and personal explanations. Our analysis
here restricts to the fragment of the protocol concerned with the slot distribu-
tion mechanism trying to avoid collision. Other aspects, as time synchronisation
or sleeping modes of nodes, are covered by the protocol, but are not addressed
in the analysis here. During our modelling and verification efforts we found
that the implementation covered more aspects than the specification did. The
main results of our analysis were an improvement of the protocol, such that less
collisions remain undetected, and an analysis of possible undetected collisions
showing that undetected collisions do not prevent connection to the gateway.

The paper is structured as follows. In Section 2 we give a short description of
the LMAC protocol, and in Section 3 a brief introduction to timed automata. The
models and properties are described in detail in Section 4. The model checking
results are discussed in Section 5. We conclude with discussions in Section 6.

2 The LMAC Protocol

In schedule-based MAC protocols, time is organised in time slots, which are
grouped into frames. Each frame has a fixed length of a (integer) number of time
slots. The number of time slots in a frame should be adapted to the expected
network node density or system requirements.

The scheduling principle in the LMAC protocol [10] is very simple: every
node gets to control one time slot in every frame to carry out its transmission.
When a node has some data to transmit, it waits until its time slot comes up,
and transmits the packet without causing collision or interference with other
transmissions. In the LMAC protocols, nodes always transmit a short control
message in their time slot, which is used to maintain synchronisation.

The control message of the LMAC protocol plays an important role in obtain-
ing a local view of the network within a two-hop distance. With each transmission
a node broadcasts a bit vector of slots occupied by its (first-order) neighbours .
When a node receives a message from a neighbour, it marks the respective time
slots as occupied. To maintain synchronisation other nodes always listen at the
beginning of time slots to the control messages of other nodes.

In the remainder we will briefly describe the part of LMAC concerned with
the choice of a time slot. We define four operational phases (Fig. 1):

Initialisation phase (I) — The node samples the wireless medium to detect
other nodes. When a neighbouring node is detected, the node synchronizes (i.e.
the node knows the current slot number), and proceeds to the wait phase W, or
directly to the discover phase D.
Wait phase (W) — We observed that ,especially at network setup, many
nodes receive an impulse to synchronize at the same time. The protocol intro-
duces randomness in reaction time between synchronising with the network and

256 A. Fehnker, L. van Hoesel, and A. Mader

after waiting k frames lengths

synchronizable
transmission detected

I

select
slot

no free slot

no neighbors

no neighbors

after one frame length

reported collision

W

D

A

select
waiting
time k

Fig. 1. Control flow diagram of the protocol

actually choosing a free time slot, to reduce the likelihood that nodes select slots
at the same time. This is achieved by inserting a random wait time after the
initialisation phase I and before the discover phase D.
Discover phase (D) — The node collects first-order neighbourhood information
during one entire frame and records the occupied time slots. If all information
is collected, the node chooses a time slot and advances to the active phase A.

By performing an ’OR’-operation between all received bit vectors, a node in
the discover phase D can determine which time slots in its second-order neigh-
bourhood are unoccupied and can be freely used. At this moment the node can
choose any time slot that it marked as unoccupied. To reduce the probability of
collisions, the protocol is to randomly choose one of the available slots.
Active phase (A) — The node transmits a message in its own time slot. It
listens in all other time slots and accepts data from neighbouring nodes. The
node also keeps its view on the network up-to-date. When a neighbouring node
informs that there was a collision in the time slot of the node, it will return to the
wait phase W. Collisions can occur when two or more nodes choose the same time
slot for transmission simultaneously. This can happen with small probability at
network setup or when network topology changes due to mobility of nodes.

The nodes that cause a collision cannot detect the collision by themselves; they
need to be informed by their neighbouring nodes. These neighbouring nodes use
their own time slot to inform the network that they detected a collision. When
a node is informed that it is in a collision it will give up its time slot and return
to the discover phase D.

Modelling and Verification of the LMAC Protocol 257

3 Timed Automata

Systems are modelled in Uppaal as a parallel composition of timed automata [3].
Time is modelled using real-valued clocks and time only progresses in the loca-
tions of the automata: transitions are instantaneous. The guards on transitions
between locations in the automata and the invariants in the various locations
may contain both integer-valued variables and real-valued clocks. Clocks can be
reset to zero on transitions. Several automata can synchronize on transitions us-
ing handshake and broadcast synchronisation. Shared variables can be used to
model data transfer between automata. Locations can be declared urgent, which
means time is not allowed to progress, or committed, which means time is not
allowed to progress and interleaving is restricted. If only one automaton is in a
committed location at any one time, its transitions are guaranteed to be atomic.

Properties of systems are checked by the Uppaal model checker, which per-
forms an exhaustive search through the state space of the system for the validity
of these properties. It can check for invariant, reachability, and liveness proper-
ties of the system, specified in a fragment of TCTL.

4 Models and Properties

4.1 Model Decomposition

Uppaal models are, as mentioned in the previous section, parallel compositions of
timed automata, and allow for compositional modeling of complex systems. The
LMAC protocol is naturally distributed over the different nodes. The Uppaal
model reflects this by including exactly one timed automaton model for each
node. Each of these timed automata models is then organised along the lines of
the flow chart in Section 2.

The Uppaal model of the LMAC protocol will be used to analyse the behaviour,
correctness and performance of the protocol. Since the LMAC protocol builds on
an assumed time synchronisation, the Uppaal model will also assume an existing
synchronisation on time. Although it would be interesting to analyse the timing
model in detail, it falls outside of the scope of the protocol and this investigation.

The LMAC protocols divides time into frames, which are subdivided into
slots. Within a slot, each node communicates with its neighbours and updates
its local state accordingly. We model each slot to take two time units. Each
node has a local clock. Nodes communicate when their local clock equals 1, and
update information when their clocks equals 2. At this time the clock will be
reset to zero.

Based on this timing model, the protocol running on one node is modelled as
a single timed automaton. The complete model contains one of these automata
for each node in the network. The timed automata distinguish between 4 phases,
as shown in the control flow graph in Figure 1. The first phase is the initialisa-
tion phase, the second the optional wait phase. The next part models the discover

258 A. Fehnker, L. van Hoesel, and A. Mader

phase which gathers neighbourhood information. At the end of the discover phase
a node chooses a slot, and proceeds to the fourth and last phase, the active phase.
Figure 2 to 6 depict the models for each phase. Details of the different parts will
be discussed later in this section. Note, that the model presented here serves as
a baseline for an iterative improvement of model and protocol.

Channels and Variables

Global channels and variables. The wireless medium and the topology of the
network are modelled by a broadcast channel sendWM, and a connectivity matrix
can hear. A sending node i synchronises on transitions labeled sendWM!. The
receiving nodes j then synchronizes on label sendWM? if can hear[j][i] is true.
This model of sending is used in the active phase (Fig. 6), and the model of
receiving during initialisation (Fig. 2), discover (Fig. 4) and active phase (Fig. 6).

The model uses three global arrays to maintain a list of slot numbers and
neighbourhood information for each node. Array slot no records for each node
the current slot number. Array first and second record for each node infor-
mation on the first and second-order neighbours, respectively. Note, that the
entries of these arrays are bit vectors, and will be manipulated using bit-wise
operations. All nodes have read access to each of the elements in the arrays, but
only write access to its own. The arrays are declared globally to ease read access.

The model uses two additional global variables aux id and aux col. These
are one place buffers, used during communication to exchange information on
IDs and collisions.

Local variables. Each node has five local variables. Variable rec vec is a local copy
of received neighbourhood information, counter counts the number of slots a node
has been waiting, and current the current slot number, with respect to the be-
ginning to the frame. Variable col records the reported collisions, while detected
is used to record detected collisions. Finally, each node has a local clock t.

The node model. The remainder of this section will discuss each part of the
node model in detail.

Initialisation phase. The model for the initialisation phase is depicted in Figure
2. As long a node does not receive any message it remains in the initial node. If
a node receives a message, i.e. if it can hear (can hear[id][aux id]==1) and
synchronise with the sender (sendWM?), it sets its current slot number to the slot
number of the sender (current=slot no[aux id]), and resets its local clock
(t=0). The slot number of the sender is part of the message that is send. From
this time on the receiver will update the current slot number at the same rate as
the sender. They are equal whenever either of them sends. This synchronisation
is the subject of one of the properties that will be verified later.

If the receiver receives a second packet before the end of the slot a collision has
occurred. The node will discard the received information and return to the initial

Modelling and Verification of the LMAC Protocol 259

initial

t<=1t<=1

to wait

can_hear[id][aux_id]==1
sendWM?
current=slot_no[aux_id],
t=0

can_hear[id][aux_id]==1
sendWM?

t==1
t=0

t==1
current=(current+1)%frame,
t=0

Fig. 2. Model of the initialisation phase

from choice

from init

to listening

waiting
t<=2

counter=0

counter=0

t==2 &&
counter==2*frame-1
counter=0,
t=0

t==1
current=(current+1)%frame,
t=0

t==2 &&
counter==frame-1
counter=0,
t=0

t==2 &&
counter==3*frame-1
counter=0,
t=0

t==2 && counter<3*frame-1
counter++,
t=0

Fig. 3. Model of the wait phase

location. If no collision occurs, the node will proceed to the next slot, increment
the current slot counter modulo the length of the frame (current=current+1%
frame), and proceed to the wait phase (Figure 3).

Wait Phase. When a node enters the wait phase, it may decide (non-deter-
ministically) to skip this phase. A node waits for at most 3 frames in this lo-
cation waiting. Waiting is implemented as a self loop, which is guarded by
counter<3*frame-1. The loop increments the counter at the end of a slot (t==2).
A node can proceed to the discover phase when it waited for exactly one, two or
three frames.

Discover Phase. The model for the discover phase consists of four locations
(Figure 4). The entry location listening0 models when a node is sensing the
medium. Location rec one0 models that a node continues sensing after reception
of a first message. Location done0 is reached when a node detected a collision.
Finally, the model contains a committed location, in which the node checks if
it listened to the medium for a full frame. If it did, it proceeds to choose a free
slot, otherwise it continues listening.

Clocks and variables will be updated as follows. When a node enters location
listening0, the local clock will be zero. It will wait in this location for at

260 A. Fehnker, L. van Hoesel, and A. Mader

from collision

from wait

to choice

t<=2

rec_one0
t<=2

listening0
t<=2

done0

t<=2 counter>=frame-1
second[id]|=first[id]

can_hear[id][aux_id]==1
sendWM?
rec_vec=first[aux_id],
first[id]|=(1<<current)

can_hear[id][aux_id]==1
sendWM?
detected=(detected<0)?current:detected,
rec_vec=0

t==2
current=(current+1)%frame,
second[id]|=rec_vec,
rec_vec=0,
t=0

t==2
current=(current+1)%frame,
t=0

counter<frame-1
counter++

t==2
current=(current+1)%frame,
t=0

Fig. 4. Model of the discover phase

to wait

to normal

from listening

counter>=frame-1
second[id]|=first[id]

!((second[id]>>1)&1)

slot_no[id]=1,
second[id]=0

second[id]==max_vec

counter=-1,
second[id]=0,
first[id]=0,
second[id]=0,
detected=-1

!((second[id]>>0)&1)

slot_no[id]=0,
second[id]=0

!((second[id]>>2)&1)

slot_no[id]=2,
second[id]=0

!((second[id]>>3)&1)

slot_no[id]=3,
second[id]=0

!((second[id]>>4)&1)

slot_no[id]=4,
second[id]=0

Fig. 5. Model of the choice

most 2 time units, enforced by invariant t<=2. If it receives a message from a
neighbouring node, it will record the neighbour information of that neighbour
(rec vec=first[aux id]). The node sets the bit for the current slot in its own
neighbourhood vector to true (first[id]|=1<<current). If the node does not
receive any message by the end of the slot (t==2), it will increment the current
slot number, and move to a committed location.

When the node received one message, it waits in location rec one0 either
until it receives a second message (collision), or until the end of the slot (t==2).
The node uses the received neighbourhood information only in the latter case
to update the information on slots occupied by the second-order neighbours
(second[id]|=rec vec). In the first case the node records if a collision oc-
curred if it was the first collision since the beginning of the discover phase
(detected=(detected<0)?current:detected). Note, that detected has value
−1 if no collision has been detected yet. At the end of a slot(t==2) the node
enters the committed location. If it listened for less than a frame length, it will
return to listening0, otherwise it will choose a slot.

Modelling and Verification of the LMAC Protocol 261

collision

from choicefrom choicefrom choicefrom choicefrom choice

sending
sent
t<=2

ready
t<=1

listening
t<=2

rec_one
t<=2

done
t<=2

current!=slot_no[id]

sendWM!
detected=-1

current==slot_no[id]

t==1
aux_id=id,
aux_col=detected

t==2
current=(current+1)%frame,
t=0

can_hear[id][aux_id]==1

sendWM?
col=aux_col,
first[id]|=(1<<current)

can_hear[id][aux_id]==1

sendWM?
detected=(detected<0)?current:detected

t==2 &&
col!=slot_no[id]
current=(current+1)%frame,
t=0

t==2
current=(current+1)%frame,
t=0

t==2 && (col==slot_no[id])
counter=0,
current=(current+1)%frame,
col=-1,
detected=-1,
slot_no[id]=-1,
first[id]=0,
rec_vec=0,
t=0

t==2
current=(current+1)%frame,

t=0

Fig. 6. Model of the active phase

Choosing. Choosing is not a actual phase, but an important intermediate state.
Choosing a slot is modelled by a single committed location (Figure 5). Before
entering this location the node computes the slots that are neither occupied by
the (first-order) neighbours, nor by the second-order neighbours (second[id]
|= first[id]). If all slots are reported occupied, the node returns to the wait
phase (second[id]==max vec)1. If there are available slots, i.e the corresponding
bits in the bit-vector second[id] are equal to zero, the node will select non-
deterministically one of these slots.

Active Phase. The main phase of a node is the active phase. The model for this
phase is depicted in Figure 6. Locations ready, sending, and sent deal with the
transmission of a message, locations listening, rec one, and done deal with
receiving messages.

From the central committed location, which is entered at the beginning of a
slot, the node proceeds to send, if the chosen slot number is equal to current slot
number (current==slot no[id]), and proceeds to the discover phase otherwise
(current!=slot no[id]).

If a node wants to send it waits for one time unit in location ready. After one
time unit, the node first copies its ID and collision information into global buffers
aux id, aux col, and then triggers all nodes in it neighbourhood to update their
local information through broadcast channel sendWM!. The node then stays in
location sent until the end of the slot.

1 Constant max vec is a bit-vector where all elements are set to true.

262 A. Fehnker, L. van Hoesel, and A. Mader

If a node is ready to receive a message it waits in location listening. It
remains in that location either until the end of the slot, or until it receives a
message. In the former case it increments the slot number at the end of the
slot, and proceed with the next slot. In the latter case, if it receives a mes-
sage, it updates its local information and enter location rec one. If a second
message arrives while in rec one, it discards the received information, records
the collision (detected=(detected<0)?current:detected), and waits for the
remaining time of the slot in done. If no collision occurred while in rec one, the
node proceeds at the end of the slot (t==2) depending on the received collision
information col. If a collision has been reported and it is equal to its slot number
(col==slot no[id]), the node returns to the discover phase, and resets all local
information. Otherwise, it updates its neighbourhood information, and proceeds
with the next slot.

The next section briefly discusses some properties of the timed automaton
model of the LMAC protocol, in particular a property that ensures that after a
collision nodes involved will choose a new slot.

4.2 Properties

The timed automata model of the LMAC protocol should guarantee basic safety
properties. The most basic property is freedom from deadlocks, which can be
checked in Uppaal by verifying the following:

AG¬deadlock (1)

In addition, we require that the model successfully implements synchronisation
of nodes. First, nodes should be synchronised halfway the duration of a slot,
since at this time they will send and receive information. We prove for each pair
(i, j) of first-order neighbours

AG(nodei.t == 1 ⇒ nodej .t == 1) (2)

In addition neighbours should agree on the current slot number, to ensure that
received information is interpreted correctly.

AG(nodei.t == 1 ⇒ nodei.current == nodej .current) (3)

Since we only consider completely connected networks, pairwise synchronisation
implies synchronisation of the entire network. The nodes do not to be synchro-
nised when nodei.t 	= 1. This can happen when one node increments its current
slot number before the other.

In addition to these safety properties the protocol should satisfy a very basic
reachability property: There should exist a path to a state, such that all nodes
are active, and such that they have a chosen a slot number that is distinct from
their first and second-order neighbour’s slot. Let N be the set of all pairs of first
and second-order neighbours. We then verify

EF
∧

(i,j)∈N
(slot no(i) 	= slot no(j) ∧ active(i) ∧ active(j)) (4)

Modelling and Verification of the LMAC Protocol 263

where active(i) is true if a node is its active phase. If the model cannot satisfy
this property, it is not even possible to reach a configuration without collision,
i.e the related colouring problem has no solution.

The previous property guarantees that there exists a solution, but it does not
guarantee that the protocol find this solution. The LMAC protocol chooses slots
randomly from the available slots. This is implemented in the timed automaton
model as a non-deterministic choice. It is therefore possible that two nodes will
repeatedly choose the same slot. For a probabilistic model we could try to prove
that with probability one distinct slots will eventually be chosen. Unfortunately,
we cannot use the timed automaton model to prove this directly.

Alternatively, we verify two liveness properties to show that the protocol will
eventually resolve all conflicts, if satisfied. The first is to show that whenever
two first or second-order neighbours choose the same slot number, they will
eventually choose a new slot number. We show for each pair (i, j) in N

AG (slot no(i) == slot no(j) ∧ sending(i) ∧ sending(j)) (5)
⇒ AF (¬active(i) ∨ ¬active(j))

A node may leave the active phase eventually due to a third node reporting the
collision or a triggered timeout.

The second liveness property is, that if a node is about to choose a slot,
and if it can only choose from one available slot, its neighbours who are in
the discover phase are not forced to the make the same choice. The neighbour
should eventually be able to choose a different slot. The latter requirement can
be dropped, if the neighbour that was forced to a choice, left the active phase
and either waits or discovers. For all pairs (i, j) in N we show

AG (choosing(i) ∧ available slot(i) == 1 ∧ discover(j)) ⇒ (6)
AF (choosing(j) ∧ (slot no(i) 	= slot no(j) ∨ wait(i) ∨ discover(i)))

This means that, even if a node is forced to a certain choice (choosing(i) ∧
available slot(i) == 1), neighbours can eventually choose a different slot.

4.3 Simplification

The model described in Section 4.1 was close to the informal description of the
protocol as presented in Section 2. As such each node was equipped with its own
clock, and its internal actions completely independent from other nodes.

Checking the reachability probability property (4) was easy, and checking the
safety properties (1) to (3) was possible, although demanding in terms of memory
and time constraints, while proving the liveness properties (5) and (6) turned
out to exceed the memory and time constraints for most topologies. To be able
to verify the protocol for all topologies with up to 5 nodes for all properties, we
had to simplify the model. The simplification reduced the number of clocks and
non-essential interleaving, while keeping the essential behavior.

The simplification builds on two observations. Firstly, that all clocks are syn-
chronised, and secondly that all updates are local. We introduce a scheduler,

264 A. Fehnker, L. van Hoesel, and A. Mader

with its own clock, that synchronizes the internal update of the nodes at the
end of a slot. Without loss of subsequent behavior this scheduler realises a local
partial order reduction.

Given that the local clocks of the nodes are only reset during the update of a
node, and given that we can safely synchronize all updates, as mentioned before,
we find that all clocks are now perfectly synchronised. This means that for clocks
t1 and t2 holds the invariant t1 == t2. We can therefore safely replace the local
clocks of the nodes by the single clock of the scheduler.

The simplification reduced number of clocks and manually introduced a partial
order reduction on internal transitions. It should be noted that the scheduler
added to the model to achieve this reduction has no equivalent in the actual
LMAC protocol. It was purely introduced to reduce the complexity of the model
checking problem. If anything it reflects that the LMAC protocol builds on an
existing time synchronisation.

5 Results

This section reports on the model checking results for the properties defined in
Section 4.2.

While the safety and reachability properties should be satisfied by all models,
it is known beforehand that the LMAC protocol is not able to resolve all col-
lisions. This is the subject of the first liveness property (5). Two neighbouring
nodes will remain in a collision perpetually, if no third node is able to report
this collision, either because there is no third node, or because the third node is
unable to send a message without collision. This is a fundamental shortcoming
of collision detection algorithms. The aim of the model checking experiments is
to iteratively improve the model, and thus the protocol, to reduce the number
of topologies that suffer from this problem. This means to reduce the number of
topologies and pairs of neighbours that do not satisfy property (5). The improve-
ments deal with modelling bugs, clarification of an ambiguous informal protocol
description, to improvements of the protocol.

The model checking experiments have been performed on a Mac Pro with 2
x 3 GHz Dual-Core processor, and a 4 GB 667 MHz memory. We used Uppaal
version 4.0. Checking property (5) for a five-node model, i.e. ca. 500 runs of the
model checker, took about an hour. This machine outperformed different other
PCs, the weakest ones taking a week for the same set of verifications without
solving them all, or the better ones, doing the job in a few hours, but still failing
due to memory limitations for some experiments, which had to be killed when
using too much memory.

5.1 Safety and Reachability Properties

For basic model we assume a network of 4 nodes, and a frame length of 5 slots.
For this basic model there are 11 topologies, with 64 pairs of first and second-
order neighbours. The experiments show that the basic model (and all models

Modelling and Verification of the LMAC Protocol 265

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

no
de

0 d d d d d 3 3 3 3 3 3 3

1 i d d d d d 1 1 1 1 1 d d d d d 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 i d d d d d 1 1 1 1 1 d d d d d 2 2 2 2 2 d d d d d 3 3 3 3 3 3 3 3 3

3 i i i i i i i w w w w w d d d d d 0 0 0 0 0 0 d d d d d 4 4 4 4 4 4 4

model 1, topology 4, pair (0,2)

Fig. 7. Scenario of an unresolved collision between node 0 and 2. The y-axis shows
the different nodes, the x-axis the time. Each slot contains whether the node is in
the initialisation (i), waiting (w), discover (d), or active phase. In the latter case the
current slot number is shown. White bold face indicates that the node is sending, black
bold face that a node is receiving. Bold italics on a dark (red) background indicate
collisions.

that will be derived in the process) satisfy the safety and reachability properties
(1) to (4). This means that the models are deadlock free, that the nodes are
synchronised, and that for each topology there exist a path that assigns the slots
without collision, i.e. that there exists a solution of the related graph colouring
problem.

5.2 Liveness Properties

The main liveness property (5) deals with unresolved collisions. In the basic
model unresolved collisions may occur for in 3 topologies, for a total of 6 pairs
of neighbours. From this basic model for 4 nodes we arrive in 12 iterations at a
model that satisfactory resolves collisions for topologies with 5 nodes.

Model 1. This is the basic model for 4 nodes, and a frame length of 5 slots. Among
the collisions that are not resolved are collisions that separate a node from
the other nodes. An example scenario of such behavior is depicted in Figure 7.
It belongs to topology 4, depicted in Figure 8.

3

0 1

2

Fig. 8. Topology 4

At time 0 the gateway, node 0, sends a first message.
This message is received by node 1 and 2 and they start
listening to the medium. One frame later node 1 and 2
both select slot 1, and send at time 6. This leads to
a collision at node 0. Node 0 reports the collision at
time 10, and node 1 and 2 return to the discover phase.
At the end of the scenario node 0 and node 2 collide,
perpetually, since there is no neighbour to witness the
collision. Node 2 does not receive any message from then
on, since it cannot listen while sending. Node 2 entered

this collision, because it chose a slot, while it had insufficient information. Node
2 listened from time 21 to time 26, but received not a single message. It had no
information about its neighbours, when it made its choice, and any choice had
the potential to lead to a collision.

266 A. Fehnker, L. van Hoesel, and A. Mader

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

no
de

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 i w w w w w d d d d d 2 2 2 2 2 2

2 i d d d d d 1 1 1 1 1 1 1 1 1 1 1
3 i i i i i i i d d d d d 2 2 2 2 2

model 4, topology 5, pair (1,3)

(a)

0 1

2 3

(b)

Fig. 9. (a) Scenario of an unresolved collision between node 1 and 3 in topology 5. (b)
Topology 5. Node 1 and 3 may fail to resolve a collision.

Model 2. The second model improves on the first model, by introducing the rule
that a node may not choose if it received no information in the discover phase.
This additional rule successfully deals with the collision depicted in Figure 7.

This model run into problems because it does not reset its first-order neigh-
bour information. After a few repeated choices some node assume that all slots
are occupied. They cannot enter the active phase, and consequently cannot re-
port collisions between other nodes. This bug was in the model because of an
incomplete informal specification.

Model 3. Model 3 improves on model 2, in that it resets all neighbourhood
information after it sends a message. It propagates in the active phase only
information collected during the last frame length of slots.

The additional rules in Model 2 and 3 do not eliminate the possibility that a
nodes may become disconnected from the network. It may still happen if a node
only receives messages while it sends, and no third node witnesses or reports the
collision.

Model 4. The fourth model improves on the third model in that a node chooses
anew if it does not receive any message in a frame length. This last additional
rule resolves all remaining collisions for topologies with 4 nodes which are not
ring topology bugs. There is one ring topology, and only two pairs of nodes in
it are affected. A scenario leading to this bug is depicted in Figure 9. This kind
of collision is however not problematic, since all nodes are able to communicate
with the gateway.

Model 5. The fifth model is identical to Model 4, except that it is instantiated
for topologies with 5 nodes. There are 61 different topologies, with 571 pairs of
neighbours. Although Model 4 was able to resolve all collisions except for the ring
topology bug, applied to topologies of 5 nodes many other unresolved collisions
suddenly occur. Model checking revealed 56 unresolved collisions, affecting 18
topologies. Also, the model checker was not able to complete for 26 topologies due
to memory and time constraints. Once the computer starts swapping memory,
progress typically stalls.

Model 6. The sixth model improves on the fifth model by an additional rule. If
a node has chosen a slot, and it is active, but has not sent its first message yet,

Modelling and Verification of the LMAC Protocol 267

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

no
de

0 0 0 0 0 0 0 0 0 d d d d d 0
1 3 d d d d d 2 2 2 2 2 2 2 2 2 2 2 w w w w w w w w w w w w w w w d d d d d w w w
2 3 d d d d d 1 1 1 1 1 1 1 d d d d d 4
3 d d d d d 0 0 0 d d d d d 0
4 1 1 1 1 1 1 1 1 1 1 1 1 1 d d d d d 4

model 10, topology 31, pair (2,4)

Fig. 10. Scenario of an unresolved collision between node 0 and 3

and if it then receives from a neighbour information that it slot is occupied by
a second-order neighbour, then the node proceeds to choose a new slot.

Model 7. The seventh model modifies a rule introduced in Model 2. If it receives
in the listing phase only collisions, it does not have sufficient information about
its second-order neighbours to make a choice that avoids collisions. The new rule
states that a node will not choose if it did not receive a single message, except
for collisions.

In the seventh model the following could occur. First, a node reported a
collision to all neighbours. Next, these neighbours proceeded to the discover
phase. As a consequence, the node which reported the collision would receive
no message for a frame length of slots, and incorrectly conclude that it is was
disconnected from the network.

Model 8. Model 8 modifies a rule, which was introduced earlier, to avoid the
scenario described for model 7. A node concludes that it is alone if it does not
hear a neighbour in two frame lengths. This prevents a node that reported a
collision to conclude that it is disconnected, just because its neighbours went to
the discover phase for one frame length.

Model 9. Model 9 further refines the rule about when nodes conclude that they
are alone and disconnected. If a node is active, but has not sent yet, it concludes
that it disconnected if it has received no message in the frame length of slots
right before its first transmission.

Model 10. Model 10 fixes a problem that occurs right after choosing a slot.
Model 3 introduced that neighbour information is reset once in a frame length
of slots during the active phase. When a mode transitions from the discover
phase to the active phase it does not reset the neighbourhood information. As
a consequence it may reflect the state of up to two frames length in the past by
the time a node is sending. Model 10 fixes this by resetting all information, even
if collected during the discover phase, after one frame length. In addition a node
concludes that is alone if it hears nothing but collisions for two frame lengths.

Model 11. The eleventh model also refines the rules about when a node has to
conclude that it is in a collision. It tackles the problem depicted in Figure 10.
Nodes 0 and 3 enter a perpetual collision, since node 1 wrongly concluded at time

268 A. Fehnker, L. van Hoesel, and A. Mader

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

no
de

0 0
1 i w w w w w d d d d d 2 2 2 2 d d d d d 3 3 3 3 3 d d d d d 2 2 2 2 2 d d d d d
2 i w w w w w d d d d d 4
3 i d d d d d 1
4 i i i i i i i d d d d d 2 2 2 d d d d d 3 3 3 3 3 d d d d d 2 2 2 2 2 d d d d d

model 11, topology 41, pair (1,4)

Fig. 11. Node 1 and 4 are perpetually forced to make the same choice

36 that it was disconnected. Node 1 assumed to be alone, since it only heard
collisions for two frame lengths. However, the collisions in the frame running
from time 27 to 31 differ from the collisions between 33 and 36. Node 1 is not
disconnected, and it actually successfully reported a collision at time 32.

Model 11 introduces a new rule about when to conclude that it is in a collision.
A node chooses anew if it either receives nothing for two frames or if it witnesses
the same collision for the second time. The rational for the latter case is, that
if a node observes a collision for the second time, it apparently unsuccessfully
reported the collision, likely because it is in a collision itself.

Model 11 resolves all remaining perpetual collisions that happen not in ring
topology. The remaining perpetual collisions happen in the ring of 5 nodes, or
topologies that contain a ring of 4 nodes. Overall, this are 35 pairs of nodes in 13
topologies that potentially end up in an perpetual collision. These are depicted
in Figure 12.

As it comes to the second liveness property – that if a node is forced to
choose a slot, all nodes in the discover phase will eventually be able to choose
a different slot – it turns out that Model 11 fails for 42 pairs in 14 topologies.
Figure 11 depicts an example scenario. First node 1 and 4 both choose the slot
2. This collision is reported at time 14 by node 2. At time 15 node 0 sends
its neighbourhood information to node 1. Based on information collected in the
frame from time 10 to 14, it reports that all slots but slot 3 are occupied. Node
1 hence has to choose slot 3 at time 19. Node 4 receives in its discover phase
messages in slot 1 and 4. In slot 1, it also learns from node 3 that slots 2 and 0
are occupied. Hence, node 4 has to choose node 3 as well, leading to a collision
at time 23. This collision gets reported at time 24.

During the next discover phase, both, node 1 and 4 learn that all but slot 2
are occupied. Node 1 and 4 have therefore to choose slot 2 at the end of their
discover phase. They end up in a collision again, which gets reported, and at the
end of the next discover phase they both have to choose slot 3 again. Etcetera.

Model 12. Model 12 is identical to model 11 except that it assumes a frame
length of 6 slots. Increasing the frame size does not influence the number of
potential collisions in ring topologies. However, since it increases the number of
available slots, all pairs in all topologies now satisfy the second liveness property.
If one node is forced to choose a certain slot, the second can eventually choose
a slot that differs from the first nodes slot.

Modelling and Verification of the LMAC Protocol 269

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

50 51 52 53 54 55 56

57 58 59 60 61

Fig. 12. Final results for all 61 topologies with 5 nodes. The gateway is the solid node.
Dashed lines depict pairs of neighbours that may end up in an perpetual collision.
Only in the ring topology 14 this may happen also between second-order neighbours.

6 Conclusion

In this paper we reported about the analysis of a medium access protocol for wire-
less networks, the LMAC protocol. The analysis technique we applied was model
checking, using the timed automaton model checker Uppaal [3]. Our approach
was a systematic analysis of all possible connected network topologies with 4
and with 5 nodes. The most relevant property we investigated was, whether

270 A. Fehnker, L. van Hoesel, and A. Mader

collisions are detected and a new choice of slots is initiated afterwards. We
checked 12 different models, four for all topologies of four nodes, eight for all
topologies consisting of five nodes. The sequence of models reflects the increments
in insight in the protocol, and in the improvements of the protocol. Figure 12
shows the results for the last of the models.

Checking the models against a number of properties summed up to more than
8000 model checking runs in total. For example, in each of the eight five node
models there are 571 pairs of nodes. For each pair it needs to be investigate
whether a possible collision is detected by the protocol or not. This results in
4568 instances of property 5 alone that need to be model checked.

Extending the systematic analysis to 6 node topologies would not only increase
the model checking time for each instance, but also the number of instances to
investigate. With 6 nodes we would have 486 different topologies and 6273 pairs
of nodes to analyse. This would lead not only to a state space explosion problem
within one model, but to a much higher extent to a instance explosion problem.
For the state space explosion fully symbolic model checking techniques could
be helpful, but not for the instance explosion problem. Furthermore, it seems
to be difficult to parameterise topologies, having parametric model checking
techniques in mind. An alternative approach for showing correctness for a class
of topologies, using a combination of model-checking and abstract interpretation,
was presented in [1]. Here however, we face the additional problem that essential
properties are not valid for a number of instances. Therefore, we argue that
with straightforward model checking techniques, not much more can be done.
A possible extension could be stochastic analysis with a probabilistic model
checker, which will be discussed below.

There are three main results: (1) the description of the protocol is improved,
(2) the protocol itself is improved, and (3), problematic topologies with possible
scenarios of unresolved collision have been identified.

Improvement of the protocol description. We had a quite usual experience
here: several “bugs” found in first rounds of analysis turned out to be present in
the documentation of the protocol, but not in the implementation. The respective
“patches” were added to the documentation.

Protocol improvements. Some scenarios leading tounresolved collisions helped
to improve the protocol, and were absent in the later protocol versions:

– There is an additional trigger for the choice of a new slot: if a node hears
nothing, it concludes that it is isolated or participating itself in an collision,
and starts a new choice.

– If a node hears the same collision twice, it concludes that its collision report
has not been heard. The only reason for this is that this node itself is in a
collision. Therefore it starts a new choice in this situation.

– Some situations of collision detected could be solved by a change in param-
eters in the protocol, e.g., the time that a node listens before it chooses a
new slot, was extended from one frame to two frames.

Modelling and Verification of the LMAC Protocol 271

– The frequency of information update was increased, e.g. slots where collisions
were heard are only stored for one frame. Timely resets seem to be crucial
for the protocol.

Protocol faults. It is the case that collisions are not detected if there is not a
third node which can observe the collision. This situation occurs in all topologies
containing a square. Fortunately, even when there is a collision, all nodes are still
connected to the gateway, which makes these collisions less dramatic. The only
exception to this pattern is the ring-topology of five nodes, where also unresolved
collision can occur.

As mentioned, the colouring problem that the LMACprotocol tries to solve is
NP-hard. It cannot be expected that a light-weight, distributed algorithm finds
a solution in all cases.

Further results are:

Justification of the verification approach.The real faults found in the proto-
col were detected in non-trivial scenarios, generated by Uppaal-counterexamples
and, for readability, transformed to a graphic by a Matlab procedure. Figure 10
contains an example of such a scenario. It is obvious that these scenarios, due to
complexity, are unlikely to be found during a simulation run.

Justification of the analysis of all possible topologies. We found that
small changes in the topology can lead to different results. Intuitively, one would
expect that “similar” topologies give similar results. Unfortunately, any intuition
of this kind was proved wrong. Also another intuition, that most collisions occur
when the connectivity is higher turned out to be wrong. It turns out the colli-
sions get resolved when the connectivity is high. This justifies our approach of
systematically investigating all topologies. Selecting “representative” topologies
is misleading, because there are no criteria for what “representative” could be.

Quantification of the success rate. For the 61 topologies we investigated
571 pairs of nodes for collision detection. 35 pairs of these showed a possible
unresolved collision. There are two aspects of probability present: first, for a
fixed topology we could determine the probability of an undetected collision.
This exceeds the possibilities of Uppaal, and would require a probabilistic model
checker (what we have not done). The second aspect is the probability of a
certain topology. This cannot be answered in general, because it depends on the
application domain, and the level of mobility in the network investigated.

Future work. We have not considered the probabilistic aspects of the protocol.
There are two sources of probabilities in the protocol: the choice of a new slot
out of all free slots, and the waiting time before choosing a new slot. We see two
different approaches to treat these aspects: one is by simple meta-argumentation,
based on combinatorics and elementary stochastics (e.g.,“What is the probability
that two nodes keep choosing the same waiting times?”). The other possibility
is by using a probabilistic model checker, like PRISM. However, probabilistic
models are typically even more complex than the ones we considered, which

272 A. Fehnker, L. van Hoesel, and A. Mader

decreases the limit of what can be analysed. In this case a number of effective
abstraction steps have to be applied to the model, to decrease its complexity.

We have not yet considered aspects of energy efficiency in the choice of new
slots. One source of energy consumption is the number of iterations are nec-
essary, to choose a slot without creating a collision. To answer this question
probabilistic analysis is necessary. Another source of energy consumption is in
the number of hops that a packet needs to reach the gateway. The choice of a
slot can influence latency. Here, it seems that the “more deterministic” choice
for a latency-minimizing slot increases the chance for collision during the slot
selection phase. In contrary, when we apply a uniformly distributed choice of
slots during the selection phase, the latency will not be optimal. What the right
balance is between these parameters is subject to further analysis.

References

1. Bauer, J., Schaefer, I., Toben, T., Westphal, B.: Specification and verification of
dynamic communication systems. In: Application of Concurrency to System Design
(ACSD’06), pp. 189–200. IEEE Computer Society, Los Alamitos (2006)

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems: SFM-
RT 2004. LNCS, vol. 3185, Springer, Heidelberg (2004)

3. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petterson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: Quantitative Evaluation of Systems - (QEST’06),
pp. 125–126. IEEE Computer Society Press, Los Alamitos (2006)

4. Brinksma, E.: Verification is experimentation! Int. J. on Software Tools for Tech-
nology Transfer 3(2), 107–111 (2001)

5. Cardell-Oliver, R.: Why Flooding is Unreliable (Extended Version). Technical Re-
port UWA-CSSE-04-001, CSSE, University of Western Australia (2004)

6. Mader, A., Wupper, H., Boon, M.: The construction of verification models for
embedded systems. Technical report TR-CTIT-07-02, Centre for Telematics and
Information Technology, Univ. of Twente, The Netherlands (January 2007)

7. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: Proc.
of 17th Symposium on Parallelism in Algorithms and Architectures (2005)

8. Olveczky, P., Thorvaldsen, S.: Formal modeling and analysis of wireless sensor
network algorithms in real-time maude. In: Proceedings of the 14th International
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS 2006), IEEE
Computer Society Press, Los Alamitos (2006)

9. Sridharan, A., Krishnamachari, B.: Max-min fair collision-free scheduling for wire-
less sensor networks. In: Workshop on multi-hop wireless networks (2004)

10. van Hoesel, L.F.W., Havinga, P.J.M.: A lightweight medium access protocol (lmac)
for wireless sensor networks: Reducing preamble transmissions and transceiver state
switches. In: In 1st International Workshop on Networked Sensing Systems (INSS
2004), pp. 205–208 (June 2004)

Finding State Solutions to Temporal Logic Queries

Mihaela Gheorghiu, Arie Gurfinkel, and Marsha Chechik

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada

{mg,arie,chechik}@cs.toronto.edu

Abstract. Different analysis problems for state-transition models can be uni-
formly treated as instances of temporal logic query-checking, where solutions to
the queries are restricted to states. In this paper, we propose a symbolic query-
checking algorithm that finds exactly the state solutions to a query. We argue that
our approach generalizes previous specialized techniques, and this generality al-
lows us to find new and interesting applications, such as finding stable states. Our
algorithm is linear in the size of the state space and in the cost of model checking,
and has been implemented on top of the model checker NuSMV, using the latter
as a black box. We show the effectiveness of our approach by comparing it, on a
gene network example, to the naive algorithm in which all possible state solutions
are checked separately.

1 Introduction

In the analysis of state-transition models, many problems reduce to questions of the
type: “What are all the states that satisfy a property ϕ?”. Symbolic model checking
can answer some of these questions, provided that the property ϕ can be formulated in
an appropriate temporal logic. For example, suppose the erroneous states of a program
are characterized by the program counter (pc) being at a line labeled ERROR. Then
the states that may lead to error can be discovered by model checking the property
EF (pc = ERROR), formalized in the branching temporal logic CTL [10].

There are many interesting questions which are not readily expressed in temporal
logic and require specialized algorithms. One example is finding the reachable states,
which is often needed in a pre-analysis step to restrict further analysis only to those
states. These states are typically found by computing a forward transitive closure of the
transition relation [8]. Another example is the computation of “procedure summaries”.
A procedure summary is a relation between states, representing the input/output behav-
ior of a procedure. The summary answers the question of which inputs lead to which
outputs as a result of executing the procedure. They are computed in the form of “sum-
mary edges” in the control-flow graphs of programs [21,2]. Yet another example is the
algorithm for finding dominators/postdominators in program analysis, proposed in [1].
A state t is a postdominator of a state s if all paths from s eventually reach t, and t is a
dominator of s if all paths to s pass through t.

Although these problems are similar, their solutions are quite different. Unifying
them into a common framework allows reuse of specific techniques proposed for each
problem, and opens a way for creating efficient implementations to other problems of

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 273–292, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

274 M. Gheorghiu, A. Gurfinkel, and M. Chechik

a similar kind. We see all these problems as instances of model exploration, where
properties of a model are discovered, rather than checked. A common framework for
model exploration has been proposed under the name of query checking [5].

Query checking finds which formulas hold in a model. For instance, a queryEF ? is
intended to find all propositional formulas that hold in the reachable states. In general, a
CTL query is a CTL formula with a missing propositional subformula, designated by a
placeholder (“?”). A solution to the query is any propositional formula that, when sub-
stituted for the placeholder, makes a CTL formula that holds in the model. The general
query checking problem is: given a CTL query on a model, find all of its propositional
solutions. For example, consider the model in Figure 1(a), where each state is labeled
by the atomic propositions that hold in it. Here, some solutions toEF ? are (p∧¬q∧r),
representing the reachable state s0, and (q ∧ r), representing the set of states {s1, s2}.
On the other hand, ¬r is not a solution: EF ¬r does not hold, since no states where
r is false are reachable. Query checking can be solved by repeatedly substituting each
possible propositional formula for the placeholder, and returning those for which the
resulting CTL formula holds. In the worst case, this approach is exponential in the size
of the state space and linear in the cost of CTL model checking.

Each of the analysis questions described above can be formulated as a query. Reach-
able states are solutions to EF ?. Procedure summaries can be obtained by solving
EF ((pc = PROC END) ∧ ?), where pc = PROC END holds in the return statement of
the procedure. Dominators/postdominators are solutions to the query AF ? (i.e., what
propositional formulas eventually hold on all paths). This insight gives us a uniform
formulation of these problems and allows for easy creation of solutions to other, sim-
ilar, problems. For example, a problem reported in genetics research [4,12] called for
finding stable states of a model, that are those states which, once reached, are never left
by the system. This is easily formulated as EFAG ?, meaning “what are the reachable
states in which the system will remain forever?”.

These analysis problems further require that solutions to their queries be states of the
model. For example, a queryAF ? on the model in Figure 1(a) has solutions (p∧¬q∧r)
and (q ∧ r). The first corresponds to the state s0 and is a state solution. The second cor-
responds to a set of states {s1, s2} but neither s1 nor s2 is a solution by itself. When
only state solutions are needed, we can formulate a restricted state query-checking prob-
lem by constraining the solutions to be single states, rather than arbitrary propositional
formulas (that represent sets of states). A naive state query checking algorithm is to
repeatedly substitute each state of the model for the placeholder, and return those for
which the resulting CTL formula holds. This approach is linear in the size of the state
space and in the cost of CTL model checking. While significantly more efficient than
general query checking, this approach is not “fully” symbolic, since it requires many
runs of a model-checker.

While several approaches have been proposed to solve general query checking, none
are effective for solving the state query-checking problem. The original algorithm of
Chan [5] was very efficient (same cost as CTL model checking), but was restricted
to valid queries, i.e., queries whose solutions can be characterized by a single propo-
sitional formula. This is too restrictive for our purposes. For example, neither of the

Finding State Solutions to Temporal Logic Queries 275

queries EF ?, AF ?, nor the stable states query EF AG ? are valid. Bruns and
Godefroid [3] generalized query checking to all CTL queries by proposing an automata-
based CTL model checking algorithm over a lattice of sets of all possible solutions. This
algorithm is exponential in the size of the state space. Gurfinkel and Chechik [15] have
also provided a symbolic algorithm for general query checking. The algorithm is based
on reducing query checking to multi-valued model checking and is implemented in a
tool TLQSolver [7]. While empirically faster than the corresponding naive approach of
substituting every propositional formula for the placeholder, this algorithm still has the
same worst-case complexity as that in [3], and remains applicable only to modest-sized
query-checking problems. An algorithm proposed by Hornus and Schnoebelen [17]
finds solutions to any query, one by one, with increasing complexity: a first solution
is found in time linear in the size of the state space, a second, in quadratic time, and
so on. However, since the search for solutions is not controlled by their shape, finding
all state solutions can still take exponential time. Other query-checking work is not
directly applicable to our state query-checking problem, as it is exclusively concerned
either with syntactic characterizations of queries[23], or with extensions, rather than
restrictions, of query checking [24,26].

In this paper, we provide a symbolic algorithm for solving the state query-checking
problem, and describe an implementation using the model-checker NuSMV [8]. The
algorithm is formulated as model checking over a lattice of sets of states, but its im-
plementation is done by modifying only the interface of NuSMV. Manipulation of
the lattice sets is done directly by NuSMV. While the running time of this approach
is the same as in the corresponding naive approach, we show empirical evidence
that our implementation can perform better than the naive, using a case study from
genetics [12].

The algorithms proposed for the program analysis problems described above are
special cases of ours, that solve only EF ? and AF ? queries, whereas our algorithm
solves any CTL query. We prove our algorithm correct by showing that it approximates
general query checking, in the sense that it computes exactly those solutions, among
all given by general query checking, that are states. We also generalize our results to
an approximation framework that can potentially apply to other extensions of model
checking, e.g., vacuity detection, and point to further applications of our technique,
e.g., to querying XML documents.

There is a also a very close connection between query-checking and sanity checks
such as vacuity and coverage [19]. All these problems require checking several “mu-
tants” of the property or of the model to obtain the final solution. The algorithm for
solving state queries presented in this paper bears many similarities to the algorithms
described in [19]. Since query-checking is more general, we believe it can provide a
uniform framework for studying all these problems.

The rest of the paper is organized as follows. Section 2 provides the model checking
background. Section 3 describes the general query-checking algorithm. We formally
define the state query-checking problem and describe our implementation in Section 4.
Section 5 presents the general approximation technique for model checking over lattices
of sets. We present our case study in Section 6, and conclude in Section 7.

276 M. Gheorghiu, A. Gurfinkel, and M. Chechik

(a)

p
¬q

r

¬p
q
r

p
q
r

s0
s1

s2

(b)

[[�]](s) � �, for � ∈ {true, false}
[[a]](s) � a ∈ I(s), for a ∈ A

[[¬a]](s) � a /∈ I(s), for a ∈ A

[[ϕ ∧ ψ]](s) � [[ϕ]](s) ∧ [[ψ]](s)

[[ϕ ∨ ψ]](s) � [[ϕ]](s) ∨ [[ψ]](s)

[[EX ϕ]](s) �
∨

s′∈R(s) [[ϕ]](s′)

[[AX ϕ]](s) �
∧

s′∈R(s) [[ϕ]](s′)

[[EG ϕ]](s) � [[νZ.ϕ ∧ EXZ]](s)

[[AG ϕ]](s) � [[νZ.ϕ ∧ AXZ]](s)

[[E[ϕ U ψ]]](s) � [[μZ.ψ ∨ (ϕ ∧ EXZ)]](s)

[[A[ϕ U ψ]]](s) � [[μZ.ψ ∨ (ϕ ∧ AXZ)]](s)

Fig. 1. (a) A simple Kripke structure; (b) CTL semantics

2 Background

In this section, we review some notions of lattice theory, minterms, CTL model check-
ing, and multi-valued model checking.

Lattice theory. A finite lattice is a pair (L, �), where L is a finite set and � is a
partial order on L, such that every finite subset B ⊆ L has a least upper bound (called
join and written *B) and a greatest lower bound (called meet and written !B). Since
the lattice is finite, there exist & = *L and ⊥ = !L, that are the maximum and
respectively minimum elements in the lattice. When the ordering � is clear from the
context, we simply refer to the lattice as L. A lattice if distributive if meet and join
distribute over each other. In this paper, we work with lattices of propositional formulas.
For a set of atomic propositions P , let F(P) be the set of propositional formulas over
P . For example, F({p}) = {true, false, p,¬p}. This set forms a finite lattice ordered
by implication (see Figure 2(a)). Since p ⇒ true, p is under true in this lattice. Meet
and join in this lattice correspond to logical operators ∧ and ∨, respectively.

A subsetB ⊆ L is called upward closed or an upset, if for any a, b ∈ L, if b ∈ B and
b � a, then a ∈ B. In that case,B can be identified by the setM of its minimal elements
(b ∈ B is minimal if for all a ∈ B if a � b), then a = b), and we write B = ↑M . For
example, for the lattice (F({p}),⇒) shown in Figure 2(a), ↑{p,¬p} = {p,¬p, true}.
The set {p,¬p} is not an upset, whereas {p,¬p, true} is. For singletons, we write ↑a
for ↑{a}. We extend the ↑ notation to any set A ⊆ L by ↑A = ↑M , where M is the set
of minimal elements in A. We write U(L) for the set of all upsets of L, i.e., A ⊆ L iff
↑A ∈ U(L). U(L) is closed under union and intersection, and therefore forms a lattice
ordered by set inclusion. We call (U(L),⊆) the upset lattice of L. The upset lattice of
F({p}) is shown in Figure 2(b).

An element j in a lattice L is join-irreducible if j 	= ⊥ and j cannot be decomposed
as the join of other lattice elements, i.e., for any x and y in L, j = x * y implies j = x
or j = y [11]. For example, the join-irreducible elements of the lattice in Figure 2(a)
are p and ¬p, and of the one in Figure 2(b) — ↑true, ↑p, ↑¬p, and ↑false.

Finding State Solutions to Temporal Logic Queries 277

true

false

p ¬p

↑{}

↑true

↑p ↑¬p

↑{p,¬p}

↑false

{p,¬p}

∅

{p} {¬p}

(a) (b) (c)

Fig. 2. Lattices for P = {p}: (a) (F(P),⇒); (b) (U(F(P)),⊆); (c) (2M(P),⊆)

Minterms. In the lattice of propositional formulas F(P), a join-irreducible element
is a conjunction in which every atomic proposition of P appears, positive or negated.
Such conjunctions are called minterms and we denote their set by M(P). For example,

M({p, q}) = {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q}.

CTL model checking. CTL model checking is an automatic technique for verifying
temporal properties of systems expressed in a propositional branching-time temporal
logic called Computation Tree Logic (CTL) [9]. A system model is a Kripke structure
K = (S,R, s0, A, I), where S is a set of states, R ⊆ S × S is a (left-total) transition
relation, s0 ∈ S is the initial state, A is a set of atomic propositions, and I : S → 2A

is a labeling function, providing the set of atomic propositions that are true in each
state. CTL formulas are evaluated in the states of K. Their semantics can be described
in terms of infinite execution paths of the model. For instance, a formula AG ϕ holds
in a state s if ϕ holds in every state, on every infinite execution path s, s1, s2, . . . start-
ing at s; AF ϕ (EF ϕ) holds in s if ϕ holds in some state, on every (some) infi-
nite execution path s, s1, s2, The formal semantics of CTL is given in Figure 1(b).
Without loss of generality we consider only CTL formulas in negation normal form,
where negation is applied only to atomic propositions [9]. In Figure 1(b), the function
[[ϕ]] : S → {true, false} indicates the result of checking a formula ϕ in state s; the
set of successors for a state s is R(s) � {s′|(s, s′) ∈ R}; μZ.f(Z) and νZ.f(Z) are
least and greatest fixpoints of f , respectively, where μZ.f(Z) =

∨
i>0 f

i(false) and
νZ.f(Z) =

∧
i>0 f

i(true). Other temporal operators are derived from the given ones,
for example: EF ϕ = E[true U ϕ], AF ϕ = A[true U ϕ]. The operators in pairs
(AX,EX), (AG,EF), (AF,EG), . . . are duals of each other.

A formula ϕ holds in a Kripke structure K, written K |= ϕ, if it holds in the
initial state, i.e., [[ϕ]](s0) = true. For example, on the model in Figure 1(a), where
A = {p, q, r}, properties AG (p ∨ q) and AF q are true, whereas AX p is not. The
complexity of model-checking a CTL formulaϕ on a Kripke structureK isO(|K|×|ϕ|),
where |K| = |S| + |R|.

Multi-valued model checking. Multi-valued CTL model checking [6] is a general-
ization of model checking from a classical logic to an arbitrary De Morgan algebra
(L,�,¬), where (L,�) is a finite distributive lattice and ¬ is any operation that is an

278 M. Gheorghiu, A. Gurfinkel, and M. Chechik

involution (¬¬� = �) and satisfies De Morgan laws. Conjunction and disjunction are the
meet and join operations of (L,�), respectively. When the ordering and the negation
operation of an algebra (L,�,¬) are clear from the context, we refer to it as L. In this
paper, we only use a version of multi-valued model checking where the model remains
classical, i.e., both the transition relation and the atomic propositions are two-valued,
but properties are specified in a multi-valued extension of CTL over a given De Morgan
algebra L, called χCTL(L). The logic χCTL(L) has the same syntax as CTL, except
that the allowed constants are all � ∈ L. Boolean values true and false are replaced
by the & and ⊥ of L, respectively. The semantics of χCTL(L) is the same as of CTL,
except [[ϕ]] is extended to [[ϕ]] : S → L and the interpretation of constants is: for all
� ∈ L, [[�]](s) � �. The other operations are defined as their CTL counterparts (see Fig-
ure 1(b)), where ∨ and ∧ are interpreted as lattice operators * and !, respectively. The
complexity of model checking a χCTL(L) formula ϕ on a Kripke structure K is still
O(|K| × |ϕ|), provided that meet, join, and quantification can be computed in constant
time [6], which depends on the lattice.

3 Query Checking

In this section, we review the query-checking problem and a symbolic method for
solving it.

Background. Let K be a Kripke structure with a set A of atomic propositions. A CTL
query, denoted by ϕ[?], is a CTL formula containing a placeholder “?” for a proposi-
tional subformula (over the atomic propositions in A). The CTL formula obtained by
substituting the placeholder in ϕ[?] by a formula α ∈ F(A) is denoted by ϕ[α]. A for-
mula α is a solution to a query if its substitution into the query results in a CTL formula
that holds on K, i.e., if K |= ϕ[α]. For example, (p∧¬q ∧ r) and (q ∧ r) are among the
solutions to the query AF ? on the model of Figure 1(a), whereas ¬r is not.

In this paper, we consider queries in negation normal form where negation is ap-
plied only to the atomic propositions, or to the placeholder. We further restrict our
attention to queries with a single placeholder, although perhaps with multiple occur-
rences. For a query ϕ[?], a substitution ϕ[α] means that all occurrences of the place-
holder are replaced by α. For example, if ϕ[?] = EF (? ∧ AX ?), then ϕ[p ∨ q] =
EF ((p ∨ q) ∧ AX (p ∨ q)). We assume that occurrences of the placeholder are ei-
ther non-negated everywhere, or negated everywhere, i.e., the query is either positive or
negative, respectively. Here, we limit our presentation to positive queries; see Section 5
for the treatment of negative queries.

The general CTL query-checking problem is: given a CTL query on a model, find
all its propositional solutions. For instance, the answer to the queryAF ? on the model
in Figure 1(a) is the set consisting of (p ∧ ¬q ∧ r), (q ∧ r) and every other formula
implied by these, including p, (q ∨ r), and true. If α is a solution to a query, then any β
such that α⇒ β (i.e., any weaker β) is also a solution, due to the monotonicity of pos-
itive queries [5]. Thus, the set of all possible solutions is an upset; it is sufficient for the
query-checker to output the strongest solutions, since the rest can be inferred from them.

One can restrict a query to a subset P ⊆ A [3]. We then denote the query by ϕ[?P],
and its solutions become formulas in F(P). For instance, checking AF ?{p, q} on the

Finding State Solutions to Temporal Logic Queries 279

model of Figure 1(a) should result in (p∧¬q) and q as the strongest solutions, together
with all those implied by them. We write ϕ[?] for ϕ[?A].

If P consists of n atomic propositions, there are 22n

possible distinct solutions to
ϕ[?P]. A “naive” method for finding all solutions would model check ϕ[α] for every
possible propositional formula α over P , and collect all those α’s for which ϕ[α] holds
in the model. The complexity of this naive approach is 22n

times that of usual model-
checking.

Symbolic algorithm. A symbolic algorithm for solving the general query-checking
problem was described in [15] and has been implemented in the TLQSolver tool [7].
We review this approach below.

Since an answer to ϕ[?P] is an upset, the upset lattice U(F(P)) is the space of all
possible answers [3]. For instance, the lattice for AF ?{p} is shown in Figure 2(b). In
the model in Figure 1(a), the answer to this query is {p, true}, encoded as ↑{p}, since
p is the strongest solution.

Symbolic query checking is implemented by model checking over the upset lattice.
The algorithm is based on a state semantics of the placeholder. Suppose query ?{p} is
evaluated in a state s. Either p holds in s, in which case the answer to the query should
be ↑p, or ¬p holds, in which case the answer is ↑¬p. Thus we have:

[[?{p}]](s) =

{
↑p if p ∈ I(s),
↑¬p if p 	∈ I(s).

This case analysis can be logically encoded by the formula (p ∧ ↑p) ∨ (¬p ∧ ↑¬p).
Let us now consider a general query ?P in a state s (where ? ranges over a set of

atomic propositions P). We note that the case analysis corresponding to the one above
can be given in terms of minterms. Minterms are the strongest formulas that may hold
in a state; they also are mutually exclusive and complete — exactly one minterm j holds
in any state s, and then ↑j is the answer to ?P at s. This semantics is encoded in the
following translation of the placeholder:

T (?P) =
∨

j∈M(P)

(j ∧ ↑j).

The symbolic algorithm is defined as follows: given a query ϕ[?P], first obtain
ϕ[T (?P)], which is a χCTL formula (over the lattice U(F(P))), and then model check
this formula. The semantics of the formula is given by a function from S to U(F(P)),
as described in Section 2. Thus model checking this formula results in a value from
U(F(P)). That value was shown in [15] to represent all propositional solutions to
ϕ[?P]. For example, the query AF ? on the model of Figure 1(a) becomes

AF ((p ∧ q ∧ r ∧ ↑(p ∧ q ∧ r))∨
(p ∧ q ∧ ¬r ∧ ↑(p ∧ q ∧ ¬r))∨
(p ∧ ¬q ∧ r ∧ ↑(p ∧ ¬q ∧ r))∨
(p ∧ ¬q ∧ ¬r ∧ ↑(p ∧ ¬q ∧ ¬r))∨
. . .).

The result of model-checking this formula is ↑{p ∧ ¬q ∧ r, q ∧ r}.

280 M. Gheorghiu, A. Gurfinkel, and M. Chechik

The complexity of this algorithm is the same as in the naive approach. In practice,
however, TLQSolver was shown to perform better than the naive algorithm [15,7].

4 State Solutions to Queries

Let K be a Kripke structure with a setA of atomic propositions. In general query check-
ing, solutions to queries are arbitrary propositional formulas. On the other hand, in state
query checking, solutions are restricted to be single states. To represent a single state, a
propositional formula needs to be a minterm over A. In symbolic model checking, any
state s of K is uniquely represented by the minterm that holds in s. For example, in the
model of Figure 1(a), state s0 is represented by (p∧¬q∧ r), state s2 by (p∧ q∧ r), etc.
Thus, for state query checking, an answer to a query is a set of minterms, rather than
an upset of propositional formulas. For instance, for the query AF ?, on the model of
Figure 1(a), the state query-checking answer is {p∧¬q∧r}, whereas the general query-
checking one is ↑{r∧q, p∧¬q∧r}. While it is still true that if j is a solution, everything
in ↑j is also a solution, we no longer view answers as upsets, since we are interested
only in minterms, and j is the only minterm in the set ↑j (minterms are incomparable by
implication). We can thus formulate state query checking as minterm query checking:
given a CTL query on a model, find all its minterm solutions. We show how to solve
this for any query ϕ[?P], and any subset P ⊆ A. When P = A, the minterms obtained
are the state solutions.

Given a query ϕ[?P], a naive algorithm would model check ϕ[α] for every minterm
α. If n is the number of atomic propositions in P , there are 2n possible minterms,
and this algorithm has complexity 2n times that of model-checking. Minterm query
checking is thus much easier to solve than general query checking.

Of course, any algorithm solving general query checking, such as the symbolic ap-
proach described in Section 3, solves minterm query checking as well: from all solu-
tions, we can extract only those which are minterms. This approach, however, is much
more expensive than needed. Below, we propose a method that is tailored to solve just
minterm query checking, while remaining symbolic.

4.1 Solving Minterm Query Checking

Since an answer to minterm query checking is a set of minterms, the space of all answers
is the powerset 2M(P) that forms a lattice ordered by set inclusion. For example, the
lattice 2M({p}) is shown in Figure 2(c). Our symbolic algorithm evaluates queries over
this lattice. We first adjust the semantics of the placeholder to minterms. Suppose we
evaluate ?{p} in a state s. Either p holds in s, and then the answer should be {p}, or ¬p
holds, and then the answer is {¬p}. Thus, we have

[[?{p}]](s) =

{
{p} if p ∈ I(s),
{¬p} if p 	∈ I(s).

Finding State Solutions to Temporal Logic Queries 281

This is encoded by the formula (p∧{p})∨ (¬p∧{¬p}). In general, for a query ?P ,
exactly one minterm j holds in s, and in that case {j} is the answer to the query. This
gives the following translation of placeholder:

Am(?P) �
∨

j∈M(P)

(j ∧ {j}).

Our minterm query-checking algorithm is now defined as follows: given a query
ϕ[?P] on a model K, compute ϕ[Am(?P)], and then model check this over 2M(P).

For example, for AF ?, on the model of Figure 1(a), we model check

AF ((p ∧ q ∧ r ∧ {p ∧ q ∧ r})∨
(p ∧ q ∧ ¬r ∧ {p ∧ q ∧ ¬r})∨
(p ∧ ¬q ∧ r ∧ {p ∧ ¬q ∧ r})∨
(p ∧ ¬q ∧ ¬r ∧ {p ∧ ¬q ∧ ¬r})∨
. . .),

and obtain the answer {p ∧ ¬q ∧ r}, that is indeed the only minterm solution for this
model.

To prove our algorithm correct, we need to show that its answer is the set of all
minterm solutions. We prove this claim by relating our algorithm to the general al-
gorithm in Section 3. We show that, while the general algorithm computes the set
B ∈ U(F(P)) of all solutions, ours results in the subset M ⊆ B that consists of only
the minterms from B. We first establish an “approximation” mapping from U(F(P))
to 2M(P) that, for any upset B ∈ U(F(P)), returns the subset M ⊆ B of minterms.

Definition 1 (Minterm approximation). Let P be a set of atomic propositions.
Minterm approximation fm : U(F(P)) → 2M(P) is fm(B) � B ∩ M(P), for any
B ∈ U(F(P)).

With this definition, Am(?P) is obtained from T (?P) by replacing ↑j with fm(↑j) =
{j}. The minterm approximation preserves set operations; this can be proven using the
fact that any set of propositional formulas can be partitioned into minterms and non-
minterms.

Proposition 1. The minterm approximation fm : U(F(P)) → 2M(P) is a lattice ho-
momorphism, i.e., it preserves the set operations: for any B,B′ ∈ U(F(P)), fm(B) ∪
fm(B′) = fm(B ∪B′) and fm(B) ∩ fm(B′) = fm(B ∩B′).

By Proposition 1, and since model checking is performed using only set operations,
we can show that the approximation preserves model-checking results. Model check-
ing ϕ[Am(?P)] is the minterm approximation of checking ϕ[T (?P)]. In other words,
our algorithm results in set of all minterm solutions, which concludes the correctness
argument.

Theorem 1 (Correctness of minterm approximation). For any state s of K,

fm([[ϕ[T (?P)]]](s)) = [[ϕ[Am(?P)]]](s).

282 M. Gheorghiu, A. Gurfinkel, and M. Chechik

In summary, for P = A, we have the following correct symbolic state query-checking
algorithm : given a query ϕ[?] on a model K, translate it to ϕ[Am(?A)], and then model
check this over 2M(A).

The worst-case complexity of our algorithm is the same as that of the naive approach.
With an efficient encoding of the approximate lattice, however, our approach can out-
perform the naive one in practice, as we show in Section 6.

4.2 Implementation

Although our minterm query-checking algorithm is defined as model checking over a
lattice, we can implement it using a classical symbolic model checker. This is done by
encoding the lattice elements in 2M(P) such that lattice operations are already imple-
mented by a symbolic model checker. The key observation is that the lattice (2M(P),⊆)
is isomorphic to the lattice of propositional formulas (F(P),⇒). This can be seen,
for instance, by comparing the lattices in Figures 2(a) and 2(c). Thus, the elements of
2M(P) can be encoded as propositional formulas, and the operations become proposi-
tional disjunction and conjunction. A symbolic model checker, such as NuSMV [8],
which we used in our implementation, already has data structures for representing
propositional formulas and algorithms to compute their disjunction and conjunction
— BDDs [25]. The only modifications we made to NuSMV were parsing the input and
reporting the result.

While parsing the queries, we implemented the translationAm defined in Section 4.1.
In this translation, for every minterm j, we give a propositional encoding to {j}. We
cannot simply use j to encode {j}. The lattice elements need to be constants with re-
spect to the model, and j is not a constant — it is a propositional formula that contains
model variables. We can, however, obtain an encoding for {j}, by renaming j to a sim-
ilar propositional formula over fresh variables. For instance, we encode {p ∧ ¬q ∧ r}
as x ∧ ¬y ∧ z. Thus, our query translation results in a CTL formula with double the
number of propositional variables compared to the model. For example, the translation
of AF ?{p, q} is

AF ((p ∧ q ∧ x ∧ y)∨
(p ∧ ¬q ∧ x ∧ ¬y)∨
(¬p ∧ q ∧ ¬x ∧ y)∨
(¬p ∧ ¬q ∧ ¬x ∧ ¬y)).

We input this formula into NuSMV, and obtain the set of minterm solutions as a propo-
sitional formula over the encoding variables x, y, For AF ?{p, q}, on the model in
Figure 1(a), we obtain the result x ∧ ¬y, corresponding to the only minterm solution
p ∧ ¬q.

4.3 Exactness of Minterm Approximation

In this section, we address the applicability of minterm query checking to general query
checking. When the minterm solutions are the strongest solutions to a query, minterm
query checking solves the general query-checking problem as well, as all solutions to
that query can be inferred from the minterms. In that case, we say that the minterm

Finding State Solutions to Temporal Logic Queries 283

approximation is exact. We would like to identify those CTL queries that admit exact
minterm approximations, independently of the model. The following can be proven
using the fact that any propositional formula is a disjunction of minterms.

Proposition 2. A positive query ϕ[?P] has an exact minterm approximation in any
model iff ϕ[?P] is distributive over disjunction, i.e., ϕ[α ∨ β] = ϕ[α] ∨ ϕ[β].

An example of a query that admits an exact approximation is EF ?; its strongest solu-
tions are always minterms, representing the reachable states. In [5], Chan showed that
deciding whether a query is distributive over conjunction is EXPTIME-complete. We
obtain a similar result by duality.

Theorem 2. Deciding whether a CTL query is distributive over disjunction is
EXPTIME-complete.

Since the decision problem is hard, it would be useful to have a grammar that is guaran-
teed to generate queries which distribute over disjunction. Chan defined a grammar for
queries distributive over conjunction, that was later corrected by Samer and Veith [22].
We can obtain a grammar for queries distributive over disjunction, from the grammar
in [22], by duality.

5 Approximations

The efficiency of model checking over a lattice is determined by the size of the lattice.
In the case of query checking, by restricting the problem and approximating answers,
we have obtained a more manageable lattice. In this section, we show that our minterm
approximation is an instance of a more general approximation framework for reasoning
over any lattice of sets. Having a more general framework makes it easier to accom-
modate other approximations that may be needed in query checking. For example, we
use it to derive an approximation to negative queries. This framework may also apply
to other analysis problems that involve model checking over lattices of sets, such as
vacuity detection [14].

We first define general approximations that map larger lattices into smaller ones. Let
U be any finite set. Its powerset lattice is (2U ,⊆). Let (L,⊆) be any sublattice of the
powerset lattice, i.e., L ⊆ 2U .

Definition 2 (Approximation). A function f : L → 2U is an approximation if:

1. it satisfies f(B) ⊆ B for any B ∈ L (i.e., f(B) is an under-approximation of B),
and

2. it is a lattice homomorphism, i.e., it respects the lattice operations: f(B ∩ C) =
f(B) ∩ f(C), and f(B ∪ C) = f(B) ∪ f(C).

From the definition of f , the image f(L) of L through f is a sublattice of 2U , having
f(&) and f(⊥) as its maximum and minimum elements, respectively.

We consider an approximation to be correct if it is preserved by model checking:
reasoning over the smaller lattice is the approximation of reasoning over the larger

284 M. Gheorghiu, A. Gurfinkel, and M. Chechik

one. Let ϕ be a χCTL(L) formula. We define its translation A(ϕ) into f(L) to be the
χCTL(f(L)) formula obtained from ϕ by replacing any constant B ∈ L occurring
in ϕ by f(B). The following theorem simply states that the result of model check-
ing A(ϕ) is the approximation of the result of model checking ϕ. Its proof follows by
structural induction from the semantics of χCTL, and uses the fact that approxima-
tions are homomorphisms. [18] proves a similar result, albeit in a somewhat different
context.

Theorem 3 (Correctness of approximations). Let K be a classical Kripke structure,
L be a De Morgan algebra of sets, f be an approximation function on L, and ϕ be a
χCTL(L) formula. Let A(ϕ) be the translation ofϕ into f(L). Then for any state s of K,

f([[ϕ]](s)) = [[A(ϕ)]](s).

Theorem 1 is a corollary to Theorem 3. Our minterm approximation satisfies condition
(1) of Definition 2, since fm(B) = B ∩M(P) ⊆ B, and it also satisfies condition (2)
by Proposition 1. Thus, fm is an approximation to which Theorem 3 applies, yielding
Theorem 1.

The minterm approximation defined in Section 4.1 was restricted to positive queries.
The general approximation framework defined above makes it easy to derive a minterm
approximation for negative queries. We denote a negative query by ϕ[¬?P]. To obtain
the minterm solutions to ϕ[¬?P], we can check ϕ[?P], that is, ignore the negation and
treat the query as positive. For example, to check the negative query AF ¬?{p, q}, we
check AF ?{p, q} instead. The minterm solutions to the original negative query are
the duals of the maxterm solutions to ϕ[?P]. A maxterm is a disjunction where all the
atomic propositions are, positive or negated. We denote by X (P) the set of maxterms
over a set P of atomic propositions. For example, X ({p, q}) = {p ∨ q, p ∨ ¬q,¬p ∨
q,¬p ∨ ¬q}. A minterm j is a solution to ϕ[¬?P] iff its negation ¬j is a maxterm
solution to ϕ[?P]. We thus need to define a maxterm approximation fx : U(F(P)) →
2X (P) for positive queries. We define fx such that, for any upsetB, it returns the subset
of maxterms in that set, i.e., fx(B) = B ∩ X (P). According to Definition 2, fx is an
approximation: (1) holds by fx’s definition, and (2) follows from the fact that any set of
propositional formulas can be partitioned into maxterms and non-maxterms. We define
the translation:

Ax(?P) �
∨

j∈M(P)

(j ∧ fx(↑j)).

Then, by Theorem 3, model-checking ϕ[Ax(?P)] results in all the maxterm solutions
to ϕ[?P]. By negating every resulting maxterm, we obtain all minterm solutions to
ϕ[¬?P]. For example, maxterm solutions to AF ?{p, q} for the model of Figure 1(a)
is the set X ({p, q}); thus, the minterm solutions to AF ¬?{p, q} are the entire set
M({p, q}).

In summary, we have shown that minterm approximations can be generalized to an
approximation framework over any lattices of sets, which is applicable, for instance, to
finding minterm solutions to negative queries.

Finding State Solutions to Temporal Logic Queries 285

6 Case Study

In this section, we study the problem of finding stable states of a model, and evaluate
the performance of our implementation by comparing it to the naive approach to state
query checking.

In a study published in plant research, a model of gene interaction has been pro-
posed to compute the “stable states” of a system of genes [12]. This work defined stable
states as reachable gene configurations that no longer change, and used discrete dy-
namical systems to find such states. A different publication, [4], advocated the use of
Kripke structures as appropriate models of biological systems, where model checking
can answer some of the relevant questions about their behaviour. [4] also noted that
query-checking might be useful as well, but did not report any applications of this tech-
nique. Motivated by [4], we repeated the study of [12] using our state query-checking
approach.

The model of [12] consists of 15 genes, each with a “level of expression” that is
either boolean (0 or 1), or ternary (0,1, or 2). The laws of interaction among genes have
been established experimentally and are presented as logical tables. The model was
translated into a NuSMV model with 15 variables, one per gene, of which 8 are boolean
and the rest are ternary, turning the laws into NuSMV next-state relations. The model
has 559,872 states and is in the Appendix.

The problem of finding all stable states of the model and the initial states leading to
them is formulated as the minterm query checking of EFAG?, where ? ranges over
all variables. Performance of our symbolic algorithm (Section 4) and the naive state
query-checking algorithm for this query is summarized in the top row of the table in
Figure 3(a), where the times are reported in minutes. Our algorithm was implemented
using NuSMV as described in Section 4.2. The naive algorithm was also implemented
using NuSMV by generating all possible minterms over the model variables, replacing
each for the placeholder in EFAG? and calling NuSMV to check the resulting for-
mulas. Both algorithms were run on a Pentium 4 processor with 2.8GHz and 1 GB of
RAM. Our algorithm gave an answer in under two hours, being about 20% faster than
the naive.

To have a larger basis of comparison between the two algorithms, we varied the
model (see rows 2-4), and the checked queries (see rows 5-7). Each “mutant” was
obtained by permanently switching a different gene off (see Appendix), as indicated
in [12]. The performance gain of our algorithm is robust to these changes.

Discussion. Performance improvements observed in our case study may not be at-
tainable for every model. If the model is sufficiently small, our algorithm is likely to
be faster. As models grow, however, the naive algorithm, which uses fewer BDD vari-
ables, will be more scalable. For more challenging models, a combination of the two
approaches may yield the best results.

Another alternative is an iterative approach. Suppose we are interested in checking a
queryAF ? with two propositions, a and b. We first checkAF ?{a} andAF ?{b}. If no
value is found for a proposition, then the query has no minterm solutions. Otherwise, the
results correspond to the values each proposition has in all minterm solutions. For ex-
ample, suppose we obtain a = false, whereas b can be either true or false. We proceed

286 M. Gheorghiu, A. Gurfinkel, and M. Chechik

Algorithms
Model Query Ours Naive

1 original EF AG ? 117 145
2 mutant 1 EF AG ? 116 144
3 mutant 2 EF AG ? 117 145
4 mutant 3 EF AG ? 117 146
5 original AG ? 116 145
6 original EF ? 118 146
7 original AF ? 117 145

paper

author

Chandra Merlin

title

“A Paper Title”

(a) (b)

Fig. 3. (a) Experimental results; (b) An XML example (adapted from [13])

by checking a query for each pair of propositions, using for the placeholder replace-
ment only those values found in the previous step. For example, we check AF?{a, b},
replacing ? by (¬a ∧ b ∧ {¬a ∧ b}) ∨ (¬a ∧ ¬b ∧ {¬a ∧ ¬b}). We continue with
checking triples of propositions using the valued obtained for pairs, and so on, until the
query is checked on all atomic propositions, or it has been established that no answer
exists. In this iterative process, there is place for heuristics that would switch between
checking queries by our algorithm or the naive one, based on the resources available
(time vs. memory). We will address such improvements in future optimizations of our
implementation.

7 Conclusions

We have identified and formalized the state query-checking problem, which is of prac-
tical interest and can be solved more efficiently than general query checking. We have
presented a symbolic algorithm that solves this problem, described a simple implemen-
tation using the NuSMV model checker, and showed its effectiveness on a realistic case
study. We proved our algorithm correct by introducing the notion of approximation,
which we have extended to reasoning over any lattice of sets. Our state query-checking
algorithm generalizes techniques previously proposed for computing procedure sum-
maries [2] and postdominators [1]. In essence, we generalized these algorithms, special-
ized for EF ? and AF ? queries, respectively, to arbitrary CTL queries. Our algorithm
solves general state-based queries by computing fixpoints over pre-image computations,
i.e., iterating overEX and AX . While some of these queries can be solved by fixpoints
over post-image computations, such as the query EF ? for discovering the reachable
states, not every state-based CTL query can be solved that way, and this impossibility
result follows from the work in [16].

We have also presented the application of state query checking to finding stable states
in gene networks. In the rest of this section we present another application, that we are
currently investigating.

State query checking can be applied to querying XML documents, which are mod-
elled as trees. A simple example, of a fragment from a document containing information

Finding State Solutions to Temporal Logic Queries 287

about research papers and adapted from [13], is shown in Figure 3(b). An example
query is “what are the titles of all papers authored by Chandra?”. Viewing tree nodes as
states and edges as transitions yields a state-transition model, on which CTL properties
can be evaluated [20]. Unfortunately, our example, like many other XML queries, needs
to refer to both past and future, and is expressed as a CTL+Past formula as follows [13]:

EXpast (title ∧ EXpast (paper ∧ EX (author ∧ EX Chandra))).

Such formulas cannot be evaluated without modifying the internals of standard model-
checkers. Formulating this question as a query yields

paper ∧ EX (title ∧ EX ?) ∧ EX (author ∧ EX Chandra),

whose desired solutions are states (here, the node labeled “A Paper Title”), and which
avoids the use of the past, and can be solved by our approach, without modifying exist-
ing model checkers.

Acknowledgements. We are grateful to Miguel Carrillo Barajas of the Universidad
Nacional Autónoma de México (UNAM), for providing us with the gene model, rele-
vant references, and helpful clarifications. We thank Jocelyn Simmonds for helping us
with implementation, and Shiva Nejati for comments on this paper. This research was
supported in part by NSERC.

References

1. Aminof, B., Ball, T., Kupferman, O.: Reasoning About Systems with Transition Fairness. In:
Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 194–208. Springer,
Heidelberg (2005)

2. Ball, T., Rajamani, S.: Bebop: A Symbolic Model Checker for Boolean Programs. In:
Havelund, K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software Verification.
LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

3. Bruns, G., Godefroid, P.: Temporal Logic Query-Checking. In: Proc. of LICS’01, pp. 409–
417 (2001)

4. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schachter, V.: Modeling and Query-
ing Biomolecular Interaction Networks. Theor. Comp. Sci. 325(1), 25–44 (2004)

5. Chan, W.: Temporal-Logic Queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 450–463. Springer, Heidelberg (2000)

6. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-Valued Symbolic Model-
Checking. ACM Trans. on Soft. Eng. and Meth. 12(4), 1–38 (2003)

7. Chechik, M., Gurfinkel, A.: TLQSolver: A Temporal Logic Query Checker. In: Hunt Jr.,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 210–214. Springer, Heidelberg
(2003)

8. Cimatti, A., Clarke, E.M., Giunchilia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: NuSMV Version 2: An Open Source Tool for Symbolic Model Checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking (1999)

288 M. Gheorghiu, A. Gurfinkel, and M. Chechik

10. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications. ACM Trans. on Prog. Lang. and Sys. 8(2),
244–263 (1986)

11. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order (1990)
12. Espinosa-Soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A Gene Regulatory Network

Model for Cell-Fate Determination during Arabidopsis thaliana Flower Development That
Is Robust and Recovers Experimental Gene Expression Profiles. The. Plant Cell. 16, 2923–
2939 (2004)

13. Gottlob, G., Koch, C.: Monadic Queries over Tree-Structures Data. In: Proc. of LICS’02, pp.
189–202 (2002)

14. Gurfinkel, A., Chechik, M.: How Vacuous Is Vacuous? In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004)

15. Gurfinkel, A., Chechik, M., Devereux, B.: Temporal Logic Query Checking: A Tool for
Model Exploration. IEEE Trans. on Soft. Eng. 29(10), 898–914 (2003)

16. Henzinger, T.A., Kupferman, O., Qadeer, S.: From Pre-Historic to Post-Modern Symbolic
Model Checking. Form. Meth. in Syst. Des. 23(3), 303–327 (2003)

17. Hornus, S., Schnoebelen, P.: On Solving Temporal Logic Queries. In: Kirchner, H., Ringeis-
sen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 163–177. Springer, Heidelberg (2002)

18. Konikowska, B., Penczek, W.: Reducing Model Checking from Multi-Valued CTL* to CTL*.
In: Brim, L., Jančar, P., Křetı́nský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
Springer, Heidelberg (2002)

19. Kupferman, O.: Sanity Checks in Formal Verification. In: Baier, C., Hermanns, H. (eds.)
CONCUR 2006. LNCS, vol. 4137, Springer, Heidelberg (2006)

20. Miklau, G., Suciu, D.: Containment and Equivalence for an XPath fragment. In: Proc. of
PODS’02, pp. 65–76 (2002)

21. Reps, T.W., Horwitz, S., Sagiv, M.: Precise Interprocedural Dataflow Analysis via Graph
Reachability. In: Proc. of POPL’95, pp. 49–61 (1995)

22. Samer, M., Veith, H.: Validity of CTL Queries Revisited. In: Baaz, M., Makowsky, J.A. (eds.)
CSL 2003. LNCS, vol. 2803, pp. 470–483. Springer, Heidelberg (2003)

23. Samer, M., Veith, H.: A Syntactic Characterization of Distributive LTL Queries. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1099–
1110. Springer, Heidelberg (2004)

24. Samer, M., Veith, H.: Parameterized Vacuity. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 322–336. Springer, Heidelberg (2004)

25. Somenzi, F.: Binary Decision Diagrams. In: Somenzi, F. (ed.) Calculational System Design.
NATO Science Series F: Computer and Systems Sciences, vol. 173, pp. 303–366. Sciences,
Sciences (1999)

26. Zhang, D., Cleaveland, R.: Efficient Temporal-Logic Query Checking for Presburger Sys-
tems. In: Proc. of ASE’05, pp. 24–33 (2005)

Appendix

-- flower gene network model
-- created by Miguel Carrillo Barajas of UNAM

(miguel_carrillob@yahoo.com)
-- according to the paper [12]

Finding State Solutions to Temporal Logic Queries 289

MODULE main
VAR
ft : {0,1};
emf1: {0,1};
tfl1: {0,1,2};
lfy : {0,1,2};
ful : {0,1,2};
ap1 : {0,1,2};
ap3 : {0,1,2};
pi : {0,1,2};
ag : {0,1,2};
ufo : {0,1}; --No change
wus : {0,1};
ap2 : {0,1};
sep : {0,1};
lug : {0,1}; --No change
clf : {0,1}; --No change
ASSIGN
-- FUL
next(ful):= case
tfl1=1 | tfl1=2 : 0;
ap1=0 & tfl1=0 : 2;
ap1=1 & tfl1=0 : 1;
ap1=2 & tfl1=0 : 0;

1 : ful;
esac;
--FT
next(ft):= case
emf1=0 : 1;
emf1=1 : 0;

1 : ft;
esac;
--AP1
next(ap1):= case
ag=2 : 0;
ag=0 & ft=1 : 2;
ag=1 & ft=1 : 1;
ag=0 & lfy>=tfl1 & ft=0 : 2;
ag=1 & lfy>=tfl1 & ft=0 : 1;
(ag=0 | ag=1) & lfy<tfl1 & ft=0 : 0;

1 : ap1;
esac;
--EMF1
next(emf1):=case
lfy=0 : 1;

290 M. Gheorghiu, A. Gurfinkel, and M. Chechik

(lfy=1 | lfy=2) : 0;
1 : emf1;

esac;
--LFY
next(lfy):=case

tfl1=0 & emf1=0 : 2;
ap1=0 & ful=0 & tfl1=0 & emf1=1 : 1;
ap1=0 & ful=0 & (tfl1=1 | tfl1=2) & emf1=0 : 1;
ap1=0 & ful=0 & (tfl1=1 | tfl1=2) & emf1=1 : 0;
ap1=0 & ful=1 & (tfl1=1 | tfl1=2) & emf1=0 : 1;
ap1=0 & ful=1 & tfl1=0 & emf1=1 : 1;
ap1=0 & ful=2 & (tfl1=0 | tfl1=1) & emf1=0 : 2;
ap1=0 & ful=2 & tfl1=0 & emf1=1 : 1;
ap1=0 & ful=2 & tfl1=2 & emf1=0 : 1;
ap1=0 & ful=2 & (tfl1=1 | tfl1=2) & emf1=1 : 1;
ap1=0 & ful=1 & (tfl1=1 | tfl1=2) & emf1=1 : 0;
ap1=1 & (tfl1=0 | tfl1=1) & emf1=0 : 2;
ap1=1 & tfl1=2 & emf1=1 : 0;
ap1=1 & (tfl1=0 | tfl1=1) & emf1=1 : 1;
ap1=1 & tfl1=2 & emf1=0 : 1;
ap1=2 & tfl1=2 & emf1=1 : 1;
ap1=2 & (tfl1=0 | tfl1=1) : 2;
ap1=2 & emf1=0 : 2;

1 : lfy;
esac;
--AP2; in mutant1 this is fixed to 0
next(ap2):=case
tfl1=0 : 1;
tfl1=1 | tfl1=2 : 0;

1 : ap2;
esac;
--WUS
next(wus):=case
wus=0 : 0;
wus=1 & ag=2 & sep=1 : 0;
wus=1 & ag=2 & sep=0 : 1;
wus=1 & (ag=0 | ag=1) : 1;

1 : wus;
esac;
--AG
next(ag):=case
(lfy >= tfl1) & ap2=0 : 2;
(lfy < tfl1) : 0;
(lfy > tfl1) & wus=1 & ap2=1 : 2;
lfy=2 & tfl1=2 & wus=1 & ap2=1 : 2;

Finding State Solutions to Temporal Logic Queries 291

(lfy = tfl1) & (tfl1 <2) & ap2=1 : 0;
(lfy> tfl1) & (ag=0 | ag=1) & wus=0 & ap2=1 & clf=0 : 1;
(lfy> tfl1) & ag=2 & wus=0 & ap2=1 & sep=0 & clf=0 : 1;
(lfy> tfl1) & (ag=0 | ag=1) & wus=0 & ap2=1 & lug=0 : 1;
(lfy> tfl1) & ag=2 & wus=0 & ap2=1 & sep=0 & lug=0 : 1;
(lfy> tfl1) & ap1=0 & (ag=0 | ag=1) & wus=0 & ap2=1 : 1;
(lfy> tfl1) & ap1=0 & ag=2 & wus=0 & ap2=1 & sep=0 : 1;
lfy=2 & tfl1=2 & (ag=0 | ag=1) & wus=0 & ap2=1 & clf=0 : 1;
lfy=2 & tfl1=2 & ag=2 & wus=0 & ap2=1 & sep=0 & clf=0 : 1;
lfy=2 & tfl1=2 & (ag=0 | ag=1) & wus=0 & ap2=1 & lug=0 : 1;
lfy=2 & tfl1=2 & ag=2 & wus=0 & ap2=1 & sep=0 & lug=0 : 1;
lfy=2 & tfl1=2 & ap1=0 & (ag=0 | ag=1) & wus=0 & ap2=1 : 1;
lfy=2 & tfl1=2 & ap1=0 & ag=2 & wus=0 & ap2=1 & sep=0 : 1;
lfy> tfl1 & (ap1=1 | ap1=2) & (ag=0 | ag=1) &

wus=0 & ap2=1 & lug=1 & clf=1 : 0;
lfy> tfl1 & (ap1=1 | ap1=2) & ag=2 &

wus=0 & ap2=1 & sep=0 & lug=1 & clf=1 : 0;
lfy=2 & tfl1=2 & (ap1=1 | ap1=2) &

(ag=0 | ag=1) & wus=0 & ap2=1 & lug=1 & clf=1 : 0;
lfy=2 & tfl1=2 & (ap1=1 | ap1=2) &

ag=2 & wus=0 & ap2=1 & sep=0 & lug=1 & clf=1 : 0;
lfy > tfl1 & ag=2 & wus=0 & ap2=1 & sep=1 : 2;
lfy=2 & tfl1=2 & ag=2 & wus=0 & ap2=1 & sep=1 : 2;

1 : ag;
esac;
--TFL1
next(tfl1):=case

emf1=0 : 0;
ap1=2 & emf1=1 : 0;
(ap1=0 | ap1=1) & lfy=2 & emf1=1 : 0;
ap1=1 & (lfy=0 | lfy=1) & ap2=1 & emf1=1 : 0;
ap1=1 & (lfy=0 | lfy=1) & ap2=0 & emf1=1 : 1;
ap1=0 & (lfy=0 | lfy=1) & emf1=1 : 2;

1 : tfl1;
esac;
--PI
next(pi):=case
lfy=0 & ap3=0 : 0;
lfy=0 & (ap3=1 | ap3=2) & pi=0 : 0;
lfy=0 & ap1=0 & (ap3=1 | ap3=2) & (pi=1 | pi=2) & ag=0 : 0;
lfy=0 & ap1=0 & (ap3=1 | ap3=2) &

(pi=1 | pi=2) & (ag=1 | ag=2) & sep=0 : 0;
lfy=0 & (ap1=1 | ap1=2) & (ap3=1 | ap3=2) &

(pi=1 | pi=2) & sep=0 : 0;
(lfy=1 | lfy=2) & ap3=0 & ag=0 : 0;

292 M. Gheorghiu, A. Gurfinkel, and M. Chechik

(lfy=1 | lfy=2) & ap3=0 & (ag=1 | ag=2) : 1;
(lfy=1 | lfy=2) & (ap3=1 | ap3=2) & pi=0 : 1;
(lfy=1 | lfy=2) & ap1=0 & (ap3=1 | ap3=2) &

(pi=1 | pi=2) & ag=0: 1;
(lfy=1 | lfy=2) & ap1=0 & (ap3=1 | ap3=2) &

(pi=1 | pi=2) & (ag=1 | ag=2) & sep=0 : 1;
(lfy=1 | lfy=2) & (ap1=1 | ap1=2) & (ap3=1 | ap3=2) &

(pi=1 | pi=2)& sep=0 : 1;
ap1=0 & (ap3=1 | ap3=2) &

(pi=1 | pi=2) & (ag=1 | ag=2) & sep=1 : 2;
(ap1=1 | ap1=2) & (ap3=1 | ap3=2) & (pi=1 | pi=2) & sep=1 : 2;

1 : pi;
esac;
--SEP
next(sep):=case
tfl1=0 : 1;
(tfl1=1 | tfl1=2) : 0;

1 : sep;
esac;
--AP3; in mutant3 this is fixed at 0
next(ap3):=case
ag in {1,2} & pi in {1,2} & sep= 1 & ap3 in {1,2} : 2;
ap1 in {1,2} & pi in {1,2} & sep= 1 & ap3 in {1,2} : 2;
lfy in {1,2} & sep= 0 & ufo= 1 : 1;
lfy in {1,2} & ap3= 0 & ufo= 1 : 1;
lfy in {1,2} & pi= 0 & ufo= 1 : 1;
ap1= 0 & lfy in {1,2} & ag= 0 & ufo= 1 : 1;

sep= 0 & ufo= 0 : 0;
ap3= 0 & ufo= 0 : 0;

pi= 0 & ufo= 0 : 0;
ap1= 0 & ag= 0 & ufo= 0 : 0;
lfy= 0 & sep= 0 : 0;
lfy= 0 & ap3= 0 : 0;
lfy= 0 & pi= 0 : 0;
ap1= 0 & lfy= & ag= 0 : 0;

1 : ap3;
esac;
--UFO no change
next(ufo):=ufo;
--LUG no change; in mutant2 this is fixed at 0
next(lug):=lug;
--CLF no change
next(clf):=clf;
--

Qualitative Probabilistic Modelling in Event-B�

Stefan Hallerstede and Thai Son Hoang

ETH Zurich
Switzerland

{halstefa,htson}@inf.ethz.ch

Abstract. Event-B is a notation and method for discrete systems mod-
elling by refinement. We introduce a small but very useful construction:
qualitative probabilistic choice. It extends the expressiveness of Event-B
allowing us to prove properties of systems that could not be formalised
in Event-B before. We demonstrate this by means of a small example,
part of a larger Event-B development that could not be fully proved
before. An important feature of the introduced construction is that it
does not complicate the existing Event-B notation or method, and can
be explained without referring to the underlying more complicated prob-
abilistic theory. The necessary theory [18] itself is briefly outlined in this
article to justify the soundness of the proof obligations given. We also
give a short account of alternative constructions that we explored, and
rejected.

1 Introduction

We consider modelling of software systems and more generally of complex sys-
tems to be an important development phase. We also believe that more complex
models can only be written when the method of stepwise refinement [9] is used.
Formal notation is indispensable in such a modelling activity. It provides the
foundation on which building models can be carried out. Simply writing a for-
mal text is insufficient, though, to achieve a model of high quality. The only
serious way to analyse a model is to reason about it, proving in a mathemati-
cally rigorous way that all required properties are satisfied.

Event-B [7] is a formalism and method for discrete systems modelling. It has
been developed from the B-Method [1] using many ideas of Action Systems [8].
The semantics of an Event-B model is characterised by proof obligations. In fact,
proof obligations have a two-fold purpose. On the one hand, they show that
a model is sound with respect to some behavioural semantics. On the other
hand, they serve to verify properties of the model. This goes so far that we
only focus on the proof obligations and do not present a behavioural semantics
at all. This approach permits us to use the same proof obligations for very
� This research was carried out as part of the EU research project IST

511599 RODIN (Rigorous Open Development Environment for Complex Systems)
http://rodin.cs.ncl.ac.uk.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 293–312, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

294 S. Hallerstede and T.S. Hoang

different modelling domains, e.g., reactive, distributed and concurrent systems
[5], sequential programs [3], electronic circuits [11], or mixed designs [2], not
being constrained to semantics tailored to a particular domain. Event-B is a
calculus for modelling that is independent of the various models of computation.

The standard reasoning in Event-B is based on (demonic) nondeterminism
which is usually sufficient for systems modelling. However, some system be-
haviours are more appropriately modelled probabilistically. Event-B is exten-
sible, that is, it can be extended when more expressiveness is needed. In this
article, we focus on extending Event-B with means for qualitative modelling of
probability. This extension grew out of the need for “almost-certain termination”
properties used in some communication protocols, e.g. [5]. We use it to demon-
strate how Event-B can be extended and discuss what problems we encountered.
The extension has been made so that the impact on the notation is minimal, and
the resulting proof obligations are as simple as possible. We also discuss some
alternatives that may appear attractive to achieve convenient notation: they
would lead, however, to more complicated proof obligations. We consider this a
serious drawback because we think reasoning is the main purpose of modelling.

Some probabilistic models can only be expressed in terms of numerical mea-
sures, e.g., certain reliability problems [21, Chapter 4.4], or performance prob-
lems [13]. Yet, there is also a large class of problems where the exact numerical
measures are not of importance, e.g., when modelling communication protocols
[16], or human behaviour [2]. When modelling these, stating exact probabilities
would be over-specific: all we need is a termination property making use of a
strong local fairness property associated with probabilistic choice [14]. In this
article we restrict our attention to this qualitative aspect of probability.

In Event-B, simplicity and efficiency are favoured over completeness and gen-
erality [7]. Generality comes at the price of intricate reasoning and, in particular,
much reduced possibilities for automated tool support [4]. The available theory
[21] for probabilistic reasoning about models is very rich but associated with in-
tricate reasoning. So, a probabilistic Event-B will have to use a simplified theory.
Our requirements on probabilistic Event-B are threefold:

(i) it should be simple, i.e., easy to understand;
(ii) it should be useful, i.e., solve a commonly encountered class of problems;
(iii) and it should permit efficient tool support.

Simplicity of the notation is very important because an Event-B model is un-
derstood as a means of reasoning and communication: we must not have doubts
about the meaning of a model. We also require that we have good reason for
the extension: if we would not know of any problem that we could solve –only
or better– by means of the extended method, there would be little point in
extending Event-B.

Overview. The paper is structured as follows. In Section 2, we give an overview of
the Event-B modelling notation, along with the proof obligations that give mean-
ings to Event-B constructs. In Section 3, we consider a probabilistic extension of
Event-B for almost-certain convergence. In particular, Section 3.1 discusses the

Qualitative Probabilistic Modelling in Event-B 295

necessary additions to the notation and the proof obligations in order to accom-
modate the extension, and in Section 3.2, we consider the rejected alternatives.
An example of a communication protocol is given in Section 4 to illustrate our
approach. In Section 5, we give justifications of our proof obligations. Finally, a
summary and some conclusions are presented in Section 6.

2 The Event-B Modelling Notation

Event-B [7], unlike classical B [1], does not have a concrete syntax [12]. Still,
we present the basic notation for Event-B using some syntax. We proceed like
this to improve legibility and help the reader remember the different constructs
of Event-B. The syntax should be understood as a convention for presenting
Event-B models in textual form rather than defining a language.

Event-B models are described in terms of the two basic constructs: contexts
and machines. Contexts contain the static part of a model whereas machines
contain the dynamic part. Contexts may contain carrier sets, constants, axioms,
where carrier sets are similar to types [7]. In this article, we simply assume that
there is some context and do not mention it explicitly. Machines are presented
in Section 2.1, and machine refinement in Section 2.2.

2.1 Machines

Machines provide behavioural properties of Event-B models. Machines may con-
tain variables, invariants, theorems, events, and variants. Variables v define
the state of a machine. They are constrained by invariants I(v). Possible state
changes are described by means of events. Each event is composed of a guard
G(t, v) and an action S(t, v), where t are local variables the event may contain.
The guard states the necessary condition under which an event may occur, and
the action describes how the state variables evolve when the event occurs. An
event can be represented by the term

any t where G(t, v) then S(t, v) end. (1)

The short form
when G(v) then S(v) end (2)

is used if event e does not have local variables, and the form

begin S(v) end (3)

if in addition the guard equals true. A dedicated event of the form (3) is used
for initialisation. The action of an event is composed of several assignments of
the form

x := E(t, v) (4)
x :∈ E(t, v) (5)
x :| Q(t, v, x′) , (6)

296 S. Hallerstede and T.S. Hoang

where x are some variables, E(t, v) expressions, and Q(t, v, x′) a predicate. As-
signment form (4) is deterministic, the other two forms are nondeterministic.
Form (4) assigns x to an element of a set, and form (5) assigns to x a value
satisfying a predicate. The effect of each assignment can also be described by a
before-after predicate:

BA
(
x := E(t, v)

)
=̂ x′ = E(t, v) (7)

BA
(
x :∈ E(t, v)

)
=̂ x′ ∈ E(t, v) (8)

BA
(
x :| Q(t, v, x′)

)
=̂ Q(t, v, x′) . (9)

A before-after predicate describes the relationship between the state just be-
fore an assignment has occurred (represented by unprimed variable names x)
and the state just after the assignment has occurred (represented by primed
variable names x′). All assignments of an action S(t, v) occur simultaneously
which is expressed by conjoining their before-after predicates, yielding a pred-
icate A(t, v, x′). Variables y that do not appear on the left-hand side of an
assignment of an action are not changed by the action. Formally, this is achieved
by conjoining A(t, v, x′) with y′ = y, yielding the before-after predicate of the
action:

BA
(
S(t, v)

)
=̂ A(t, v, x′) ∧ y′ = y . (10)

In proof obligations we represent the before-after predicate BA
(
S(t, v)

)
of an

action S(t, v) directly by the predicate

S(t, v, v′) .

Proof obligations serve to verify certain properties of a machine. All proof
obligations in this article are presented in the form of sequents: “antecedent” .
“succedent”.

For each event of a machine, feasibility must be proved:

I(v)
G(t, v)

.
(∃v′ · S(t, v, v′)) .

(11)

By proving feasibility, we achieve that S(t, v, v′) provides an after state whenever
G(t, v) holds. This means that the guard indeed represents the enabling condition
of the event.

Invariants are supposed to hold whenever variable values change. Obviously,
this does not hold a priori for any combination of events and invariants and,
thus, needs to be proved. The corresponding proof obligation is called invariant
preservation:

I(v)
G(t, v)
S(t, v, v′)

.
I(v′) .

(12)

Qualitative Probabilistic Modelling in Event-B 297

Similar proof obligations are associated with the initialisation event of a machine.
The only difference is that the invariant does not appear in the antecedent of
the proof obligations (11) and (12). For brevity, we do not treat initialisation
differently from ordinary events of a machine. The required modifications of the
concerned proof obligations are obvious.

2.2 Machine Refinement

Machine refinement provides a means to introduce more details about the dy-
namic properties of a model [7]. For more on the well-known theory of refinement,
we refer to the Action System formalism that has inspired the development of
Event-B [8]. We present some important proof obligations for machine refine-
ment. As mentioned before, the user of Event-B is not presented with a be-
havioural model but only with proof obligations. The proof obligations describe
the semantics of Event-B models.

A machine CM can refine at most one other machine AM . We call AM the
abstract machine and CM a concrete machine. The state of the abstract machine
is related to the state of the concrete machine by a glueing invariant J(v, w),
where v are the variables of the abstract machine and w the variables of the
concrete machine.

Each event ea of the abstract machine is refined by one or more concrete
events ec. Let abstract event ea and concrete event ec be:

ea =̂ any t where G(t, v) then S(t, v) end (13)
ec =̂ any u where H(u,w) then T (u,w) end . (14)

Somewhat simplified, we can say that ec refines ea if the guard of ec is stronger
than the guard of ea, and the glueing invariant J(v, w) establishes a simulation
of ec by ea:

I(v)
J(v, w)
H(u,w)
T(u,w,w′)

.
(∃t, v′ ·G(t, v) ∧ S(t, v, v′) ∧ J(v′, w′)) .

(15)

In the course of refinement, often new events ec are introduced into a model.
New events must be proved to refine the implicit abstract event skip that does
nothing. Moreover, it may be proved that new events do not collectively diverge
by proving that a variant V (w) is bounded below:

I(v)
J(v, w)
H(u,w)

.
V (w) ∈ N ,

(16)

298 S. Hallerstede and T.S. Hoang

and is decreased by each new event. We refer to the corresponding proof obliga-
tion as progress :

I(v)
J(v, w)
H(u,w)
T(u,w,w′)

.
V (w′) < V (w) ,

(17)

where we assume that the variant is an integer expression. It can be more elab-
orate [7] but this is not relevant here. We call events that satisfy (16) and (17)
convergent.

3 Qualitative Probabilistic Event-B

The purpose of qualitative probabilistic reasoning is to provide the concept of
almost-certain convergence [14,18]1. Similarly to [14,18] qualitative probabilistic
reasoning is introduced into Event-B by means of the qualitative probabilistic
choice2:

S ⊕ T ,

where S or T are chosen with some positive probability (see Section 5). The
probabilistic extension should not depart from the existing structure of Event-
B machines. Hence, we only consider introducing probabilistic choice in places
where we already have nondeterministic choice. In Event-B nondeterministic
choice appears in three places:

(i) choice among different events,
(ii) choice of local variables of events,
(iii) nondeterministic assignments.

In each of these, we could also use probabilistic choice. We present our favoured
solution based on (iii) in Section 3.1, and discuss the alternatives based on (i)
and (ii) in Section 3.2.

3.1 Almost Certain Convergence in Event-B

In this section, we introduce step by step the proof obligations for almost-certain
convergence in Event-B. Although we treat probability on the level of assign-
ments, we actually do not mix probabilistic assignments and nondeterministic
assignments in the same event. This saves us from having to define the meaning
of their simultaneous joint effect. Hence, we say the action of an event is either

1 The authors of [14,18] use the term “almost-certain termination”.
2 We do not use the term “abstract probabilistic choice” to avoid clashes with other

refinement terminology, e.g., “concrete abstract probabilistic choice”.

Qualitative Probabilistic Modelling in Event-B 299

probabilistic or nondeterministic. Still, for better readability, we introduce some
notation for qualitative probabilistic assignments corresponding to (5):

x ⊕| Q(t, v, x′) . (18)

With respect to invariant preservation a probabilistic action behaves identi-
cally to a nondeterministic action, i.e., demonically (see Section 5). However, it
behaves angelically with respect to progress. We can rephrase the progress proof
obligation (17) as follows:

I(v)
J(v, w)
H(u,w)

.
(∀w′ ·T(u,w,w′) ⇒ V (w′) < V (w)) ,

i.e. the action must decrease the variant V (w). The corresponding proof obliga-
tion for a new event with a probabilistic action follows from the angelic inter-
pretation of the action. This means it may decrease the variant V (w):

I(v)
J(v, w)
H(u,w)

.
(∃w′ ·T(u,w,w′) ∧ V (w′) < V (w)) .

(19)

Note, that proof obligation (19) subsumes feasibility (11).
For convergence of an event, (16) and (17) are sufficient. For almost-certain

convergence of an event, on the other hand, the corresponding proof obligations
(16) and (19) are not sufficient. An upper bound U(w) is required that dominates
the variant V (w):

I(v)
J(v, w)
H(u,w)

.
V (w) ≤ U(w) ,

(20)

for all new events.
Figure 1 shows the evolution of the variant V (w) and the upper bound U(w) in

a concrete machine for a new nondeterministic event nd and a new probabilistic
event pr: event nd must decrease the variant V (w) whereas pr may decrease
it. However, the possible variation of V (w) by event pr is limited below by the
constant 0 –proved by means of (16)– and above by U(w). The upper bound
U(w) itself is bound below by 0 as a consequence of (16) and (20). Given that
U(w) is constant or, at least, not increasing, this is sufficient for almost-certain
convergence of nd and pr. For all new events of the concrete machine we have
to prove:

I(v)
J(v, w)
H(u,w)
T(u,w,w′)

.
U(w′) ≤ U(w) ,

(21)

300 S. Hallerstede and T.S. Hoang

0

U(w)

V(w)

pr prndnd

Fig. 1. Almost-certain convergence

Note, that proof obligation (21) is based on the demonic interpretation of the
actions of all new events, i.e. all new events must not increase the upper bound.
Hence, the following fact makes the difference to “certain” convergence: new
events with probabilistic actions may decrease the variant but must not increase
the upper bound.

The infimum probability associated with the probabilistic action T(u,w,w′)
must be greater than zero [18]. Using qualitative probabilistic assignment (18),
we can only achieve this by requiring finiteness of the possible choices for w′ of
the probabilistic action T(u,w,w′):

I(v)
J(v, w)
H(u,w)

.
finite({w′ | T(u,w,w′)}) .

(22)

Events with probabilistic actions that satisfy (19) to (22) are called almost-
certainly convergent. Note, that almost-certain convergence also imposes proof
obligations (20) and (21) on new nondeterministic events, and that if we have new
events with nondeterministic actions and new events with probabilistic actions,
we prove their joint almost-certain convergence.

3.2 The Rejected Alternatives

In order to see the advantages of the approach to almost-certain convergence
presented in the Section 3.1, we discuss the two alternatives: probabilistic choice
among different events or probabilistic choice of local variables of events. We
begin with the discussion with the latter.

It seems natural to introduce probabilistic choice at the level of local variables,
say:

ec =̂ prob any u where H(u,w) then T (u,w) end

However, treating probabilistic choice on this level would lead to unnecessarily
complicated proof obligations while our aim is to keep them simple. In particular,

Qualitative Probabilistic Modelling in Event-B 301

probabilistic progress proof obligations would be difficult compared to (19):

I(v)
J(v, w)

.
(∃u ·H(u,w) ∧ (∀w′ ·T(u,w,w′) ⇒ V (w′) < V (w))) .

(23)

We would have to think about two quantifiers, whereas in (19) only one existen-
tial quantification needs to be discarded.

Probabilistic choice among different events has been discussed in [20]. This
approach does only require little modification to the Event-B notation. It requires
the introduction of additional variables to group probabilistic choices, say:

ec1 =̂ prob a any u1 where H1(u1, w) then T1(u1, w) end

ec2 =̂ prob a any u2 where H2(u2, w) then T2(u2, w) end ,

denoting the abstract probabilistic choice ec1 ⊕ ec2. For probabilistic progress
we would obtain a proof obligation with two disjuncts (i = 1, 2):

(∃ui ·Hi(ui, w) ∧ (∀w′ · Ti(ui, w, w
′) ⇒ V (w′) < V (w)))

in its succedent.
More problems may appear when trying to specify more general probabilistic

choices, say, between n components where n is a positive number, e.g., in the
dining philosophers [21, Chapter 3]. We also need to determine the order in which
probabilistic choices and nondeterministic choices are resolved: there are still
nondeterministic choices among events and of local variables. Given the intricate
relationship of probabilistic and nondeterministic choice this could potentially
lead to models very difficult to comprehend. Then perhaps, the best would be to
restrict the body of the event to being entirely deterministic. It appears that we
would have to make decisions that may seem arbitrary or introduce restrictions
that make the notation more complex.

3.3 Preliminary Study of Refinement

As mentioned in the introduction, we consider refinement to be crucial in the
development of complex systems. A theory of probabilistic refinement is available
[21], but it is intricate too. Hence, to use it with Event-B, we need to simplify
it first. We do not want to complicate the reasoning associated with Event-B
refinement.

In qualitative probabilistic Event-B we have to address refinement of events
with non-deterministic actions and events with probabilistic actions. As usual,
it should be possible to refine a nondeterministic action by a probabilistic action
[19]. Concerning refinement of events with probabilistic actions, we have two
major possibilities: either we permit probabilistic choice to be refined or we do
not permit it.

The second alternative appears attractive because we could reason about
probabilistic models with minimal extra effort. We would have to learn less

302 S. Hallerstede and T.S. Hoang

proof obligations, and we could use standard Event-B refinement. We could
ignore probability most of the time, avoiding data-refinement of probabilistic
actions, for instance. Probabilistic proofs would only occur where they are nec-
essary, not complicating entire developments. To achieve this, some techniques
presented in [6] could be used to delay probabilistic proofs. Only at a very late
stage probabilistic concerns would enter the scene, at a stage where refinement
of probabilistic actions would no longer be necessary.

By contrast, if we need to refine probabilistic actions, we have to take into ac-
count the angelic interpretation for probabilistic progress (19). We are uncertain
whether refinement of probabilistic actions is needed in practice, or whether the
techniques discussed in the preceding paragraph would suffice. This remains to
be investigated. Which techniques are more appropriate only (more) experience
will show.

4 Example: Contention Resolution in the Firewire
Protocol

The Contention problem in the Firewire tree identify protocol [16,17] is one
example of a use of probability to break symmetry. The example has been treated
in classical B [14,18]. In this section, we will look at how we can achieve a similar
result in Event-B.

We use the contention problem in the Firewire protocol to demonstrate the
usefulness of qualitative probabilistic modelling in a practical problem [5]. In
our presentation, we do not deal with the full model but focus on almost-certain
convergence which allows us to prove a probabilistic termination property of the
Firewire protocol left open in [5].

In this section, we first give an overview of the Firewire protocol. Then we
give the specification of the contention problem in Event-B. We show the failure
of an attempt to use nondeterministic resolution and how to solve the problem
by the approach proposed in Section 3.1.

4.1 Overview of the Firewire Protocol

Purpose. A set of devices is linked by a network of bidirectional connections.
The network is an acyclic graph with devices as nodes (Figure 2a). The protocol
provides a symmetric and distributed solution for finding a node that will be
the leader of the network in a finite amount of time. All devices run the same
algorithm to find the leader of the network. Figure 2b shows a possible state
of the network of Figure 2a after a leader has been elected. The Firewire tree
identify protocol for achieving this is described below.

Protocol. Any node with only one connection can send the message “req” via
that connection requesting the neighbouring node to be leader. Also, any node
that has already received the message “req” via all its connections except one,
can send the message “req” via that last remaining connection. Message sending

Qualitative Probabilistic Modelling in Event-B 303

(a) Initial state of network

*

(b) State of network after leader
election (leader marked with a “*”)

Fig. 2. Abstraction of leader election protocol

happens distributed and nondeterministically, i.e., there is no supervisory coor-
dination. Eventually, there will be one node that received the message “req” via
all its connections: that node will become the leader of the network. An example
of the initial state and possible final state is shown in Figure 2.

Contention. At the final stage of the protocol, there are two nodes left that are
linked to each other and have not yet sent the message “req”. If both nodes try
to send the message “req” via that (bidirectional) connection, a livelock occurs
where it cannot be decided which node should become the leader. Each node

req

req

Fig. 3. Contention

detects the problem by receiving the message “req” from the node to which
it has just sent the same message. We identify this as the contention problem
illustrated in Figure 3.

Fortunately, there exists a probabilistic protocol to resolve the contention
within finite time; this is proved in Event-B by means of almost-certain con-
vergence in Section 4.4 below. Before it is proved, we present the protocol and
show that (demonic) nondeterminism is unsuitable to model the probabilistic
behaviour. The protocol works as follows:

Each node independently chooses with the same non-zero probability, either
to send the message after a short delay or after a long delay (the assumption
for the long delay being that it is long enough for the message to be transferred
from one node to another). Eventually, it is “almost certain” that one of them
will choose to send the message after a short delay, while the other node will
choose to send the message after a long delay. The message that was sent after
a short delay will then be received before the other is sent (according to the
assumption). An example for solving contention can be seen in Figure 4, where
one process has chosen to send a message after a short delay and the other after
a long delay.

304 S. Hallerstede and T.S. Hoang

req

(a) Message sent after short wait is
received, the other message not sent

*

(b) State after contention resolution
(leader marked with a “*”)

Fig. 4. Probabilistic contention resolution

4.2 Event-B Model of the Contention Problem

An Event-B model of the Firewire tree identify protocol has already been de-
veloped in [5]. We do not repeat the model but focus only on the contention
problem that is only partially modelled in [5] leaving the termination prop-
erty of the protocol unproved. In this sense, we complete the model within the
Event-B framework. We take the abstract view of the contention problem only
presenting what is essential. We define a carrier set WAIT containing the two
constants: short and long.

sets: WAIT = {short, long}

Two variables x and y represent the state of the two nodes in contention:
either sending the message after a short or long delay.

variables: x, y
invariants:
x ∈ WAIT
y ∈ WAIT

There is only one event which resolves the contention (in one shot) by assigning
different values to x and y. This only specifies that the problem is to be resolved
but not how.

(abstract_)resolve
when
x = y

then
x, y :| x′ 	= y′

end

4.3 Attempting Nondeterministic Contention Resolution

We attempt to achieve contention resolution by nondeterminism. We will see
why it fails and see better what is gained by probabilistic reasoning. We refine

Qualitative Probabilistic Modelling in Event-B 305

the abstract model, introducing two new variables, namely u and v, in the refine-
ment. They represent the intermediate states of the two nodes during contention
resolution.

variables: x, y, u, v
invariants:
u ∈ WAIT
v ∈ WAIT

A new event draw models (nondeterministically) the effect of randomly choos-
ing for both of the two nodes either sending messages after a long or a short
delay. The new event is enabled while the values of u and v are the same. It
draws new values until they are different.

Event resolve has an additional guard u 	= v (compared to the initial model
of Section 4.2) indicating that two different delay times u and v have been
successfully drawn. In this case, x and y will be assigned to u and v, respectively,
and the contention is resolved.

draw
when
u = v

then
u :∈ WAIT
v :∈ WAIT

end

(concrete_)resolve
when
u 	= v
x = y

then
x, y := u, v

end

The concrete event resolve refines the abstract event resolve because the con-
crete event contains the guard u 	= v. We obtain the following proof obligation,
see (15), that is trivially discharged:

x′ = u
y′ = v
u 	= v

.
x′ 	= y′ .

Failure of Demonic Nondeterminism. We are left to prove that the new
event draw does not take control of the system forever. However, we cannot state
a variant that would satisfy proof obligation (17). The problem is that the new
event draw may behave like skip, doing nothing: the new event draw can be
always enabled: the nondeterministic choice in event draw can always set u and
v to their old values leaving draw always enabled. Using nondeterminism, we
stuck and the termination property of the protocol cannot be proved.

306 S. Hallerstede and T.S. Hoang

4.4 Probabilistic Contention Resolution

Probabilistic choice (18) is appropriate to model contention resolution and prove
(almost-certain) termination of the protocol, thus, fully solving the problem of
contention. Using probabilistic choice, we can model the event draw as follows:

draw
when
u = v

then
u ⊕| u′ ∈WAIT
v ⊕| v′ ∈ WAIT

end

The meaning of the new event draw is that u and v are chosen from the set
WAIT probabilistically. The choices must be proper (see [18]), in other words,
the probability should not be 0 or 1.

Based on the probabilistic draw, we can prove that the event draw converges
almost-certainly. According to Section 3.1, we have to show (19), (20), and (21).
We take as variant the embedded predicate 〈u = v〉, where 〈P 〉 is defined to
have value 1 if P holds and 0 if P does not hold. A suitable upper bound is the
constant 1.

variant: 〈u = v〉
bound: 1

For (21) there is nothing to prove. The proof that the variant is dominated
by the bound (20) follows from the definition of the embedded predicate above:

. . .
.
〈u = v〉 ≤ 1 .

Finally, one has to prove (probabilistic) progress (19). This is where nonde-
terminism failed: we were not able to prove progress by means of (17). We have
to prove that event draw may decrease the variant 〈u = v〉:

u ∈ WAIT
v ∈ WAIT
u = v

.
∃u′, v′ · u′ ∈ WAIT ∧ v′ ∈ WAIT ∧ 〈u′ = v′〉 < 〈u = v〉 .

This is easy: we instantiate u′ to short and v′ to long, yielding for the left hand
side of the inequation

〈u′ = v′〉 = 〈long = short〉 = 0

Qualitative Probabilistic Modelling in Event-B 307

by definition of the embedded predicate. Also, from u = v, we infer for the right
hand side

〈u = v〉 = 1 .

Hence, the claim follows from 0 < 1. Note, that the possible instantiations for
u′ and v′ just correspond to the solutions of the contention resolution.

5 Soundness

In this section, we give justifications for the proof obligations of Section 3.1. We
sketch the derivation of the proof obligations from the underlying theory. The
theory is based on predicate and expectation transformers [21]. The gap left to
the relational model used can be bridged by the well-known relationship between
predicate transformers and before-after predicates, see e.g. [1].

The probabilistic reasoning presented in this article is based on qualitative
probabilistic choice ⊕ (see [14, Chapter 3.2]). It is characterised by the following
demonic and angelic distribution laws:

11S ⊕ T 22P =̂ [S]P ∧ [T]P (24)

��S ⊕ T ��P =̂ [S]P ∨ [T]P . (25)

The first law, called demonic distribution, is used when proving invariant preser-
vation and the second, called angelic distribution, is used when proving almost-
certain termination. The above can be easily extended to qualitative probabilistic
choice with multiple branches

S1 ⊕ . . . ⊕ Sn .

It is interpreted similarly to qualitative probabilistic choice: it is a probabilistic
choice between substitutions S1, . . . , Sn where the probability of each branch
is “proper”. The definition of “proper” can be found in [14, Chapter 3.2]. Note,
that it is essential that the choice is between a finite number of branches. The
reason for this is to get “definite” probabilistic predicate transformers (see [18,
Definition 3]).

In Section 3.1, we introduce the notion of probabilistic choice x ⊕| P (x, x′),
which is interpreted similarly to the qualitative multiple probabilistic choice.
However, we use the choice between all possible values x′ satisfying P (x, x′).
To achieve definiteness, we require finite({x′ | P (x, x′)}). The corresponding
demonic and angelic distribution laws are:

11x ⊕| P (x, x′)22Q(x) =̂ (∀x′ · P (x, x′) ⇒ Q(x′)) (26)

��x ⊕| P (x, x′)��Q(x) =̂ (∃x′ · P (x, x′) ∧ Q(x′)) (27)

308 S. Hallerstede and T.S. Hoang

Almost-certain convergence. We derive almost certain convergence for
Event-B using the standard model of a generalised loop [10,21] as a basis. For
ease of presentation we consider a simple Event-B machine with two new events
of the form

when G(v) then S(v) end

when H(v) then T (v) end ,

where S(v) is probabilistic and T (v) is nondeterministic (and non-probabilistic).
The loop consisting of the new events is defined by:

loop =̂ do
G(v) =⇒ S(v)

[]
H(v) =⇒ T (v)

end

We state without proof the zero-one law for probabilistic loops (Lemma 2 in
[14]) adapted to our needs:

Lemma 1. Let I(v) be the invariant of the construct. Let δ be a number strictly
greater than zero. If we have that

I(v) ⇒ 11G(v) =⇒ S(v) [] H(v) =⇒ T (v)22 I , (28)

and
δ × 〈I〉 � [loop]〈true〉 (29)

both hold, then in fact 〈I〉 ⇒ [loop]〈I〉 .

Since 11·22 distributes through [], the first condition (28) can be decomposed as
follows:

I(v) ⇒ 11G(v) =⇒ S(v) [] H(v) =⇒ T (v)22 I(v)

⇔ Distribution of ·!! through []

I(v) ⇒ (11G(v) =⇒ S(v)22 I(v) ∧ 11H(v) =⇒ T (v)22 I(v))

⇔ Distribution of ·!! through =⇒

I(v) ⇒ (G(v) ⇒ 11S(v)22 I(v) ∧ H(v) ⇒ 11T (v)22 I(v))

⇔ Logic

(I(v) ∧G(v) ⇒ 11S(v)22 I(v)) ∧ (I(v) ∧H(v) ⇒ 11T (v)22 I(v))

⇔ T (v) is standard

(I(v) ∧G(v) ⇒ 11S(v)22 I(v)) ∧ (I(v) ∧H(v) ⇒ [T (v)]I(v))

Qualitative Probabilistic Modelling in Event-B 309

From this calculation, we can see that the standard simulation proof obligation
(15) applies to events with nondeterministic and probabilistic actions. Proba-
bilistic actions are interpreted demonically using (26). The need for definiteness
stems from condition (29). With the precautions we have taken, the whole con-
struct loop is definite.

Probabilistic Progress. For the second condition (29) in Lemma 1, we intro-
duce the notion of variant. Let V (v) and U(v) be two natural number expressions
over the state v. It can be proved that, as a consequence of Lemma 5 in [14],
condition (29) is equivalent to the following conditions (30) to (32):

I(v) ∧ (G(v) ∨H(v))
⇒

V (v) ≤ U(v) ,
(30)

I(v) ∧ V (v) = N
⇒

��G(v) =⇒ S(v) [] H(v) =⇒ T (v)�� (V (v) < N) ,
(31)

I(v) ∧ U(v) = N
⇒

��G(v) =⇒ S(v) [] H(v) =⇒ T (v)�� (U(v) ≤ N) ,
(32)

where N is a logical constant.
The condition (30) can be decomposed as follows:

I(v) ∧ (G(v) ∨H(v)) ⇒ V (v) ≤ U(v)
⇔ Logic

(I(v) ∧ G(v) ⇒ V (v) ≤ U(v)) ∧ (I(v) ∧ H(v) ⇒ V (v) ≤ U(v))

The two conjuncts in the last line correspond to proof obligation (20). It must be
proved that whenever a new event, nondeterministic or probabilistic, is enabled,
the variant V (v) must be dominated by the upper bound U(v).

Furthermore, using that ��·�� distributes through [], condition (31) can be de-
composed as follows:

I(v) ∧ V (v) = N
⇒

��G(v) =⇒ S(v) [] H(v) =⇒ T (v)�� (V (v) < N)

⇔ Distribution of ""·## through []

I(v) ∧ V (v) = N
⇒

(��G(v) =⇒ S(v)�� (V (v) < N) ∧ ��H(v) =⇒ T (v)�� (V (v) < N))

⇔ Distribution of ""·## through =⇒

310 S. Hallerstede and T.S. Hoang

I(v) ∧ V (v) = N
⇒

(G(v) ⇒ ��S(v)�� (V (v) < N) ∧ H(v) ⇒ ��T (v)�� (V (v) < N))

⇔ Logic

(I(v) ∧ V (v) = N ∧ G(v) ⇒ ��S(v)�� (V (v) < N))
∧

(I(v) ∧ V (v) = N ∧ H(v) ⇒ ��T (v)�� (V (v) < N))

⇔ T (v) is standard

(I(v) ∧ V (v) = N ∧ G(v) ⇒ ��S(v)�� (V (v) < N))
∧

(I(v) ∧ V (v) = N ∧ H(v) ⇒ [T (v)](V (v) < N))

The above reasoning yields for the event with nondeterministic action the
progress proof obligation (17). For the event with probabilistic action, the action
S(v) is interpreted angelically, yielding the probabilistic progress proof obliga-
tion (19). The derivation of proof obligation (21) from condition (32) proceeds
similarly.

6 Conclusion

The method of qualitative probabilistic reasoning in Event-B that we propose
comes at very little cost of extra proof effort. The introduced concept of almost-
certain convergence is easy to explain, and useful for common termination proofs
based on probabilistic system behaviour. The method preserves the simplicity
of Event-B proof obligations only requiring a modest extension to existing proof
obligations. Furthermore, it is not necessary to make some sort of syntactic
extension. We believe that this is an important advantage. Almost-certain con-
vergence is reduced to a problem of proof. The modelling style of Event-B is
not touched. We plan to implement the extension in the RODIN platform for
Event-B [4].

We have not introduced concrete probabilities, see e.g. [21]. We believe that
the qualitative approach already brings many benefits without the extra com-
plication of numerical probabilistic reasoning. In most cases where only conver-
gence is needed, specifying probabilities could be regarded as over-specification
(at the cost of much more difficult proofs). Having said this, we do not dispute
the usefulness of numerical probabilistic derivations. Note, that in that context
the method we have presented in this article still applies – but some additional
proof obligations would be needed [15]. We intend to work on such extensions
to Event-B when we have more experience with the associated modelling in
Event-B.

Note, that the formalisation of qualitative probabilistic choice we have chosen
reflects closely the structure of Markov decision processes [23]. Hence, it should
be possible to use some body of theory from this area with only little adaptation.

Qualitative Probabilistic Modelling in Event-B 311

In particular, our approach should be open to use techniques of performance
analysis used with Markov decision processes [13].

We have briefly discussed refinement in the context of qualitative probabilis-
tic choice. It is not clear yet whether Event-B refinement should be extended
or whether the present theory is sufficient. Future extensions concerning refine-
ment of qualitative probabilistic choice should be defined to offer an alternative
to existing techniques but not replace them. We think the Event-B technique
of using anticipated events is very attractive because it allows us reason in a
standard (non-probabilistic) way as much as possible.

Acknowledgement

We want to thank Jean-Raymond Abrial and Carroll Morgan for the discussions
about this article, and suggestions for some improvements.

References

1. Abrial, J.-R. (ed.): The B-Book: Assigning Programs to Meanings. Cambridge
University Press, Cambridge (1996)

2. Abrial, J.-R.: Event driven system construction (1999)
3. Abrial, J.-R.: Event based sequential program development: Application to con-

structing a pointer program. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME
2003. LNCS, vol. 2805, pp. 51–74. Springer, Heidelberg (2003)

4. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
588–605. Springer, Heidelberg (2006)

5. Abrial, J.-R., Cansell, D., Méry, D.: A mechanically proved and incremental devel-
opment of IEEE 1394 tree identify protocol. Formal Aspects of Computing 14(3),
215–227 (2003)

6. Abrial, J.-R., Cansell, D., Méry, D.: Refinement and Reachability in Event B.
In: Treharne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS,
vol. 3455, pp. 222–241. Springer, Heidelberg (2005)

7. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition and Instantiation of
Discrete Models: Application to Event-B. Fundamentae Informatica, vol. 77(1-2)
(2007)

8. Back, R.-J.: Refinement Calculus II: Parallel and Reactive Programs. In: de Bakker,
J.W., de Roever, W.-P., Rozenberg, G. (eds.) Stepwise Refinement of Distributed
Systems. LNCS, vol. 430, pp. 67–93. Springer, Heidelberg (1990)

9. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer, Heidelberg (1998)

10. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ
(1976)

11. Hallerstede, S.: Parallel hardware design in B. In: Bert, D., Bowen, J.P., King, S.,
Waldén, M.A. (eds.) ZB 2003. LNCS, vol. 2651, pp. 101–102. Springer, Heidelberg
(2003)

12. Hallerstede, S.: Justifications for the Event-B Modelling Notation. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 49–63. Springer, Heidelberg
(2006)

312 S. Hallerstede and T.S. Hoang

13. Hallerstede, S., Butler, M.J.: Performance analysis of probabilistic action systems.
Formal Aspects of Computing 16(4), 313–331 (2004)

14. Hoang, T.S.: The Development of a Probabilistic B-Method and a Supporting
Toolkit. PhD thesis, School of Computer Science and Engineering — The Univer-
sity of New South Wales (July 2005)

15. Hoang, T.S., Jin, Z., Robinson, K., McIver, A., Morgan, C.: Probabilistic Invariants
for Probabilistic Machines. In: Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.)
ZB 2003. LNCS, vol. 2651, pp. 240–259. Springer, Heidelberg (2003)

16. IEEE. IEEE Standard for a High Performance Serial Bus. Std 1394-1995 (1995)
17. IEEE. IEEE Standard for a High Performance Serial Bus (supplement). Std 1394a-

2000 (2000)
18. McIver, A., Morgan, C., Hoang, T.S.: Probabilistic termination in B. In: Bert, D.,

Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, pp. 216–239.
Springer, Heidelberg (2003)

19. Morgan, C.: The Generalised Substitution Language Extended to Probabilistic
Programs. In: Bert, D. (ed.) B 1998. LNCS, vol. 1393, Springer, Heidelberg (1998)
Also available at [22, B98]

20. Morgan, C., Hoang, T.S., Abrial, J.-R.: The challenge of probabilistic event B -
extended abstract. In: Treharne, H., King, S., Henson, M.C., Schneider, S.A. (eds.)
ZB 2005. LNCS, vol. 3455, pp. 162–171. Springer, Heidelberg (2005)

21. Morgan, C., McIver, A.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, Heidelberg (2005)

22. PSG. Probabilistic Systems Group: Collected Reports. At,
http://web.comlab.ox.ac.uk/oucl/research/areas/probs/bibliography.html

23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience, New York (1994)

http://web.comlab.ox.ac.uk/oucl/research/areas/probs/bibliography.html

Verifying Smart Card Applications: An ASM

Approach�

Dominik Haneberg, Holger Grandy, Wolfgang Reif, and Gerhard Schellhorn

Lehrstuhl für Softwaretechnik und Programmiersprachen
Institut für Informatik, Universität Augsburg

86135 Augsburg Germany
{haneberg,grandy,reif,schellhorn}@informatik.uni-augsburg.de

Abstract. We present Prosecco
1, a formal model for security proto-

cols of smart card applications, based on Abstract State Machines (ASM)
[BS03],[Gur95], and a suitable method for verifying security properties
of such protocols. The main part of this article describes the structure
of the protocol ASM and all its relevant parts. Our modeling technique
enables an attacker model exactly tailored to the application, instead of
only an attacker similar to the Dolev-Yao model. We also introduce a
proof technique for security properties of the protocols. Properties are
proved in the KIV system using symbolic execution and invariants. Fur-
thermore we describe a graphical notation based on UML diagrams that
allows to specify the important parts of the application in a simple way.

Our formal approach is exemplified with a small e-commerce applica-
tion. We use an electronic wallet to demonstrate the ASM-based protocol
model and we also show what the proof obligations of some of the security
properties look like.

1 Introduction

Smart cards are computers fitting in a wallet. They store information and in-
dependently execute specific programs. Their most exceptional characteristic is
the fact that they are tamper-proof. This predestines them for storage of se-
curity critical information. They are used for digital signatures, access control,
electronic wallets, e-ticketing and so on. Communication is an integral part of
such applications, the transmitted data contains such crucial data as customer
data or electronic business goods. Such data must be protected while in trans-
fer. This is generally done using security protocols. Unfortunately an application
can have very specific security demands that are not fulfilled by standard pro-
tocols. The security properties guaranteed by standard protocols are often just
building blocks for the real security properties of the application, so the need for
application specific security protocols arises.

Unfortunately designing cryptographic protocols is very error-prone, i.e., it is
very hard to design them correctly [AN95]. This article presents Prosecco

1, an
� This work is sponsored by the Deutsche Forschungsgemeinschaft.
1 Protocols for Secure Communication.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 313–332, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

314 D. Haneberg et al.

approach for security protocol verification that uses an Abstract State Machine
(ASM) as application model [Han06]. The ASM comprises the static aspects of
the application, like the internal state of the different types of agents and the
abilities of the attacker, a malicious participant, as well as the dynamic aspects,
i.e., the different protocol steps that the agents can perform. Our approach
offers a flexible attacker model in order to tailor the attacker to the investigated
application. Proofs of security properties are generally invariant or inductive
proofs and performed with the KIV system [BRS+00], our interactive theorem
prover. Verification is simplified through the use of Dynamic Logic (DL) [HKT00]
invariants.

Prosecco is a generic approach which can be used to verify smart card
applications and other e- and m-commerce applications, like electronic ticket-
ing [GHRS06], as well as normal cryptographic protocols. Furthermore, it is not
limited to standard properties like secrecy. A graphical notation to model the sce-
nario and the protocols [HRS02] simplifies the construction of the formal model.
Prosecco’s attacker model is generic and can be tailored to the application, so
we are not limited to the Dolev-Yao attacker [DY81].

Prosecco is part of a larger project, which has the overall goal of a seamless
verification of security protocols, beginning with an abstract protocol model and
ending with verified program code. Implementation correctness is verified using a
refinement of the abstract protocols to Java code and a calculus for proving prop-
erties of Java Card programs [Ste04]. The verification of a Java implementation
of the application complements Prosecco because it establishes a connection
between the abstract description of cryptographic protocols and their actual
implementations. Therefore it is possible to verify the correspondence between
the code deployed on the real smart cards and the abstract model of the secu-
rity protocols. Java Card as the target platform for the smart card applications
was chosen because the Java Card framework is an interesting and forward-
looking platform for the development of smart card applications: it allows the
programming of smart cards in a high-level object-oriented language, it supports
multi-applicative smart cards as wells as field-loadable code, i.e., adding new ap-
plications to already deployed smart cards. In order to correspond to Java, the
Prosecco model contains agent states explicitly.

The paper is organized as follows: Section 2 presents the important concepts of
the application model, Section 3 describes how the agents are modeled. Section
4 introduces the attacker and Section 5 describes the structure of the protocol
ASM. The graphical notation of Prosecco is described in Section 6. In Section
7 the technique is exemplified with a small example. Section 8 discusses related
work and Section 9 concludes.

2 Concepts of the Application Model

The abstract model of the smart card applications combines algebraic specifi-
cations to describe the static aspects of the application with an Abstract State

Verifying Smart Card Applications: An ASM Approach 315

Machine (ASM) which describes the dynamic ones. The algebraic specification
contains fundamental definitions, like data types and the attacker’s abilities.
We use a detailed model of the communication between the agents in order
to be able to specify different attacker types. Within this article we use the
term agent to denote a participant (system or person) of the application under
investigation. Each agent has one or more communication ports. Ports can be
linked by channels and the agents communicate by sending messages (described
by a freely generated data type document similar to msg used in [Pau98]) over
these channels.

The specification framework is generic in the sense that the abilities of the
attacker and the possible communication between the agents are defined ap-
plication specific and therefore they are not fixed, like in other approaches for
cryptographic protocol verification. This is important for the smart card sce-
narios because, depending on the attacker model chosen for the application, the
attacker may eavesdrop into some communication links, e.g., over the Internet,
but he cannot eavesdrop into the communication between smart card and card
reader.

Built on top of the algebraic specification is an ASM describing the protocols.
Every function of a smart card application is realized by a specific communication
protocol (e.g., transfering money between wallets). Each protocol consists of
different steps. All such protocol steps, that may be performed by one type of
agent, are combined into an ASM rule that specifies this agent type’s behavior.
The ASM rules for the different agent types are integrated into the protocol ASM
which selects nondeterministically the next active agent and then performs one
protocol step for the selected agent. Through this nondeterministic selection all
possible traces of the application are represented by this ASM.

More details on the algebraic specification can be found in a Technical Re-
port [HGRS06] as well as in the Web presentation of the case study. The Web
presentation of the specifications, theorems, and proofs can be found as project
E-WALLET in [KIV].

3 Modeling the Agents

Distinct from most other approaches to security protocol verification (for ex-
ample [Pau98]) which model the state of an agent implicitly by the history of
the steps it has performed, we explicitly model the internal state of the agents.
Each agent has its own state described by the fields in which it stores values,
e.g., its private key. Modeling the state of the agents increases the complexity
of the model but is necessary for the future refinement of the abstract proto-
col specifications to real code [GHRS06],[GSR06]. An implementation of course
has a notion of program state and, in order to express a refinement relation,
a corresponding notion of state, like the balance of an electronic purse, seems
natural for the abstract model too. Each agent has a set of fields to store the

316 D. Haneberg et al.

application data, e.g., a cryptographic key. Each field contains data of an alge-
braically specified data type. As usual in ASM the state of the agents is stored
in dynamic functions. This means that for an agent type with fields f1, . . . ,fm of
sorts s1, . . . ,sm the ASM uses dynamic functions f1: agent → s1, . . ., fm: agent
→ sm to store the values of the fields of the agents of this type and the state of
a given agent, agent, of this type is defined by f1(agent),. . . ,fm(agent).2

An agent has a unique type. Each agent (including the attacker) is of one of
the agent types at ∈ agent-types. For example in a smart card based electronic
wallet, there are the smart card itself and different terminals, e.g., a point-of-sale
terminal for paying and a terminal for loading additional money on the card,
as well as the attacker and the owners of the smart cards. For this example we
have agent-types = {attacker, user, terminal, card}.

4 The Attacker

The attacker model describes the assumed threat in the application scenario.
Usually cryptographic protocols are analyzed with a powerful attacker in mind,
which is similar to the Dolev-Yao attacker [DY81]. Nevertheless in certain appli-
cations the Dolev-Yao attacker is not adequate. Sometimes a reduced attacker
model is more realistic. For example, certain high security smart card terminals
are protected against intrusion and prevent the attacker from eavesdropping into
the communication between terminal and smart card. Also sending MMS3 over
the GSM network can be considered secure, because the GSM communication
is encrypted. An attacker cannot learn the contents of the sent MMS by eaves-
dropping. If an application has such specific properties and its security relies on
them, a Dolev-Yao attacker cannot be used for verification (cf., e.g., the Cindy
electronic ticketing application in [GHRS06]). Such an attacker with reduced
abilities can be realized easily in our model, because our model determines indi-
vidually for every communication channel how the attacker can manipulate it.
The reason why one wants to rely on the properties of the used communication
technique is that securing communication against a more powerful attacker usu-
ally leads to more complex protocols with more cryptography used. In the case
of smart card applications this may enforce the usage of more expensive smart
cards. Realistic assumptions about the attacker can crucially influence whether
the application is economically feasible.

The description of the attacker in our ASM model consists of two parts. One
part is an ASM rule describing the possible steps of the attacker (eavesdropping
and sending messages). The second part is contained in the underlying algebraic
specification, which contains formalizations of the attacker’s treatment of mes-
sages (analysis and generation) and an exact determination which operations
the attacker can perform on which communication links.
2 Variables of basic data types are typeset in italic, whereas variables of functional

types are typeset in a sans serif font. Typewriter is used for information given in a
diagram of the graphical notation (cf. Section 6).

3 Multimedia Messaging Service.

Verifying Smart Card Applications: An ASM Approach 317

5 The ASM

This section describes the dynamic aspects of the model, i.e ., how the steps of
the different agent types are described as ASM rules and how the protocol ASM
is built out of these protocol steps.

The protocol ASM describes all steps that may be performed by the agents.
Therefore the repeated execution of this rule, starting in a well-formed initial
state, represents all traces of the application. Because in a given state more than
one agent might be able to perform a step and the rule of the protocol ASM must
guarantee that all these steps could be performed, the ASM nondeterministically
chooses one of the agents which can perform a step and executes the step for
the selected agent:

APPLICATION = choose agent with ready(agent) in STEP

where STEP is the ASM rule that describes the actions of the agents.
After choosing the agent for the next step, the ASM branches into the code

describing the possible actions of the selected agent. Given that Ri is the rule
for agents of type at i (i = 1, . . . , n) this is done by a case-statement4:

STEP =
case agent-type(agent) of
at1: R1

. . .
atn: Rn

5.1 The Attacker

The main actions of the attacker are eavesdropping and sending messages. First
we present the ASM rule that describes how the attacker sends messages to other
agents. The attacker sending documents is captured by this ASM rule:

ATTACKER-SEND =
choose docs with ∀ doc ∈ docs . attacker-known � doc in

choose agent, port with(
∃ (agent, port, remote-agent, remote-port) ∈ connections.

can-write(agent, port, remote-agent, remote-port)
)

in inputs(agent, port) := docs

The infix predicate · � · : set(document) × document determines if a certain
document can be produced using a given attacker’s knowledge5. The ASM-rule
chooses a list of documents (docs) that can be produced by the attacker and
then chooses an existing agent and a port of this agent which can be modified
by the attacker and replaces the list of messages on this port with docs. Ports
4 case-statements are not part of traditional ASM syntax but can easily be defined

as an abbreviation for a sequence of if -statements.
5 docset � doc is equivalent to doc ∈ synth(docset) in [Pau98].

318 D. Haneberg et al.

represent the communication interfaces of the agents. To enable communication
between two agents, a connection must be established between two ports. Each
connection allows bidirectional communication between two agents. Whether
the attacker can modify messages sent over a connection or not is determined by
the predicate can-write(agent1, port1, agent2, port2). This predicate is true iff
communication using a connection between port port1 of agent1 and port port2

of agent2 can be manipulated by the attacker.
Eavesdropping is done by the rule ATTACKER-ADD:

ATTACKER-ADD =
if agent-type(remote-agent) = attacker
∨ can-read(agent, outport, remote-agent, remote-port)

then attacker-known := attacker-known
∫
+ outdoc

ATTACKER-ADD adds a document to the attacker’s knowledge if the attacker
has access to the used communication link and decomposes all documents in
the attacker’s knowledge as far as possible. The modification of the attacker’s
knowledge is expressed by the function

∫
+ : set(document) × document →

set(document). docset
∫
+ doc is the set of documents that results from adding

doc to docset and applying the decomposition rules for documents until a fixpoint
is reached. docset

∫
+ doc is analz(docset ∪ {doc}) in [Pau98]. ATTACKER-

ADD is used in rule SEND (cf. Section 5.2), which the other agents use to send
documents.

5.2 Regular Agents

This section describes how the ASM rules for the normal agents (e.g., the smart
card programs) are built. Every agent has a set of possible protocol steps he may
perform. Each such step is characterized by a pair, consisting of a condition C
and a rule R. The condition C describes under which conditions it is possible to
execute the step, e.g., the received document contains a certain information. In
well-formed protocols the conditions of the different protocol steps of an agent
exclude each other. The rule R consists of a set of assignments, that modify the
state functions for the agent and produce a response. All the protocol steps of
an agent type are put together into an if -statement. Assume the agent of type
at has m possible steps R1, . . . , Rm with corresponding conditions C1, . . . , Cm,
then the rule for this agent type has the following structure:

Rat =
if C1(agent) then R1

. . .
else if Cm(agent) then Rm

SEND

The Ri describe the modifications to the internal state of the agent. This is
done by a sequence of assignments to the state functions. If an agent has fields
f1, . . . ,fn the rules Ri have the following form:

Verifying Smart Card Applications: An ASM Approach 319

Ri =
f1(agent) := . . .
. . .
fn(agent) := . . .
outdoc :=. . .
outport :=. . .

It is not necessary that all fields of an agent are modified in a step, instead it is
also possible that just a subset of all fields of the agent is changed. The variable
outport stores the port that should be used to send the response, outdoc stores
the response document.

At the end of the ASM rule of the regular agents, the rule SEND is used to
transfer the response to its destined receiver. The rule SEND is the following:

SEND =
if (agent, outport, ·, ·) ∈ connections then

choose (agent, outport, remote-agent, remote-port) ∈ connections in
inputs(remote-agent, remote-port) :=

inputs(remote-agent, remote-port) + outdoc
ATTACKER-ADD

SEND selects an active connection, that belongs to outport and puts the gener-
ated document at the end of the list of unprocessed documents of the receiver’s
(remote-agent) input port (remote-port) belonging to the selected connection.
If no appropriate connection exists, the message is lost. SEND is completed by
using ATTACKER-ADD to ensure that the attacker receives the document, if
the attacker can eavesdrop on the connection.

Fig. 1. Class diagram describing the agents of an electronic wallet application

6 Graphical Notation

The full formal model of an application in Prosecco consists of fixed parts, like
the axioms for cryptographic operations and application specific parts, like the
protocols and the attacker’s abilities. The fixed parts are taken from a reusable
library and therefore do not require specification effort, when modeling a new

320 D. Haneberg et al.

application but the application specific parts do. The application specific part
consists of a couple of axioms, describing the communication infrastructure,
i.e., possible communication channels and how the attacker can influence them,
the composition if the agents’ states, and of course a description of the actual
protocols, given as an ASM (cf. Section 5).

Fig. 2. Deployment diagram of the e-wallet application

The modeler should focus on the relevant parts of the application, especially
the protocols. To spare him the necessity to write all axioms by hand and to
develop the ASM from scratch Prosecco offers a graphical notation. The graph-
ical model uses 3 types of UML diagrams [RJB98],[OMG03] to describe the ap-
plication. The formal model is generated via transformation from the diagrams.

A class diagram is used to describe the composition of the internal state of the
different agent types and how the state of an agent is initialized. Figure 1 shows
the class diagram for the electronic wallet case study described in Section 7.
The diagram describes two application specific agent types (indicated by the
stereotype �agent�), card and terminal. The diagram also states that initially
the value of the field value of a card is 0. Generated from the class diagram we
get the dynamic functions to store the agents’ states and an axiom describing
admissible initial states.

The structure of the communication network used by the application is de-
scribed by a deployment diagram. The deployment diagram contains the agents
of the application (including the users and the attackers). Smart card programs
are represented by components contained in a node representing their smart card
(stereotype �SmartCard�). Figure 2 shows the deployment diagram for the elec-
tronic wallet. Communication associations with stereotype �link� describe the
possible communication channels. The deployment diagram in Figure 2 defines 5
channels. The user interface of the terminals is represented by a link between the

Verifying Smart Card Applications: An ASM Approach 321

user node and the terminal node. The link between the terminal node and the
smart card node represents the card reader of the terminal. The links between
the attacker node and the smart card and the terminal nodes represent a part
of the application specific attacker model. The link between the attacker node
and the smart card node states that the attacker can send data to a card, e.g.,
using a PC with card reader. The channel between the attacker and port 1 of the
terminal states that the attacker can use the terminal like a normal customer.
Finally the link between the attacker and port 2 of the terminal states that the
attacker can send data to the card reader of the terminal, e.g., using a smart
card with a malicious smart card program.

Tagged values associated with a link specify which ports of which agent types
can be connected by the communication channel (tag ports) and what the
attacker can do with this channel (tag attacker). The deployment diagram fur-
thermore specifies if there may be multiple instances of an agent type or just a
single one (e.g., the ticket issuing server in an electronic ticketing application).
The transformation extracts the relevant information from the deployment dia-
gram and generates axioms for various predicates describing the communication
network, e.g., for the predicate can-read. In the deployment diagram a channel
into which the attacker can eavesdrop is annotated with ‘read’ as element of
the value of the tag attacker. In Figure 2 there are 2 such annotations: for the
channels between users and terminals and for the channels between terminals
and smart cards. The generated axiom describing which channels the attacker
can eavesdrop into is therefore:

can-read:
can-read(mk-connection(agent 3 port, agent1 3 port1))

↔ user?(agent) ∧ terminal?(agent1) ∧ port1 = 1
∨ terminal?(agent) ∧ port = 2 ∧ card?(agent1) ∧ port1 = 1

The axiom states that the attacker can eavesdrop into a given connection, mk-
connection(agent 3 port, agent1 3 port1), between port port of agent agent and
port port1 of agent agent1 if it is either a connection between a user and the
user interface of the terminal (port 1 of a terminal) or a connection between the
card reader of a terminal (port 2 of a terminal) and the interface of a smart
card (port 1 of a card). There is no reason for the attacker to eavesdrop into the
other 3 types of channels, for he is an endpoint of those channels and therefore
has access to them without eavesdropping.

The protocols used in the application are described with activity diagrams.
Each agent participating in a protocol is modeled by its own swimlane. The ex-
ecution of a protocol run starts at the initial state and follows the control flow
of the activity diagram until the protocol completes successfully or an error is
noticed. The swimlanes can contain branch nodes, representing case distinctions
in the protocol (e.g., signature is good respectively bogus), activity nodes, de-
scribing changes to the internal state of an agent (as sequences of assignments),
and signal sending nodes, which represent the sending of a message to another

322 D. Haneberg et al.

Fig. 3. Activity diagram of the payment protocol

agent. Figure 3 shows the activity diagram specifying the protocol to load addi-
tional money on a smart card of the e-wallet application described in Section 7.

For example the protocol step beginning at the topmost branch node in the
terminal swimlane of Figure 3 leads to the following ASM code, which represents
the branch as an if -statement, the contents of the activity node as a sequence
of assignments, and the signal sending node as fixing of the output (outdoc) and
the port used to send the message (outport):

Verifying Smart Card Applications: An ASM Approach 323

if get-int(indoc.data) ≥ 0 then
last-inst(agent) := pay;
loadpoints(agent) := get-int(indoc.data);
let nonce = [?] in

NEW-NONCE (all-nonces; next-nonce, nonce);
challenge(agent) := nonce

outdoc := commanddoc(pay, challenge(agent) + loadpoints(agent))
outport := 2

else
outdoc := ⊥
outport := 1

NEW-NONCE is a macro which returns a previously unused random number
in the variable nonce. In the positive case of the if -statement the output is a
commanddoc6, otherwise it is an empty document ⊥. The instruction associated
with the command is ‘pay’ and the data part of the command contains the newly
generated nonce (challenge(agent)) and the number of points (loadpoints(agent)).

7 An Electronic Wallet

In this section we illustrate our modeling technique using a small smart card ap-
plication. The application is an electronic wallet similar to the Mondex system,
i.e., a smart card that can store money and be used for payment, for example in a
university cafeteria or at copying machines. The smart card program (cardlet for
short) stores the money as so-called value points. The application scenario was al-
ready described in [HRS02] but the protocols considered here are different, since
they are designed to be secure against a more powerful attacker. The example is
not very complicated and only serves as illustration of the kind of applications we
are interested in, what our formal model looks like, what type of security prop-
erties we want to verify, and what proof technique is used. Larger applications
we verified are the Mondex case study [SGHR06],[SGH+07],[SGH+06],[HSGR06]
and Cindy [GHRS06], an electronic ticketing application.

As agents in this application we have the smart cards with the e-wallet appli-
cation, card terminals (used for loading money on the cards and for payment),
the owners of the cards, and the attacker. For reasons of simplicity we combined
the functions of the load and the point-of-sale terminals into one agent type.

As described in Section 5 the main ASM rule of the application chooses an
agent and then the ASM rule for this agent is used to perform a protocol step.
The ASM rule for the electronic wallet example is as follows:

E-WALLET =
choose agent ∈ {attacker, user, term, card} with ready(agent) in

case agent-type(agent) of

6 commanddocs represent the so-called Command-APDUs which are used to send
commands to smart cards.

324 D. Haneberg et al.

attacker : ATTACKER
user : USER
term : TERMINAL
card : CARDLET

ATTACKER, USER, TERMINAL, and CARDLET are the ASM rules for the
four agent types. USER just sends commands to start protocol runs to the ter-
minal, ATTACKER uses ATTACKER-SEND (cf. Section 5.1) to send messages,
TERMINAL is the ASM rule for agents of type terminal, and CARDLET is the
rule for the e-wallet cards.

7.1 Internal State of the Agents

The state of an agent comprises of the data needed by the agent to perform the
functions of the application. For example, in our electronic wallet the smart card
application must store its current amount of value points and both, the termi-
nals and the cards must know a common secret used for message authentication.
In KIV the dynamic functions storing the state of the ASM are represented as
higher-order variables, e.g., the field secret which stores the common authen-
tication secret is represented by the dynamic function secret with type agent →
secret. The other fields of the agents are represented by similar functions.

7.2 The Terminal

In this section we show a part of the ASM rule TERMINAL. We focus on the
protocol step that generates the document to load additional points on the smart
card. First the terminal selects an input to process and then performs the step
consistent with the input and its internal state. The conditions for the different
protocol steps should be mutually exclusive, so there is always exactly one step
possible for a given input.

TERMINAL =
if newConnection
then . . .
else choose port with inputs 	= [] in

let indoc = head(inputs) in
/* block */
inputs := tail(inputs)
if response-OK(indoc) ∧ port = 2 ∧ last-inst = auth then

/* block */
last-inst := load
issued := issued + loadpoints
outdoc := commanddoc(load, loadpoints +

hashdoc(secret + indoc.doc + loadpoints))
outport := 2
/* block end */

else . . .
/* block end */

Verifying Smart Card Applications: An ASM Approach 325

In this ASM rule the state functions are used as abbreviations, e.g., issued stands
for issued(agent) where agent denotes the currently active agent, i.e., in this case
a terminal. As mentioned above, this part of the ASM rule for the terminal is
responsible for the last step of the protocol for loading points. In the condition it
is tested among other things, that the last document presumably received from
the smart card reported a successful completion of the last protocol step of the
card (response-OK(indoc)) and that the terminal is currently running the load
protocol (last-inst = auth). The state of the terminal is modified by incrementing
the number of issued points and by storing the instruction that will be sent to
the card. The document that will be sent to the smart card is a commanddoc
with instruction ‘load’ and a data part that contains the number of points to
load and the hash value of a list of documents, containing a nonce to prevent
replays, a common secret for authentication, and the number of points to load.
The nonce to prevent replays is indoc.doc, a part of the document currently
processed by the terminal.

A similar ASM rule exists for the cardlets. It is omitted due to space restric-
tions but can be found in the Technical Report [HGRS06].

7.3 Proving Properties

Given our formal model of the application one can start to prove the desired
security properties of the application. These can be typical properties of crypto-
graphic protocols, such as secrecy or authenticity, but primarily we are interested
in the more important application specific demands. In the described electronic
wallet, the application specific security goal is that the users cannot defraud. In
order to prove this, one needs to know that the shared secret (denoted THESE-
CRET) is never disclosed to the attacker, so one auxiliary property needed for
the proof of the main security property is:

secret-unknown:
(¬ THESECRET ∈ attacker-known
∧ ∀ agent, port. (¬ THESECRET ∈ inputs(agent, port)))

→ 〈|E-WALLET|〉
(¬ THESECRET ∈ attacker-known
∧ ∀ agent, port. (¬ THESECRET ∈ inputs(agent, port)))

E-WALLET was defined at the beginning of Section 7 and is the ASM rule
of the application. 〈|·|〉 is the strong diamond operator of DL. The meaning of
a formula 〈|α|〉 ϕ is that all runs of the program α terminate and the condition
ϕ holds afterwards.7 Therefore, the theorem secret-unknown states that if
initially the secret is not in the knowledge of the attacker and not contained
in the unprocessed messages of any agent, then this will still be the case after
execution of E-WALLET. This means that the secrecy is invariant with respect
to all possible steps of the application. With some simplifier rules this property
can be proved automatically by the KIV system using symbolic execution. The
7 〈|α|〉 ϕ corresponds to wp(α, ϕ) in Dijkstra’s wp-calculus.

326 D. Haneberg et al.

symbolic execution heuristic of the KIV system automatically executes all case-
splits resulting from the nondeterminism of the ASM and step-by-step removes
the ASM program from the proof goals until the resulting proof goals are plain
higher-order formulas.

7.4 Main Security Property

A noteworthy aspect of our approach is that our main interest are not low level
security properties like confidentiality (as, e.g., in Section 7.3). Instead we fo-
cus on application dependent properties like the exclusion of fraud, although of
course the low level properties are often necessary preconditions for the interest-
ing properties. In our electronic wallet example the informal security property
of the application provider is: ‘It is impossible that more money is spent with
the cards than previously was loaded onto the cards’. This property rules out
fraud because it guarantees that only value points which were correctly loaded
onto the smart cards (in exchange for real money) can be spent, i.e., ‘the users
cannot get more than they have paid for’8.

To easily express this property, we added two fields (collected and issued)
to the state of the terminals which accumulate the sum of the points loaded
onto the cards and the points spent with the cards. For the proof it is useful
to consider the points currently on the cards as well. The points on the cards
are stored in the field value of the cards. With these three fields the secu-
rity property can be expressed as

∑
t∈Terminalscollected(t) +

∑
c∈Cardsvalue(c)

≤
∑

t∈Terminals issued(t). What we must prove actually is that this inequality
holds after all possible finite sequences of steps of the application. This can be
expressed in a DL formula that states that this property will not be violated in
any state reachable after a finite number of steps of the ASM.

7.5 Verification Technique

This property is proven basically by showing that the inequality is invariant
relative to a step of the application. As the invariant necessary to establish the
property is quite complicated for a direct proof attempt, we used a different ap-
proach with an invariant that itself contains a program. We use a basic strategy
of Dynamic Logic not possible, e.g., in Hoare-calculus: A program formula is
used as an invariant. This formula says informally that ‘for every well-formed
state even after the worst possible attack the desired property holds’. The ad-
vantage of such an invariant is that the main property must not be established
for all intermediate states, instead we can focus on such states (called states
of interest in [Bör03],[Sch05]) in which certain operations are completed. Using
such invariants with ASM rule applications spares us the effort of dealing with
the complex interdependencies between the states of the agents in intermediate
8 Note that ‘the users get exactly as much as they have paid for’ is not provable. The

attacker can always intercept the transfer of points and delete them. The Mondex
case study [SCW00] improves the situation by keeping track of lost money using
exception logs.

Verifying Smart Card Applications: An ASM Approach 327

states, i.e., in states in which unfinished runs of the load or the pay protocol
exist. The state invariant is clearly simplified by not having to express which
of the unfinished protocol runs are allowed to reach a successful end and why.
Interestingly establishing this invariant after an attacker step is trivial, because
the invariant especially says that attacker steps do no harm. A related idea is
used in [Sch01] to express that two states are related through a coupling invari-
ant if two finite sequences of state transitions starting in those states lead to two
similar successor states. A dual idea used in [DW03],[Sch05] is to use predecessor
states.

INV-definition:
INV ↔ 〈|begin

ATTACK-CARDS; CARD-STEPS;
ATTACK-TERMINALS; TERMINAL-STEPS;

end|〉 (
∑

t∈Terminals

collected(t) +
∑

c∈Cards

value(c) ≤
∑

t∈Terminals

issued(t))

The invariant, given by theorem INV-definition, is proved by symbolic execu-
tion of E-WALLET in the DL-calculus of KIV. The symbolic execution results
in some open goals, one for each step of E-WALLET. These goals are then closed
by showing that INV still holds.

The program part of the invariant consists of four parts: ATTACK-CARDS
and ATTACK-TERMINALS are programs in which the attacker performs an
attack on each smart card respectively terminal he can attack, i.e., when the
attacker can create a document that causes a cardlet to load additional points
respectively a terminal to accept a payment, this document is sent to the cardlet
respectively the terminal. CARD-STEPS and TERMINAL-STEPS are loops
which iterate over all cards respectively terminals and force these agents to
process the documents that attacker has created for them.

Given a well-formed initial state of the ASM, the invariance of INV guarantees
that in any state, reachable by a finite sequence of steps, even if the attacker
does the worst he can, the security property holds, i.e., in any reachable state
after some additional steps, the security property holds. But the initial proof
obligation was that the inequality holds in every reachable state. So finally we
have to prove that the inequality propagates backwards over the program part of
the invariant, i.e., if the inequality holds after a run of the program, it also holds
in the state in which the program started. But this is simple, because an attack
could modify the agents’ states only in such a way that the security property
gets violated but not in a way that undoes a violation of the property.

We have proven the security property with KIV, which offers good proof
support through mature heuristics for DL and a powerful simplifier which can
handle thousands of rewrite rules. The overall degree of automation was approx-
imately 85 %. The high degree of nondeterminism of the protocol model led to
a considerable number of goals in the proof but most of them were quite similar
and could be closed with a few appropriate lemmas. The few remaining difficult
goals required a more detailed analysis and some complex lemmas.

328 D. Haneberg et al.

7.6 Protocols and Their Expected Functionalities

Besides the security property we also proved that the protocols for the different
functions serve their purpose, e.g., it is possible to increment the points stored
on a card using the load protocol. Showing that a protocol has successful runs is
important, since a protocol that does nothing would trivially satisfy the security
invariant. For example the functioning of the load protocol can be expressed by
theorem load-works. 〈α〉 ψ means there exists a terminating run of α such that
ψ holds afterwards.

load-works:
value(CARD) = i0 ∧ issued(TERM) = j0 ∧ ϕ

→ ∀ i. i > 0 ∧ value(CARD)+i ≤ 32767
→ ∃ n.〈E-WALLETn〉 (value(CARD) = i0+i ∧ issued(TERM) = j0+i)

Assuming a well-formed initial state described by ϕ in which the card CARD
currently contains i0 value points and the terminal TERM currently has issued
j0 points, this theorem states that for each value i, which is positive and that
would not cause an overflow when added to the value points on the card, there
exists a finite sequence of steps of the application E-WALLET that loads i points
on the card, i.e., that leads to a state in which the number of points stored on the
card is incremented by i and the terminal has issued i additional value points.

8 Related Work

Formal methods that analyze security protocols on an abstract level are used for
quite some time. A lot of different approaches have been proposed.

Rather different from Prosecco is the usage of specialized logics, such as the
BAN logic of belief [BAN89]. In [ABV01] Accorsi, Basin and Viganò describe an
approach that combines security logics with inductive methods.

Many approaches to the verification of protocols are model-checking based.
In [Low96] an analysis of the Needham-Schroeder Public-Key protocol is de-
scribed. The protocol is described in CSP and the Failure Divergences Refine-
ment Checker (FDR) is used to check the protocol description. An enhancement
to the usage of general-purpose model-checkers is the usage of model-checkers
specifically designed for reasoning about security protocols, e.g., OFMC, devel-
oped by Basin et al. [BMV03]. The model checking based approaches usually
focus on standard properties like secrecy or authenticity while our interactive
approach can deal with arbitrary properties.

The CSP approach is not limited to model-checking anymore. [RSG+01] de-
scribes, among other things, an embedding of the CSP trace semantics in PVS.
It also describes rank functions as a mean to simplify reasoning about the avail-
ability of certain messages. Such a technique could be combined with our model
of the possible runs of the application, but so far reasoning based on [Pau98]
was sufficient. We just formulate theorems stating the unavailability of a certain
message or the conditions under which the message is available to the attacker.

Verifying Smart Card Applications: An ASM Approach 329

Strand spaces [FHG99] are also an approach to abstract specification of cryp-
tographic protocols. The model is quite elegant and easy to understand. The
attacker model corresponds to a Dolev-Yao attacker and does not use a detailed
model of different communication channels as we do. The method also focuses
on standard goals for cryptographic protocols and therefore the main concepts
of the model are production and consumption of messages. Application specific
goals, like the one described in this paper, and therefore the treatment of appli-
cation specific data are not modeled.

Paulson uses Isabelle to verify security protocols [Pau98]. This approach is
quite successful and can cope with large protocols such as SET [Pau01]. Our
representation of documents and the attacker’s knowledge is inspired by this
approach: we use documents and functions very similar to analz and synth in
[Pau98]. Our approach differs in how system runs are described. First, [Pau98]
describes protocol runs declaratively using an inductive definition of the set of
possible traces while our approach describes runs using iterative application of
(operationally specified) ASM rules. There is a close connection, since iterative
rule application can be defined using inductive relations (for while loops and
recursion this has, e.g., been done in [Nip02]). We prefer an operational definition
using ASM rules where the inductive nature is encoded in the semantics, since
it offers the full possibilities of structured programs which can be exploited
for proof automation using symbolic execution [RSSB98]. A second difference is
that we use an explicit representation of the agents’ states, while [Pau98] instead
defines an explicit system trace consisting of all messages that have been sent.
The difference is that of state based vs. event based representation: recovering
the current points loaded onto a card could be done in [Pau98] by accumulating
the points of all successful load and pay messages and adding/subtracting them.

A middle ground between [Pau98] and our approach is also possible as the case
study [BR98] on the Needham-Schroeder protocol shows: there an ASM is used
to formalize runs, but a global execution trace is used instead of agent states.
[BR97] analyzes the Kerberos protocol using distributed ASMs with an agent
state similar to ours. Proofs have been done manually though in both cases.
Also between our and Paulson’s inductive approach is [Bel01]. Bella extends the
inductive approach to deal with smart card applications. He allows inputs to and
outputs from smart cards which the attacker cannot observe. This reflects that
the Dolev-Yao model is inappropriate in some cases. What remains of Paulson’s
original approach is that the state of the agents is derived from the trace.

Concerning the graphical modeling of security critical applications and espe-
cially security protocols, UMLsec [Jür02],[Jür05] is most similar to Prosecco.
UMLsec is a UML profile which extends several UML diagrams with security
relevant annotations. UMLsec allows the investigation of various security prop-
erties, not just security of cryptographic protocols. To specify cryptographic
protocols, UMLsec uses sequence diagrams to describe the messages of the pro-
tocol and class diagrams to describe the state of the agents and add annotations
marking security relevant information. UMLsec focuses on modeling, proof sup-
port for the verification of properties of cryptographic protocols is offered by

330 D. Haneberg et al.

exporting parts of the model into inputs for a model-checker. The verification
also focuses on some standard properties of security protocols (e.g., secrecy). In
Prosecco the formal model is completely embedded in the KIV system. The
Prosecco approach also does not suffer from the limitations of model-checkers
(finite state space) and is not limited to standard properties. [Jür05] reports on
the verification of CEPS, a proposal for a smart card-based electronic payment
system. The proof of the security property for the payment system as presented
in [Jür05] is done by hand, i.e., without tool-support.

9 Conclusion

We presented an approach to specify security protocols in smart card applica-
tions, to allow their formal analysis, and an example illustrating our approach.

Summarizing, our approach offers a detailed model of the communication
to support an application specific attacker which is important for smart card
applications. The verification framework is generic and can be used for different
applications. Our proof strategy, proving state invariants by symbolic execution
is supported by the KIV system with a high degree of automation. Using DL
programs in the invariants simplifies them by focusing on the interesting states.

The approach itself is suitable for the verification of security properties of
different kinds of communication protocols. Our approach can be used to model
various protocol scenarios, such as smart card applications as well as distributed
systems, communicating over the Internet or over other insecure networks like
WLAN or GSM, as well as common cryptographic protocols. Besides the pro-
tocols of the presented e-wallet application we already formalized other crypto-
graphic protocols, e.g., the Needham-Schroeder Public-Key protocol and other
m-commerce applications [GHRS06]. Furthermore Prosecco offers a graphical
notation for the description of the application, that simplifies the modeling.

Our goal is to have a verification approach that starts with proofs of security
properties in an abstract specification and continues all the way down to the
verification of correctness of an implementation of the agents in real Java code.
Besides using Prosecco in more case studies in the future, we will continue the
development of the concept for the refinement to Java [GSR06].

References

[ABV01] Accorsi, R., Basin, D., Viganò, L.: Towards an awareness-based semantics
for security protocol analysis. In: Goubault-Larrecq, J. (ed.) Workshop on
Logical Aspects of Cryptographic Protocol Verification, Elsevier, Amster-
dam (2001)

[AN95] Anderson, R.J., Needham, R.M.: Programming Satan’s Computer. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, Springer,
Heidelberg (1995)

[BAN89] Burrows, M., Abadi, M., Needham, R.M.: A Logic of Authentication. Tech-
nical report, SRC Research Report 39 (1989)

Verifying Smart Card Applications: An ASM Approach 331

[Bel01] Bella, G.: Mechanising a Protocol for Smart Cards. In: Attali, S., Jensen,
T. (eds.) E-smart 2001. LNCS, vol. 2140, Springer, Heidelberg (2001)

[BMV03] Basin, D., Mödersheim, S., Viganò, L.: An On-The-Fly Model-Checker for
Security Protocol Analysis. In: Snekkenes, E., Gollmann, D. (eds.) ES-
ORICS 2003. LNCS, vol. 2808, pp. 253–270. Springer, Heidelberg (2003)

[Bör03] Börger, E.: The ASM Refinement Method. Formal Aspects of Computing,
vol. 15(1–2) (2003)

[BR97] Bella, G., Riccobene, E.: Formal Analysis of the Kerberos Authentication
System. Journal of Universal Computer Science 3(12), 1337–1381 (1997)

[BR98] Bella, G., Riccobene, E.: A Realistic Environment for Crypto-Protocol Aal-
yses by ASMs. In: Glässer, U., Schmitt, P. (eds.) Proc. 5th Int. Workshop
on Abstract State Machines, Magdeburg University (1998)

[BRS+00] Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system
development with KIV. In: Maibaum, T.S.E. (ed.) ETAPS 2000 and FASE
2000. LNCS, vol. 1783, Springer, Heidelberg (2000)

[BS03] Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-
Level System Design and Analysis. Springer, Heidelberg (2003)

[DW03] Derrick, J., Wehrheim, H.: Using Coupled Simulations in Non-atomic Re-
finement. In: Bert, D., Bowen, J.P., King, S., Walden, M. (eds.) ZB 2003.
LNCS, vol. 2651, Springer, Heidelberg (2003)

[DY81] Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proc.
22th IEEE Symposium on Foundations of Computer Science, IEEE, Los
Alamitos (1981)

[FHG99] Fábrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand Spaces: Proving Se-
curity Protocols Correct. Journal of Computer Security 7, 191–230 (1999)

[GHRS06] Grandy, H., Haneberg, D., Reif, W., Stenzel, K.: Developing Provably Se-
cure M-Commerce Applications. In: Müller, G. (ed.) ETRICS 2006. LNCS,
vol. 3995, Springer, Heidelberg (2006)

[GSR06] Grandy, H., Stenzel, K., Reif, W.: A Refinement Method for Java Pro-
grams. Technical Report 2006-29, University of Augsburg (December 2006)

[Gur95] Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.)
Specification and Validation Methods, Oxford Univ. Press, New York
(1995)

[Han06] Haneberg, D.: Sicherheit von Smart Card – Anwendungen. PhD thesis,
University of Augsburg, Augsburg, Germany (in German) (2006)

[HGRS06] Haneberg, D., Grandy, H., Reif, W., Schellhorn, G.: Verifying Smart Card
Applications: An ASM Approach. Technical Report 2006-08, Universität
Augsburg (2006)

[HKT00] Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge
(2000)

[HRS02] Haneberg, D., Reif, W., Stenzel, K.: A Method for Secure Smartcard Ap-
plications. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS,
vol. 2422, Springer, Heidelberg (2002)

[HSGR06] Haneberg, D., Schellhorn, G., Grandy, H., Reif, W.: Verification of Mondex
Electronic Purses with KIV: From Transactions to a Security Protocol.
Technical Report 2006-32, University of Augsburg (December 2006)

[Jür02] Jürjens, J.: UMLsec: Extending UML for Secure Systems Development.
In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002 - The Uni-
fied Modeling Language 5th International Conference. LNCS, vol. 2460,
Springer, Heidelberg (2002)

332 D. Haneberg et al.

[Jür05] Jürjens, J.: Secure Systems Development with UML. Springer, Heidelberg
(2005)

[KIV] Web presentation of KIV projects. URL:
http://www.informatik.uniaugsburg.de/swt/projects/

[Low96] Lowe, G.: Breaking and fixing the Needham-Schroeder public-key proto-
col using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS,
vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

[Nip02] Nipkow, T.: Hoare logics for recursive procedures and unbounded nonde-
terminism. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS,
vol. 2471, Springer, Heidelberg (2002)

[OMG03] The Object Management Group (OMG). OMG Unified Modeling Lan-
guage Specification Version 1.5 (2003)

[Pau98] Paulson, L.C.: The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security 6, 85–128 (1998)

[Pau01] Paulson, L.C.: Verifying the SET Protocol. In: Goré, R.P., Leitsch, A., Nip-
kow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, Springer, Heidelberg
(2001)

[RJB98] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language
Reference Manual. Addison-Wesley, Reading (1998)

[RSG+01] Ryan, P.Y.A., Schneider, S.A., Goldsmith, M.H., Lowe, G., Roscoe, B.:
The Modelling and Analysis of Security Protocols: the CSP Approach.
Addison-Wesley, Reading (2001)

[RSSB98] Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications
and interactive proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Auto-
mated Deduction—A Basis for Applications, Kluwer, Dordrecht (1998)

[Sch01] Schellhorn, G.: Verification of ASM Refinements Using Generalized For-
ward Simulation. Journal of Universal Computer Science (J.UCS) 7(11),
952–979 (2001) URL: http://www.jucs.org

[Sch05] Schellhorn, G.: ASM Refinement and Generalizations of Forward Simula-
tion in Data Refinement: A Comparison. Journal of Theoretical Computer
Science 336(2-3), 403–435 (2005)

[SCW00] Stepney, S., Cooper, D., Woodcock, J.: AN ELECTRONIC PURSE Spec-
ification, Refinement, and Proof. In: Technical monograph PRG-126, July
2000, Oxford University Computing Laboratory, Oxford (2000)

[SGH+06] Schellhorn, G., Grandy, H., Haneberg, D., Möbius, N., Reif, W.: A sys-
tematic verification Approach for Mondex Electronic Purses using ASMs.
Technical Report 2006-27, Universität Augsburg, Augsburg (2006)

[SGH+07] Schellhorn, G., Grandy, H., Haneberg, D., Möbius, N., Reif, W.: A Sys-
tematic Verification Approach for Mondex Electronic Purses using ASMs.
In: Abrial, J.-R., Glässer, U. (eds.) Proceedings of the Dagstuhl Semi-
nar on Rigorous Methods for Software Construction and Analysis. LNCS,
Springer, Heidelberg (submitted, 2007)

[SGHR06] Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The Mondex Chal-
lenge: Machine Checked Proofs for an Electronic Purse. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, Springer,
Heidelberg (2006)

[Ste04] Stenzel, K.: A formally verified calculus for full Java Card. In: Rattray,
C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
Springer, Heidelberg (2004)

http://www.informatik.uniaugsburg.de/swt/projects/
http://www.jucs.org

Verification of Probabilistic Properties in HOL

Using the Cumulative Distribution Function

Osman Hasan and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordat University
1455 de Maisonette W., Montreal, Quebec, H3G 1M8, Canada

{o hasan,tahar}@ece.concordia.ca

Abstract. Traditionally, computer simulation techniques are used to
perform probabilistic analysis. However, they provide inaccurate results
and cannot handle large-scale problems due to their enormous CPU time
requirements. To overcome these limitations, we propose to complement
simulation based tools with higher-order-logic theorem proving so that
an integrated approach can provide exact results for the critical sections
of the analysis in the most efficient manner. In this paper, we illustrate
the practical effectiveness of our idea by verifying numerous probabilistic
properties associated with random variables in the HOL theorem prover.
Our verification approach revolves around the fact that any probabilis-
tic property associated with a random variable can be verified using the
classical Cumulative Distribution Function (CDF) properties, if the CDF
relation of that random variable is known. For illustration purposes, we
also present the verification of a couple of probabilistic properties, which
cannot be evaluated precisely by the existing simulation techniques, as-
sociated with the Continuous Uniform random variable in HOL.

Keywords: Interactive Theorem Proving, Higher-Order-Logic, Proba-
bilistic Systems, Cumulative Distribution Function, HOL.

1 Introduction

Probabilistic analysis has become a tool of fundamental importance to virtually
all engineers and scientists as they often have to deal with systems that exhibit
significant random or unpredictable elements. The main idea behind probabilistic
analysis is to model these uncertainties by random variables and then judge
the performance and reliability issues based on the corresponding probabilistic
properties.

Random variables are basically functions that map random events to numbers.
Every random variable gives rise to a probability distribution, which contains
most of the important information about this random variable. The probability
distribution of a random variable can be uniquely described by its Cumulative
Distribution Function (CDF), which is sometimes also referred to as the proba-
bility distribution function. The CDF of a random variable R, FR(x), represents

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 333–352, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

334 O. Hasan and S. Tahar

the probability that the random variable R takes on a value that is less than or
equal to a real number x

FR(x) = Pr(R ≤ x) (1)

where Pr denotes the probability. The CDF of a random variable contains com-
plete information about the probability model of the random variable and one
of its major significance is that it can be used to characterize both discrete and
continuous random variables. A distribution is called discrete if its CDF con-
sists of a sequence of finite or countably infinite jumps, which means that it
belongs to a random variable that can only attain values from a certain finite
or countably infinite set. Discrete random variables can also be characterized by
their probability mass function (PMF), which represents the probability that the
given random variable R is exactly equal to some value x, i.e., Pr(R = x). A
distribution is called continuous if its CDF is continuous, which means that it
belongs to a random variable that ranges over a continuous set of numbers that
contains all real numbers between two limits. A Continuous random variable can
also be characterized by its probability density function (PDF), which represents
the slope of its CDF, i.e., dFR(x)

dx . Besides characterizing both discrete and con-
tinuous random variables, the CDF also allows us to determine the probability
that a random variable falls in any arbitrary interval of the real line. Because
of these reasons, the CDF is regarded as one of the most useful characteristic of
random variables in the field of probabilistic analysis where the main goal is to
determine the probabilities for various events.

Today, simulation is the most commonly used computer based probabilistic
analysis technique. Most simulation softwares provide a programming environ-
ment for defining functions that approximate random variables for probability
distributions. The random elements in a given system are modeled by these func-
tions and the system is analyzed using computer simulation techniques, such as
the Monte Carlo Method [17], where the main idea is to approximately answer
a query on a probability distribution by analyzing a large number of samples.
The inaccuracy of the probabilistic analysis results offered by simulation based
techniques poses a serious problem in highly sensitive and safety critical appli-
cations, such as space travel, medicine and military, where a mismatch between
the predicted and the actual system performance may result in either inefficient
usage of the available resources or paying higher costs to meet some perfor-
mance or reliability criteria unnecessarily. Besides the inaccuracy of the results,
another major limitation of simulation based probabilistic analysis is the enor-
mous amount of CPU time requirement for attaining meaningful estimates. This
approach generally requires hundreds of thousands of simulations to calculate
the probabilistic quantities and becomes impractical when each simulation step
involves extensive computations.

In order to overcome the limitations of the simulation based approaches, we
propose to use higher-order logic interactive theorem proving [9] for probabilis-
tic analysis. Higher-order logic is a system of deduction with a precise semantics
and can be used for the development of almost all classical mathematics theories.
Interactive theorem proving is the field of computer science and mathematical

Verification of Probabilistic Properties in HOL 335

logic concerned with computer based formal proof tools that require some sort
of human assistance. We believe that probabilistic analysis can be performed
by specifying the behavior of systems which exhibit randomness in higher-order
logic and formally proving the intended probabilistic properties within the en-
vironment of an interactive theorem prover. Due to the inherent soundness of
this approach, the probabilistic analysis carried out in this way will be capable
of providing exact answers. It is important to note here that higher-order-logic
theorem proving cannot be regarded as the golden solution in performing proba-
bilistic analysis because of its own limitations. Even though theorem provers have
been successfully used for a variety of tasks, including some that have eluded hu-
man mathematicians for a long time, but these successes are sporadic, and work
on hard problems usually requires a proficient user and a lot of formalization.
On the other hand, simulation based techniques are at least capable of offer-
ing approximate solutions to these problems. Therefore, we consider simulation
and higher-order-logic theorem proving as complementary techniques, i.e., the
methods have to play together for a successful probabilistic analysis framework.
For example, the proposed theorem proving based approach can be used for the
safety critical parts of the design which can be expressed in closed mathematical
forms and simulation based approaches can handle the rest.

The foremost conditions for conducting probabilistic analysis within the en-
vironment of a higher-order-logic theorem prover are (1) the higher-order-logic
formalization of random variables; and (2) to be able to formally verify the prob-
abilistic properties of these random variables within the theorem prover. This
paper is mainly targeted towards the second condition above, though the for-
malization of random variables is also discussed briefly. Our approach for the
verification of probabilistic properties, illustrated in Figure 1, is primarily based
on the fact that if a random variable is formally specified and its CDF relation is
formally verified in a higher-order-logic theorem prover then the classical CDF
properties [16] can be used to prove any of its probabilistic properties. The pa-
per presents the verification of these classical CDF properties and the formal
proofs for the facts that any probabilistic property for a given random variable,
including the PMF and the PDF, can be expressed in terms of its CDF.

Fig. 1. Framework for Verifying Probabilistic Properties

336 O. Hasan and S. Tahar

We have selected the HOL theorem prover [10] for the current formalization
mainly in order to build upon the existing mathematical theories of Measure
and Probability. Hurd [14] developed these theories and also presented a frame-
work for the formalization of probabilistic algorithms in his PhD thesis. Random
variables are basically probabilistic algorithms and Hurd’s thesis also contains
the formalization of some discrete random variable which are verified by proving
their corresponding PMF relations in the HOL theorem prover.

The rest of the paper is organized as follows. In Section 2, we present a brief
introduction to the HOL theorem prover and an overview of Hurd’s methodol-
ogy for the formalization of probabilistic algorithms in HOL . Then in Section 3,
we show how Hurd’s formalization framework can be extended to formalize con-
tinuous random variables as well by defining the Standard Uniform random vari-
able and proving its CDF relation in the HOL theorem prover. The benefit of the
formal definition of the Standard Uniform random variable is that it can be used
along with nonuniform random number generation techniques [7] to formalize
other continuous random variables in HOL. In Section 4, we formally specify
the CDF by a real valued higher-order-logic function and provide the formal
verification of its classical properties within the HOL theorem prover. Section 5
illustrates the usefulness of the formally verified CDF properties in constructing
a higher-order-logic theorem prover based probabilistic analysis framework. In
this section, we have included the HOL proofs for the facts that the CDF re-
lation of a random variable can be used along with the formally verified CDF
properties to determine any of its associated probabilistic quantities. Then in
Section 6, we outline the process of verifying a couple of probabilistic properties
associated with the Continuous Uniform random variable within the HOL theo-
rem prover to illustrate the practical effectiveness of the proposed approach. A
review of the related work in the literature is given in Section 7 and we finally
conclude the paper in Section 8.

2 Preliminaries

In this section, we provide an overview of the HOL theorem prover and Hurd’s
methodology [14] for the formalization of probabilistic algorithms in HOL. The
intent is to provide a brief introduction to these topics along with some notation
that is going to be used in the next sections.

2.1 HOL Theorem Prover

The HOL theorem prover, developed at the University of Cambridge, UK, is an
interactive theorem prover which is capable of conducting proofs in higher-order
logic. It utilizes the simple type theory of Church [5] along with Hindley-Milner
polymorphism [22] to implement higher-order logic. HOL has been successfully
used as a verification framework for both software and hardware as well as a plat-
form for the formalization of pure mathematics. It supports the formalization
of various mathematical theories including sets, natural numbers, real numbers,

Verification of Probabilistic Properties in HOL 337

measure and probability. The HOL theorem prover includes many proof assis-
tants and automatic proof procedures. The user interacts with a proof editor
and provides it with the necessary tactics to prove goals while some of the proof
steps are solved automatically by the automatic proof procedures.

In order to ensure secure theorem proving, the logic in the HOL system is rep-
resented in the strongly-typed functional programming language ML [24]. The
ML abstract data types are then used to represent higher-order-logic theorems
and the only way to interact with the theorem prover is by executing ML pro-
cedures that operate on values of these data types. Users can prove theorems
using a natural deduction style by applying inference rules to axioms or previ-
ously generated theorems. The HOL core consists of only basic 5 axioms and
8 primitive inference rules, which are implemented as ML functions. Soundness
is assured as every new theorem must be created from these basic axioms and
primitive inference rules or any other pre-existing theorems/inference rules.

We selected the HOL theorem prover for the proposed formalization mainly
because of its inherent soundness and ability to handle higher-order logic and
in order to benefit from the built-in mathematical theories for measure and
probability.

2.2 Verifying Probabilistic Algorithms in HOL

Hurd [14] proposed to formalize the probabilistic algorithms in higher-order logic
by thinking of them as deterministic functions with access to an infinite Boolean
sequence B∞; a source of infinite random bits. These deterministic functions
make random choices based on the result of popping the top most bit in the
infinite Boolean sequence and may pop as many random bits as they need for
their computation. When the algorithms terminate, they return the result along
with the remaining portion of the infinite Boolean sequence to be used by other
programs. Thus, a probabilistic algorithm which takes a parameter of type α
and ranges over values of type β can be represented in HOL by the function

F : α→ B∞ → β ×B∞

For example, a Bernoulli(1
2) random variable that returns 1 or 0 with equal

probability 1
2 can be modeled as follows

. bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The function bit accepts the
infinite Boolean sequence and returns a random number, which is either 0 or 1
together with a sequence of unused Boolean sequence, which in this case is the tail
of the sequence. The above methodology can be used to model most probabilistic
algorithms. All probabilistic algorithms that compute a finite number of values
equal to 2n, each having a probability of the form m

2n : where m represents the
HOL data type nat and is always less than 2n, can be modeled, using Hurd’s
framework, by well-founded recursive functions. The probabilistic algorithms

338 O. Hasan and S. Tahar

that do not satisfy the above conditions but are sure to terminate can be modeled
by the probabilistic while loop proposed in [14].

The probabilistic programs can also be expressed in the more general state-
transforming monad where the states are the infinite Boolean sequences.

. ∀ a,s. unit a s = (a,s)

. ∀ f,g,s. bind f g s = let (x,s’)← f(s) in g x s’

The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All the monad laws hold for this def-
inition, and the notation allows us to write functions without explicitly men-
tioning the sequence that is passed around, e.g., function bit can be defined
as

. bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s,stl s).
Hurd [14] also formalized some mathematical measure theory in HOL in or-

der to define a probability function P from sets of infinite Boolean sequences
to real numbers between 0 and 1. The domain of P is the set E of events of
the probability. Both P and E are defined using the Carathéodory’s Extension
theorem, which ensures that E is a σ-algebra: closed under complements and
countable unions. The formalized P and E can be used to derive the basic laws
of probability in the HOL prover, e,g., the additive law, which represents the
probability of two disjoint events as the sum of their probabilities:

. ∀ A B. A ∈ E ∧ B ∈ E ∧ A ∩ B = ∅ ⇒
P(A ∪ B) = P(A) + P(B)

The formalized P and E can also be used to prove probabilistic properties for
probabilistic programs such as

. P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair and {x|C(x)} rep-
resents a set of all x that satisfy the condition C in HOL.

The measurability of a function is an important concept in probability theory
and also a useful practical tool for proving that sets are measurable [3]. In Hurd’s
formalization of probability theory, a set of infinite Boolean sequences, S, is said
to be measurable if and only if it is in E , i.e., S ∈ E . Since the probability measure
P is only defined on sets in E , it is very important to prove that sets that arise in
verification are measurable. Hurd [14] showed that a function is guaranteed to
be measurable if it accesses the infinite boolean sequence using only the unit,
bind and sdest primitives and thus leads to only measurable sets.

Hurd formalized four discrete random variables and proved their correctness
by proving the corresponding PMF relations [14]. Because of their discrete na-
ture, all these random variables either compute a finite number of values or are
sure to terminate. Thus, they can be expressed using Hurd’s methodology by
either well formed recursive functions or the probabilistic while loop [14]. On

Verification of Probabilistic Properties in HOL 339

the other hand, continuous random variables always compute an infinite num-
ber of values and therefore would require all the random bits in the infinite
Boolean sequence if they are to be represented using Hurd’s methodology. The
corresponding deterministic functions cannot be expressed by either recursive
functions or the probabilistic while loop and it is mainly for this reason that
the specification of continuous random variables needs to be handled differently
than their discrete counterparts.

3 Formalization of the Standard Uniform Distribution

In this section, we present the formalization of the Standard Uniform distribu-
tion in the HOL theorem prover. The Standard Uniform random variable is a
continuous random variable and can be characterized by the CDF as follows:

Pr(X ≤ x) =

⎧
⎨

⎩

0 if x < 0;
x if 0 ≤ x < 1;
1 if 1 ≤ x.

(2)

One of the significant aspects of formalizing the Standard Uniform random
variable is that it can be utilized along with the nonuniform random number
generation techniques [7] to model other continuous random variables in the
HOL theorem prover as well. Therefore, it opens the doors of formally verifying
the probabilistic properties of systems that exhibit randomness of continuous
nature.

3.1 Formal Specification of Standard Uniform Random Variable

The Standard Uniform random variable can be formally expressed in terms of
an infinite sequence of random bits as follows [13]

lim
n→∞

(λn.
n−1∑

k=0

(
1
2
)k+1Xk) (3)

where, Xk denotes the outcome of the kth random bit; true or false represented
as 1 or 0 respectively. The mathematical relation of Equation (3) can be formal-
ized in the HOL theorem prover in two steps. The first step is to define a discrete
Standard Uniform random variable that produces any one of the equally spaced
2n dyadic rationals in the interval [0, 1 − (1

2)n] with the same probability (1
2)n

using Hurd’s methodology

Definition 3.1:
. (std unif disc 0 = unit 0) ∧

∀ n. (std unif disc (n+1) =
bind (std unif disc n) (λm. bind sdest

(λb. unit (if b then ((1
2)n+1 + m) else m))))

340 O. Hasan and S. Tahar

The function std unif disc allows us to formalize the real sequence of Equation
(3) in the HOL theorem prover. Now, the formalization of the mathematical
concept of limit of a real sequence in HOL [12] can be used to formally specify
the Standard Uniform random variable of Equation (3) as follows

Definition 3.2:
. ∀ s. std unif cont s = lim (λn. fst(std unif disc n s))

where, lim M represents the HOL formalization of the limit of a real sequence
[12], such that limM is the limit value of the real sequence M (i.e., lim

n→∞
M(n) =

lim M).

3.2 Formal Verification of Standard Uniform Random Variable

The formalized Standard Uniform random variable, std unif cont, can be verified
to be correct by proving its CDF to be equal to the theoretical value given in
Equation (2). The first step in this verification is to prove the measurability of
the set under consideration, i.e., to prove that the set {s | std unif cont s ≤ x}
is in E . Since, the function std unif disc accesses the infinite boolean sequence
using only the unit, bind and sdest primitives, Hurd’s formalization framework
can be used to prove

Lemma 3.1:
. ∀ x,n. {s | FST (std unif disc n s) ≤ x} ∈ E

On the other hand, the definition of the function std unif cont involves the lim
function and thus the corresponding sets cannot be proved to be measurable in
a very straightforward manner. Therefore, in order to prove this, we leveraged
the fact that each set in the sequence of sets (λn.{s | FST (std unif disc n s) ≤
x}) is a subset of the set before it, in other words, this sequence of sets is a
monotonically decreasing sequence. Thus, the countable intersection of all sets
in this sequence can be proved to be equal to the set {s | std unif cont s ≤ x}

Lemma 3.2:
. ∀ x. {s | std unif cont s ≤ x} =⋂

n (λ n. {s | FST (std unif disc n s) ≤ x})
Now the set {s | std unif cont s ≤ x} can be proved to be measurable since
E is closed under countable intersections [14] and all the sets in the sequence
(λn.{s | FST (std unif disc n s) ≤ x}) are measurable according to Lemma 3.1.

Theorem 3.1:
. ∀ x. {s | std unif cont s ≤ x} ∈ E

Theorem 3.1 can now be used along with the real number theories [12] to verify
the CDF of the probabilistic function std unif cont in the HOL theorem prover
and the verification details can be found in [13].

Theorem 3.2:
. ∀ x. P{s | std unif cont s ≤ x} =

if (x < 0) then 0 else (if (x < 1) then x else 1)

Verification of Probabilistic Properties in HOL 341

4 Formalization of the Cumulative Distribution Function

In this section, we present the formal specification of the CDF and the verifica-
tion of CDF properties in the HOL theorem prover. The CDF and its properties
have been an integral part of the classical probability theory since its early de-
velopment in the 1930s. The properties are mentioned in most of the probability
theory texts, e.g, [16] and have been used successfully in performing analytical
analysis of random systems using paper-pencil proofs. Our main contribution
is the formalization of these properties in a mechanical theorem prover. The
proof process was long and tedious requiring a deep understanding and profi-
ciency in both the mathematical backgrounds (Boolean Algebra, Set Theory,
Real Theory, Measure Theory and Probability Theory) as well as the HOL
theorem prover. The motivation, on the other hand, is that these formalized
properties can now be utilized to obtain a complete, rigorous and communicable
description of random components in a system. Also, the formalization allows
us to perform machinized proofs regarding probabilistic properties within the
framework of a sound theorem-prover environment.

4.1 Formal Specification of CDF

It follows from Equation (1) that the CDF can be formally specified in HOL by a
higher-order-logic function that accepts a random variable and a real argument
and returns the probability of the event when the given random variable is less
than or equal to the value of the given real number. Hurd’s formalization of the
probability function P, which maps sets of infinite Boolean sequences to real
numbers between 0 and 1, can be used to formally specify the CDF as follows:

Definition 4.1:
. ∀ R x. cdf R x = P {s | R s ≤ x}

where, R represents the random variable that accepts an infinite Boolean se-
quence and returns a real number and the set {s | R s ≤ x} is the set of all
infinite Boolean sequences, s, that satisfy the condition (R s ≤ x).

4.2 Formal Verification of CDF Properties

Using the formal specification of the CDF, we are able to verify the classical
CDF properties [16] within the HOL theorem prover. The formal proofs for
these properties not only ensure the correctness of our CDF specification but
also play a vital role in proving various probabilistic properties associated with
random variables as shown in Figure 1. All properties in the following sections
are verified under the assumption that the set {s | R s ≤ x}, where R represents
the random variable under consideration, is measurable for all values of x.

CDF Bounds. For any real number x,

0 ≤ FR(x) ≤ 1 (4)

342 O. Hasan and S. Tahar

This property states that if we plot the CDF against its real argument x, then
the graph of the CDF, FR, is between the two horizontal lines y = 0 and y = 1.
In other words, the lines y = 0 and y = 1 are the bounds for the CDF FR.

The above characteristic can be verified in HOL using the fact that the CDF
is basically a probabilistic quantity along with the basic probability law, verified
in [14], that states that the probability of an event is always less than 1 and
greater than 0 (∀S. S ∈ E ⇒ 0 ≤ P(S) ≤ 1).

Theorem 4.1:
. ∀ R x. (0 ≤ CDF R x) ∧ (CDF R x ≤ 1)

CDF is Monotonically Increasing. For any two real numbers a and b,

if a < b, then FR(a) ≤ FR(b) (5)

In mathematics, functions between ordered sets are monotonic if they preserve
the given order. Monotonicity is an inherent characteristic of CDFs and the CDF
value for a real argument a can never exceed the CDF value of a real argument
b if a is less than b.

Using the set theory in HOL, it can be proved that for any two real numbers
a and b, if a < b then the set of infinite Boolean sequences {s | R s ≤ a} is a
subset of the set {s | R s ≤ b}. Then, using the monotone law of the probability
function (∀S T. S ∈ E ∧ T ∈ E ∧ S ⊆ T ⇒ (P(S) ≤ P(T)), verified in [14], we
proved the monotonically increasing property of the CDF in HOL.

Theorem 4.2:
. ∀ R a b. a < b ⇒ (CDF R a ≤ CDF R b)

Interval Probability. For any two real numbers a and b,

if a < b, then Pr(a < R ≤ b) = FR(b) − FR(a) (6)

This property is very useful for evaluating the probability of a random vari-
able, R, lying in any given interval (a,b] in terms of its CDF.

Using the set theory in HOL, it can be proved that for any two real numbers a
and b, if a < b then the set of infinite Boolean sequences {s | R s ≤ b} is equal to
the union of the sets {s | R s ≤ a} and {s | (a < R s)∧(R s ≤ b)}. Now, the above
CDF property can be proved in HOL using the additive law of the probability
function (∀S T. S ∈ E ∧ T ∈ E ∧ S ∩ T = ∅ ⇒ (P(S ∪ T) = P(S) + P(T)),
verified in [14], along with the closed under complements and countable unions
property of E .

Theorem 4.3:
. ∀ R a b. a < b ⇒

(P {s | (a < R s) ∧ (R s ≤ b) } = CDF R b - CDF R a)

Verification of Probabilistic Properties in HOL 343

CDF at Negative Infinity

lim
x→−∞

FR(x) = 0; that is, FR(−∞) = 0 (7)

This property states that the value of the CDF tends to 0 as its real argument
approaches negative infinity or in other words the graph of CDF must eventually
approach the line y = 0 at the left end of the real axis.

We used the formalization of limit of a real sequence [12] along with the
formalization of the mathematical measure theory [14] in HOL to prove this
property. The first step is to prove a relationship between the limit value of the
probability of a monotonically decreasing sequence of events An (i.e, An+1 ⊆ An

for every n) and the probability of the countable intersection of all events that
can be represented as An.

∀An. lim
n→∞

Pr(An) = Pr(
⋂

n

An) (8)

This relationship, sometimes called the Continuity Property of Probabilities,
can be used to prove the above CDF property by instantiating it with a de-
creasing sequence of events represented in Lambda calculus as (λn.{s | R s ≤
−(&n)}); where n has the HOL data type nat: {0, 1, 2, . . .} and ”&” converts
it to its corresponding real number. The left hand side of Equation 8, with this
sequence, represents the CDF for the random variable R when its real argument
approaches negative infinity and thus is equal to the left hand side of our proof
goal in Equation 7. Using the monotonically decreasing nature of the events in
the sequence (λn.{s | R s ≤ −(&n)}), the right hand side of Equation 8, with
this sequence, can be proved to be equal to the probability of an empty set. The
CDF at negative infinity property can now be proved using the basic probability
law (P({}) = 0), verified in [14], which states that the probability of an empty
set is 0.

Theorem 4.4:
. ∀ R. lim (λ n. CDF R (-&n)) = 0

where, lim is the HOL function for the limit of a real sequence [12].

CDF at Positive Infinity

lim
x→∞

FR(x) = 1; that is, FR(∞) = 1 (9)

This property, quite similar to the last one, states that the value of the CDF
tends to 1 as its real argument approaches positive infinity or in other words the
graph of CDF must eventually approach the line y = 1 at the right end of the
real axis.

The HOL proof steps for this property are also quite similar to the last one
and this time we use the Continuity Property of Probabilities which specifies
the relationship between the limit value of the probability of a monotonically

344 O. Hasan and S. Tahar

increasing sequence of events An (i.e, An ⊆ An+1 for every n) and the probability
of the countable union of all events that can be represented as An.

∀An. lim
n→∞

Pr(An) = Pr(
⋃

n

An) (10)

In this case, we instantiate Equation 10 with an increasing sequence of events
represented in Lambda calculus as (λn.{s | R s ≤ (&n)}). The countable union
of all events in this sequence is the universal set. The CDF at positive infinity
property can now be proved in the HOL theorem prover using the basic prob-
ability law (P(UNIV) = 1), verified in [14], which states that the probability of
the universal set is 1.

Theorem 4.5:
. ∀ R. lim (λ n. CDF R (&n)) = 1

CDF is Continuous from the Right. For every real number a,

lim
x→a+

FR(x) = FR(a) (11)

where lim
x→a+

FR(x) is defined as the limit of FR(x) as x tends to a through values

greater than a. Since FR is monotone and bounded, this limit always exists.
In order to prove this property in HOL, we used a decreasing sequence of

events represented in Lambda calculus as (λn.{s | R s ≤ a+ 1
&(n+1)}). This se-

quence of events has been selected in such a way that if the Continuity Property
of Probabilities, given in Equation 8, is instantiated with this sequence then its
left hand side represents the CDF for a random variable, R, when its real argu-
ment approaches a through values greater than a. Therefore, with this sequence,
the left hand side of the Continuity Property of Probabilities is equal to the left
hand side of our proof goal in Equation 11. Using the monotonically decreasing
nature of the events in the sequence (λn.{s | R s ≤ a + 1

&(n+1)}), it can also
be proved that the countable intersection of all events in this sequence is the set
{s | R s ≤ a}. The CDF can now be proved to be continuous from the right
as the right hand side of the Continuity Property given in Equation 8, with the
sequence (λn.{s | R s ≤ a+ 1

&(n+1)}), represents the CDF of random variable
at real argument a.

Theorem 4.6:
. ∀ R a. lim (λ n. CDF R (a + 1

&(n+1))) = CDF R a

CDF Limit from the Left. For every real number a,

lim
x→a−

FR(x) = Pr(R < a) (12)

where lim
x→a−

FR(x) is defined as the limit of FR(x) as x tends to a through values

less than a.

Verification of Probabilistic Properties in HOL 345

This property is quite similar to the previous one and can be proved by instan-
tiating the Continuity Property of Probabilities, given in Equation 10, with an
increasing sequence of events represented in Lambda calculus as (λn.{s | R s ≤
a− 1

&(n+1)}). The left hand side of Equation 10, with this sequence, represents
the CDF for the random variable R when its real argument approaches a through
values less than a and is thus equal to the left hand side of our proof goal in
Equation 12. Using the monotonically increasing nature of the events in the se-
quence (λn.{s | R s ≤ a− 1

&(n+1)}), it can be proved that the countable union
of all the events in this sequence is the set {s | R s < a} which led us to prove
the theorem stating the CDF limit from the left.

Theorem 4.7:
. ∀ R a. lim (λ n. CDF R (a - 1

&(n+1))) = P {s | (R s < a})

5 CDF Properties and Probabilistic Analysis

As mentioned in Section 1, probabilistic analysis is basically the process of eval-
uating performance and/or reliability of a given system by representing its un-
certain elements in terms of random variables and characterizing the results in
terms of the corresponding probabilistic quantities. We have already seen in Sec-
tions 2 and 3 of this paper that both discrete and continuous random variables
can be formalized in the HOL theorem prover. In this section, we illustrate the
usefulness of the formally verified CDF properties in relevance to evaluating
probabilistic quantities while performing probabilistic analysis within the HOL
theorem prover.

5.1 Determining Interval Probabilities

The CDF of a random variable, R, along with the CDF properties verified in
Section 4 can be used to determine the probability that R will lie in any specified
interval of the real line. In this section, we verify this statement in the HOL
theorem prover by dividing the real line in three disjoint intervals; (−∞, a], (a, b]
and (b,∞), and determining the probabilities that a random variable lies in these
intervals in terms of its CDF.

Determining the probability for the first interval is quite straightforward since
the CDF for a random variable, R, with a real argument, a, can be used directly
to find the probability that a random variable, R, will lie in the interval (−∞, a].
Whereas, the probability that a random variable, R, will lie in the interval (a, b]
can be determined by its CDF values for the real arguments a and b as has
been proved in Theorem 4.3. For the third interval, we first use the set theory
in HOL to prove that for any real value b, the set of infinite Boolean sequences
{s | b < R s} is the complement of the set {s | R s ≤ b}. The probability
that a random variable, R, lies in the interval (b,∞) can now be represented
in terms of its CDF by using the complement law of the probability function
(∀S. S ∈ E ⇒ P(S) = 1−P(S̄)), verified in [14], under the assumption that the
set {s|Rs ≤ a} is measurable.

346 O. Hasan and S. Tahar

Theorem 5.1:
. ∀ R b. P {s | b < R s} = 1 - (CDF R b)

5.2 Representing PMF in Terms of the CDF

The PMF can be expressed in terms of the CDF of the corresponding random
variable by using the fact that for any real value a the set of infinite Boolean
sequences {s | R s ≤ a} is equal to the union of the sets {s | R s < a} and
{s | R s = a}. Now, using Theorems 4.6 and 4.7, the additive law of the probabil-
ity function P and the closed under complements and countable unions property
of E , the desired relationship can be proved under the assumption that the sets
{s|Rs = a} and {s|Rs ≤ a} are measurable.

Theorem 5.2:
. ∀ R a. P {s | R s = a} = lim (λ n. CDF R (a + 1

&(n+1))) -

lim (λ n. CDF R (a - 1
&(n+1)))

A unique characteristic for all continuous random variables is that their PMF
is equal to 0. Theorem 5.2 along with the formalization of continuous functions
allowed us prove this property in the HOL theorem prover.

Theorem 5.3:
. ∀ R a. (∀x. (λx. CDF R x) contl x) ⇒ P {s | R s = a} = 0)

where, (∀ x.f contl x) represents the HOL function definition for a continuous
function [12] such that the function f is continuous for all x.

5.3 Representing PDF in Terms of the CDF

The PDF, which is the slope of the CDF, represents the probability distribution
of a continuous random variable in terms of integrals. It can be expressed in
the HOL theorem prover by using the formal definition of the CDF and the
formalization of the mathematical concept of a derivative [12].

Definition 5.1:
. ∀ R x. pdf R x = @l. ((λx. CDF R x) diffl l) x

where (f diffl l) x represents the HOL formalization of the derivative [12], such
that l is the derivative of the function f with respect to the variable x, and @x.t
represents the Hilbert choice operator in HOL (εx.t term), that represents the
value of x such that t is true.

Using the above definition of the PDF, we were able to prove the following
classical properties of the PDF [16] in the HOL theorem prover under the as-
sumption that the set {s | R s ≤ x}, where R represents the random variable
under consideration, is measurable for all values of x.

Verification of Probabilistic Properties in HOL 347

PDF Lower Bound. For any real number x,

0 ≤ fR(x) (13)

This property states that if we plot the PDF against its real argument x, then
the graph of the PDF, fR, will never go below the horizontal line y = 0. In other
words, the line y = 0 is the lower bound for the PDF fR.

We utilized the monotonically increasing property of the CDF proved in The-
orem 4.2 along with the nonnegative characteristic of the derivative of nonde-
creasing functions to prove this property in the HOL theorem prover.

Theorem 5.4:
. ∀ R x. (∀x.(λx. CDF R x) differentiable x) ⇒ (0 ≤ pdf R x)

where, the condition (f differentiable x) ensures in HOL that a derivative exists
for the function f for the variable x.

Interval Probability in Terms of PDF. For any two real numbers a and b,

if a < b, then Pr(a < R ≤ b) =
∫ b

a

fR(x)dx (14)

We used the HOL formalization of the gauge integral [21], which has all the
attractive convergence properties of the Lesbesgue integral, along with the inter-
val property of the CDF, verified in Theorem 4.3, to prove the above property
in the HOL theorem prover.

Theorem 5.5:
. ∀ R x.(∀x. (λx. CDF R x) differentiable x) ⇒

(Dint (a,b) (λx. pdf R x)
(P {s | (a ≤ R s) ∧ (R s ≤ b)}))

where Dint(a,b) f k represents the HOL formalization of the gauge integral [12]
such that the definite integral of the function f over the interval [a,b] is k.

6 Illustrative Example

In this section, we illustrate the practical effectiveness of our approach by pre-
senting a simplified probabilistic analysis example of roundoff error in a digital
processor within the HOL theorem prover.

Assume that the roundoff error for a particular digital processor is uniformly
distributed over the interval [-5x10−12, 5x10−12]. An engineering team is inter-
ested in verifying that the probability of the event when the roundoff error in
this digital processor is greater than 2x10−12 is less than 0.33 and the probability
that the final result fluctuates by ±1x10−12 with respect to the actual value is
precisely equal to 0.2. We now verify these properties in HOL by following the
steps mentioned in Figure 1.

348 O. Hasan and S. Tahar

6.1 Formal Specification of the Continuous Uniform Distribution

The first step, in the higher-order-logic theorem proving based formal verification
of probabilistic properties, is the formalization of the random variable that is
required in the probabilistic analysis under consideration. The example under
consideration calls for the Continuous Uniform random variable, which can be
characterized by the CDF as follows

P(X ≤ x) =

⎧
⎨

⎩

0 if x ≤ a;
x−a
b−a if a < x ≤ b;
1 if b < x.

(15)

The Continuous Uniform random variable can be formally expressed in terms
of the formalized Standard Uniform random variable of Section 3 using the
Inverse Transform Method (ITM) [7]. The ITM is a commonly used nonuniform
random number generation technique for generating continuous random variants
for probability distributions for which the inverse of the CDF can be expressed
in a closed mathematical form.

Definition 6.1:
. ∀ a b s. uniform cont a b s = (b - a) * std unif cont s) + a

The function uniform cont, which formally represents the Continuous Uniform
random variable, accepts two real valued parameters a, and b and the infinite
Boolean sequence s and returns a real number in the interval [a,b].

6.2 CDF Verification of the Continuous Uniform Random Variable

The second step in our approach for the verification of probabilistic properties
associated with a random variable is the verification of its CDF relationship,
as shown in Figure 1. This can be done by proving the CDF of the function
uniform cont to be equal to the theoretical value of the CDF of the Continuous
Uniform random variable given in Equation 15.

The definition of the function uniform cont and elementary real arithmetic
operations may be used to transform the set {s|uniform cont a b s ≤ x}
in such a way that (std unif cont s) is the only term that remains on the left
hand side of the inequality, i.e., (P{s|std unif cont s ≤ x−a

b−a }). Now, the CDF
property for the function std unif cont, proved in Theorem 3.2, along with some
simple arithmetic reasoning can be used to prove the desired CDF relationship.

Theorem 6.1:
. ∀ a b x. (a < b) ⇒ P{s | uniform cont a b s ≤ x} =

if (x ≤ a) then 0 else (if (x ≤ b) then x−a
b−a else 1)

Similarly, the measurability property proved in Theorem 3.1 can be used to
prove the measurability property for the set that corresponds to the CDF of the
probabilistic function uniform cont in the HOL theorem prover.

Theorem 6.2:
. ∀ a b x. (a < b) ⇒ measurable {s | uniform cont a b s ≤ x}

Verification of Probabilistic Properties in HOL 349

6.3 Verification of Probabilistic Properties

After the completion of the above steps, we are now in the position of formally
verifying the given probabilistic properties by modeling the roundoff error as a
Continuous Uniform random variable in the interval [-5x10−12, 5x10−12].

We proceed to verify the first probabilistic property, which checks if the prob-
ability of the event when the roundoff error in this digital processor is greater
than 2x10−12 is less than 0.33, by instantiating Theorem 5.1 with the random
variable (λs. uniform cont − 5x10−12 5x10−12 s) and the real value 2x10−12.
Now the property can be verified by simplifying the result using the formal def-
inition of the CDF, given in Definition 4.1, Theorems 6.1 and 6.2 and the real
number theories in HOL [12].

Theorem 6.3:
. P {s | 2x10−12 < uniform cont -5x10−12 5x10−12 s } < 0.33

Similarly the second property, which checks if the probability of the final result
fluctuating by ±1x10−12 with respect to the actual value is precisely equal to 0.2,
can be verified by checking if the probability of the Continuous Uniform random
variable, defined in the interval [-5x10−12, 5x10−12], falling in the interval [-
1x10−12, 1x10−12] is equal to 0.2. This can be done by using the definition
of CDF, Theorems 6.1 and 6.2 and instantiating the CDF property verified in
Theorem 4.3 by the real values -1x10−12, 1x10−12 for variables a, b and the
random variable (λs. uniform cont − 5x10−12 5x10−12 s) for variable R.

Theorem 6.4:
. P {s | (-1x10−12 < uniform cont -5x10−12 5x10−12 s) ∧

(uniform cont -5x10−12 5x10−12 s ≤ 1x10−12)} = 0.2

The above example illustrates the fact that the interactive theorem proving
based approach is capable to verify probabilistic quantities, which can be ex-
pressed in a closed mathematical form, with 100% precision; a novelty which is
not available in the simulation based techniques. Thus, by integrating the higher-
order-logic theorem proving capability to the simulation based tools, the level
of the overall accuracy of the results can be raised. This added benefit comes at
the cost of a significant amount of time and effort spent, while formalizing the
system behavior, by the user.

7 Related Work

Due to the vast application domain of probability, many researchers around the
world are trying to improve the quality of computer based probabilistic analysis.
The ultimate goal is to come up with tools that are capable of providing accurate
analysis, can handle large-scale problems and are easy to use. In this section, we
provide a brief account of the state-of-the-art and discuss some related work in
the field of probabilistic analysis.

Modern probability and statistics is supported by computers to perform some
of the very large and complex calculations using simulation techniques. All com-
monly used commercial probabilistic and statistical software packages available

350 O. Hasan and S. Tahar

these days, e.g., SAS [27], SPSS [28], Microsoft’s Excel [8], etc. contain a large
collection of discrete and absolutely continuous univariate and multivariate dis-
tributions which in turn can be used to form complicated random models. The
models can then be analyzed using simulation techniques. These packages are ca-
pable of automatically evaluating probabilistic quantities but the results are less
accurate. McCullough [18] proposed a collection of intermediate-level tests for
assessing the numerical reliability of a statistical package and uncovered flaws in
most of the mainframe statistical packages [19] and [20]. Our proposed approach,
on the other hand, is capable of determining precise probabilistic quantities at
the cost of significant user interaction.

A number of probabilistic languages, e.g., Probabilistic cc [11], λo [23] and
IBAL [25], have been proposed that are capable of modeling random variables.
Probabilistic languages treat probability distributions as primitive data types
and abstract from their representation schemes. Therefore, they allow program-
mers to perform probabilistic computations at the level of probability distri-
butions rather than representation schemes. These probabilistic languages are
quite expressive and can be used to perform probabilistic analysis based on the
distribution properties of random variables but they have their own limitations.
For example, either they require a special treatment such as the lazy list evalua-
tion strategy in IBAL and the limiting process in Probabilistic cc or they do
not support precise reasoning as in the case of λo. The theorem proving based
approach proposed in this paper, on the other hand, is capable of modeling most
probability distributions due to the high expressive of the higher-order-logic and
also provides precise reasoning based on its inherent soundness.

Another alternative for the formal verification of probabilistic properties is to
use probabilistic model checking techniques, e.g., [2], [26]. Like the traditional
model checking, it involves the construction of a precise mathematical model of
the probabilistic system which is then subjected to exhaustive analysis to verify
if it satisfies a set of formal probabilistic properties. This approach is capable of
providing precise solutions in an automated way; however it is limited for systems
that can only be expressed as a probabilistic finite state machine and is incapable
of handling large systems due to the state space explosion [6] problem. Our
proposed theorem proving based approach, in contrast, is capable of handling
all kinds of probabilistic systems because of the high expressiveness of the higher-
order-logic and the verification of probabilistic properties is independent of the
size of the model since state space explosion is not an issue.

Hurd’s PhD thesis [14] can be regarded as one of the pioneering works in re-
gards to formalizing probabilistic systems in higher-order-logic. The thesis also
presents the tools, based on the mathematical probability theory, for reasoning
about the correctness of probabilistic systems and this is the area that we ex-
tended to verify interval properties of probabilistic systems in HOL. Hurd et.
al [15] also formalized the probabilistic guarded-command language (pGCL) in
HOL. The pGCL contains both demonic and probabilistic nondeterminism and
thus makes it suitable for reasoning about distributed random algorithms. Ce-
liku [4] built upon the formalization of the pGCL to mechanize the quantitative

Verification of Probabilistic Properties in HOL 351

Temporal Logic (qtl) and demonstrated the ability to verify temporal properties
of probabilistic systems in HOL.

8 Conclusions

In this paper, we propose to use higher-order-logic theorem proving as a comple-
ment to state-of-the-art simulation based approaches for a more reliable and ef-
ficient probabilistic analysis framework. The inherent soundness of the theorem-
proving based analysis allows us to acquire exact answers to probabilistic prop-
erties, which can be expressed in a closed mathematical form, in an interactive
manner and is thus quite useful for the analysis of safety critical and highly
sensitive sections of the system under test. Simulation techniques, on the other
hand, are capable of handling analytically complex sections in an automated
way but provide approximate answers and thus can be used to efficiently handle
the less critical sections of the system.

We presented a formal definition of the Cumulative Distribution Function of
random variables along with the verification of its properties in the HOL theorem
prover. This is a very significant step towards verification of probabilistic proper-
ties in a formalized probabilistic analysis framework, as has been shown in Section
5 of this paper. We alsobrieflydescribed the formalizationof the Standard Uniform
random variable in the HOL theorem prover and illustrated with an example that
it can be used to formalize other continuous random variables as well.

To the best of our knowledge, the paper presents the first attempt to formally
verify the CDF properties in a higher-order-logic theorem prover. For this verifi-
cation, we utilized the HOL theories of Sets, Boolean Algebra, Natural Numbers,
Real Analysis, Measure and Probability. Our results can therefore be used as an
evidence for the usefulness of theorem provers in proving pure mathematics and
the soundness of the existing HOL libraries. Besides being the first step towards a
formalized probabilistic analysis framework, the presented formalization is also
a significant step towards an attempt to reconstruct mathematical knowledge
in a computer-oriented environment and therefore is also a contribution to the
QED project, which calls for a computer system that effectively represents all
important mathematical knowledge and techniques [1].

References

1. The QED Manifesto. In: CADE-12: Proceedings of the 12th International Confer-
ence on Automated Deduction, pp. 238–251. Springer, Heidelberg (1994)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model Checking Algorithms
for Continuous time Markov Chains. IEEE Transactions on Software Engineer-
ing 29(4), 524–541 (2003)

3. Billingsley, P.: Probability and Measure. John Wiley, Chichester (1995)
4. Celiku, O.: Quantitative Temporal Logic Mechanized in HOL. In: International

Colloquium Theoretical Aspects of Computing, pp. 439–453 (2005)
5. Church, A.: A Formulation of the Simple Theory of Types. Journal of Symbolic

Logic 5, 56–68 (1940)

352 O. Hasan and S. Tahar

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

7. Devroye, L.: Non-Uniform Random Variate Generation. Springer, Heidelberg (1986)
8. Microsoft Excel (2007) http://office.microsoft.com
9. Gordon, M.J. C.: Mechanizing Programming Logics in Higher-0rder Logic. In: Cur-

rent Trends in Hardware Verification and Automated Theorem Proving, pp. 387–
439. Springer, Heidelberg (1989)

10. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

11. Gupta, V.T., Jagadeesan, R., Panangaden, P.: Stochastic Processes as Concur-
rent Constraint Programs. In: Principles of Programming Languages, pp. 189–202.
ACM Press, New York (1999)

12. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)
13. Hasan, O., Tahar, S.: Formalization of Standard Uniform Random Variable.

Technical Report, Concordia University, Montreal, Canada (December 2006)
http://hvg.ece.concordia.ca/Publications/TECH REP/SURV TR06

14. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD Thesis, University
of Cambridge, Cambridge, UK (2002)

15. Hurd, J., McIver, A., Morgan, C.: Probabilistic Guarded Commands Mechanized
in HOL. Theoretical Computer Science 346, 96–112 (2005)

16. Khazanie, R.: Basic Probability Theory and Applications. Goodyear (1976)
17. MacKay, D.J.C.: Introduction to Monte Carlo methods. In: Learning in Graphical

Models. NATO Science Series, pp. 175–204. Kluwer Academic Publishers, Dor-
drecht (1998)

18. McCullough, B.D.: Assessing the Reliability of Statistical Software: Part I. The.
American Statistician 52(4), 358–366 (1998)

19. McCullough, B.D.: Assessing the Reliability of Statistical Software: Part II. The.
American Statistician 53(2), 149–159 (1999)

20. McCullough, B.D., Wilson, B.: On the Accuracy of Statistical Procedures in Mi-
crosoft Excel 2003. Computational Statistics and Data. Analysis 49, 1244–1252
(2005)

21. McShane, E.J.: A Unified Theory of Integration. The. American Mathematical
Monthly 80, 349–357 (1973)

22. Milner, R.: A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences 17, 348–375 (1978)

23. Park, S., Pfenning, F., Thrun, S.: A Probabilistic Language based upon Sampling
Functions. In: Principles of Programming Languages, pp. 171–182. ACM Press,
New York (2005)

24. Paulson, L.C.: ML for the Working Programmer. Cambridge University Press,
Cambridge (1996)

25. Pfeffer, A.: IBAL: A Probabilistic Rational Programming Language. In: Interna-
tional Joint Conferences on Artificial Intelligence, pp. 733–740. Morgan Kaufmann
Publishers, San Francisco (2001)

26. Rutten, J., Kwaiatkowska, M., Normal, G., Parker, D.: Mathematical Techniques
for Analyzing Concurrent and Probabilisitc Systems. CRM Monograph, 23, (2004)

27. SAS. (2007) http://sas.com/technologies/analytics/statistics/stat/
index.html

28. SPSS (2007) http://www.spss.com/

http://office.microsoft.com
http://hvg.ece.concordia.ca/Publications/TECH_REP/SURV_TR06
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://sas.com/technologies/analytics/statistics/stat/index.html
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://sas.com/technologies/analytics/statistics/stat/index.html
http://www.spss.com/

UTP Semantics for Web Services

He Jifeng�

Software Engineering Institute
East China Normal University, Shanghai

Abstract. Web services are increasingly being applied in solving many
universal interoperability problems. Business Process Execution Lan-
guage (BPEL) is a de facto standard for specifying the behaviour of
business process. It contains several interesting features, including scope-
based compensation, fault handling and shared label synchronisation.
This paper presents a design-based formalism for specifying the be-
haviour of Web services, and provides new healthiness conditions to cap-
ture these new programming features. The new models for handling fault
and compensation are built as conservative extension of the standard
relational model in the sense that the algebraic laws presented in [14]
remain valid. The paper also discusses the links between the new model
with the design model, and shows that programs can be transformed to
the normal forms within the algebraic framework.

1 Introduction

With the development of the Internet Technology, Web services and Web-based
applications increasingly play an important role in information systems. The aim
of Web services is to achieve universal interoperability between different WEb-
based applications. In recent years, various business modelling languages have
been in troduced. such as XLANG [24], WSFL [15] and BPEL [9] and StAC [7].
BPEL is to be a standard for describing the behaviour of a business process
based on interactions between the process and its partner [9]. It contains sev-
eral interesting features, including compensation and fault handling, which can
be used to deal with business transactions. To ensure the correct development
of service-based systems, the precise understanding of the language features is
apparently important.
Compensation is one of typical features for long-running transactions. Butler in-
troduced Compensating CSP to describe this feature and also provided a trace
semantics [6,7,8] In [4,5], Bruni discussed the StAC [6] programs, and invented
a process calculi in the form of Java API, namely Java Transactional Web Ser-
vices. Qiu investigated the fault behaviour of the BPEL-like processes [22]. In
[21], Pu formalised an operational semantics for BPEL, where the bisimulation
technique was adopted to relate programs with their specifications.

� This work was supported by the National Basic Research Program of China (Grant
No. 2005CB321904).

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 353–372, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

354 H. Jifeng

The π-calculus has been applied in describing various Web service models. Luc-
chi and Mazzara formalised the semantics of BPEL within the framework of the
π-calculus [18]. Laneve and Zavattaro explored the application of the π-calculus
in the formalisation of the transactional constructs of BPEL and the standard
pattern of Web service compisition [16]. Gordon and Pucella validated a Web
service security abstraction using the spi calculus [1,11].
This paper is an attempt at taking a step forward to gain some perspectives on
service-oriented languages within the design calculus [14] as well as to identify
the links among various models for the following language features

– Fault handling
– Compensation mechanism
– Transaction

Our contributions include

– providing a conservative extension of the standard relational model to deal
with fault handling and compensation, which can be characterised by addi-
tional halthiness conditions.

– expanding the algebraic system for the Guarded Command Language [10]
by adding new left zero laws to support the normal form reduction.

– constructing a Galois connection (retract) to link the new model with the
design model.

The paper is organised as follows: Section 2 introduces a new healthiness con-
dition into the design calculs to deal with fault handling. Section 3 provides
an observation-oriented semantics for a simple imperative language with fault
handling mechanism. Section 4 explores the Galois link between this model with
the design model. We examine a language with the compensation mechanism.
in Section 5. Section 6 is devoted to a transaction-based language. The paper
concludes with a short discussion on the linking theories.

In the rest of this section we introduce some notations which will be used in the
later discussion.

Definition 1.1 (Merge)

Let P and Q be designs. The notation P ⊕Q denotes the program which merges
the outcomes of P and Q.

P ⊕Q =df if(pre.P → P, pre.Q→ Q)fi

where pre.P =df ¬P [true, false/ok, ok′].

Theorem 1.1

(b . S) ⊕ (c . T) =df (b ∨ c) . (b ∧ S ∨ c ∧ T)

⊕ is idempotent, symmetric and associative. It distributes over both nondeter-
ministic choice and conditional.

UTP Semantics for Web Services 355

Theorem 1.2

(1) P ! (Q⊕R) = (P !Q) ⊕ (P !R)

(2) (P � e�Q) ⊕R = (P ⊕R) � e� (Q⊕R)

(3) (P ⊕Q) � b�R = (P � b�R) ⊕ (Q� b�R)

Proof. Let P =df (b . S) and Q =df (c . T) and R =df (d . U).

(1) LHS {Def of ⊕}
= P ! (c ∨ d) . (c ∧ T ∨ d ∧ U) {def of !}
= (b ∧ (c ∨ d)) . (b ∧ S) ∨ (c ∧ T) ∨ (d ∧ U) {Ordering of designs}
= b ∧ (c ∨ d) .

(b ∧ (c ∨ d) ∧ S ∨ (b ∧ c) ∧ T ∨ b ∧ d ∧ U) {Def of ⊕}
= (b ∧ c) . (S ∨ T) ⊕ (b ∧ d) . (S ∨ U) {def of !}
= RHS

Definition 1.2

Designs b . S and c . T are domain-disjoint if b ∧ c = false.

Theorem 1.3

If P and Q are domain-disjoint, then

(1) P ⊕Q = P *Q
(2) (P ⊕Q);R = (P ;R) ⊕ (Q;R)

Proof
(1) RHS {Refinement calculus}
= (b ∨ c) . ((b⇒ S) ∧ (c⇒ T)) {ordering of designs}
= b ∨ c . (b ∨ c) ∧ (¬c ∧ S ∨ ¬b ∧ T) {b ∧ c = false}
= LHS

(2) LHS {def of ⊕}
= (b ∨ c) . (b ∧ S ∨ c ∧ T) ; R {refinement calculus}
= (b ∨ c) ∧ ¬((b ∧ S ∨ c ∧ T);¬d) . (b ∧ S ∨ c ∧ T);U {b ∧ c = false}
= b ∧ (¬(b ∧ S);¬d) ∨ c ∧ ¬((c ∧ T);¬d) .

(b ∧ S ∨ c ∧ T);U {def of ⊕}
= b ∧ ¬((b ∧ S);¬d) . (b ∧ S);U ⊕

c ∧ ¬(c ∧ T);¬d)) . (c ∧ T);U {refinement calculus}
= RHS

Theorem 1.4

If R = true . U , then (P ⊕Q);R = (P ;R) ⊕ (Q;R)

356 H. Jifeng

2 A Model for Fault Handling

In this section we work towards a precise characterisation of the class of designs
[14] that are most useful in fault handling. As usual, we follow the standard
practice of mathematics, which is to classify the basic concepts by their most
important properties. The classification of the basic concepts of a design is es-
sential to our goal of unifying theories of programming.

A subclass of designs may be defined in a variety of ways. Sometimes it is
done by a syntactic property. Sometimes the definition requires satisfaction of
a particular collection of algebraic laws. In general, the most useful definitions
are these that are given in many different forms, together with a proof that all
of them are equivalent.

To handling fault cases requires a more explicit analysis of the phenomena of
program execution. We therefore introduce into the alphabet of our designs a
pair of Boolean variables to denote the relevant observations.

Definition 2.1 (eflag and eflag′)
eflag records the observation that the program is asked to start when the

execution of its predcessor halts due to an occurrence of error.
eflag′ records the observation that an error occurs during the execution of the
program.

The variables eflag and eflag′ are not global variables held in the store of any
program, and it is assumed that they will never be mentioned in any expression
or assignment of the program text.

The introduction of error states has implication for sequential composition:
all the exception cases of program P are of course also the exception cases of
P ;Q. Control can pass P to Q only when P terminates successfully. Rather than
change the definition of sequential composition given in [14], we enforce these
rules by means a healthiness condition. If the program Q is asked to start in an
exception case of its predecessor, it leaves the state unchanged

(Req1) Q = II � eflag �Q

when the design II adopts the following definition

II =df true . ((v′ = v) ∧ (eflag′ = eflag))

A design is Req1-healthy if it satisfies the healthiness condition Req1.

Theorem 2.1

Req1-healthy designs form a complete lattice.

Proof. Clearly the mapping H1 =df λQ • (II � eflag � Q) is monotonic. The
conclusion follows from Tarski’s Fixed Point Theorem [23].

The following theorem indicates Req1-healthy designs are closed under conven-
tional programming combinators.

Theorem 2.2

(1) H1(P !Q) = H1(P) ! H1(Q)

UTP Semantics for Web Services 357

(2) H1(P � b�Q) = H1(P) � b� H1(Q)

(3) H1(P ;H1(Q)) = H1(P);H1(Q)

Proof of (3) RHS {; distributes over cond}
= H1(Q) � eflag� (P ;H1(Q)) {Cond is associative}
= II � eflag � (P ;H1(Q)) {Def of H1}
= LHS

The basic concept of a Req1-healthy design deserves a notation of its own.

Definition 2.2

Let b1 and b2 be Boolean expressions of program variables, and R1 and R2

predicates not containing eflag or eflag′. Define
(
b1
b2

)

‖=
(
R1

R2

)

=df H1

(
(b1 . R1); succ1 ⊕

(b2 . R2); fail1

)

where

succ1 =df true . (v′ = v ∧ ¬eflag′)

fail1 =df true . (v′ = v ∧ eflag′)

This predicate states that

– if the program starts in a state satisfying b1, it will terminate successfully,
and on termination R1 will hold.

– if it is activated in a state satisfying b2, an error may occur during its exe-
cution and R2 will be true when the program terminates.

Theorem 2.3
(
b1
b2

)

‖=
(
R1

R2

)

= H1

⎛

⎝(b1 ∨ b2) .

⎛

⎝
(b1 ∧R1)

�¬eflag′�
(b2 ∧R2)

⎞

⎠

⎞

⎠

In the interpretation of programs and specifications as single predicates, correct-
ness is identified with implication. In the refinement calculus, the corresponding
ordering is known as refinement. The following theorem shows that the two
ordering are the same. The notation P [e, f/x, y] denotes the result of simulta-
neously substituting e for x and f for y in P .

Theorem 2.4 (Ordering)

Let P =
(
b1
b2

)

‖=
(
R1

R2

)

and Q =
(
c1
c2

)

‖=
(
S1

S2

)

.

P) Q iff

[c⇒ b] and [(c ∧ b1 ∧R1) ⇒ (c1 ∧ S1)] and [(c ∧ b2 ∧R2) ⇒ (c2 ∧ S2)]

where b =df b1 ∨ b2 and c =df c1 ∨ c2.

358 H. Jifeng

3 Programming Language

Definition 3.1 (Chaos)

The chaotic program ⊥ is defined as usual

beh1(⊥) =df H1(true)

Theorem 3.1 (Left zero)

If Q is a Req1-healthy design, then ⊥;Q = ⊥

Proof. From Theorem 2.2(3).

There is a class of programs which never end the execution with a meaningful
outcome. The assignment x := 1/0 belongs to this category.

Definition 3.2 (halt)

We use the notation halt to denote the program which always throws an error
case, and leaves all variables unchanged.

beh1(halt) =df

(
false

true

)

‖=
(
x′ = x ∧ y′ = y ∧ .. ∧ z′ = z

x′ = x ∧ y′ = y ∧ ... ∧ z′ = z

)

Theorem 3.2 (Algebraic characterisation of Req1-healthy)

A design P is Req1-healthy iff it satisfies the left zero law

halt;P = halt

Proof. Assume that P is a Req1-healthy design:

halt;P {Def of halt}
= halt; (eflag)⊥;P {; distributes over cond}
= halt; (P � eflag � ⊥) {assumption}
= halt; ((II � eflag� P) � eflag� chaos) {cond is assoc}
= halt; (eflag)⊥ {Def of halt}
= halt

Suppose that P is a design satisfying the left zero law

P {the left unit law}
= skip;P {Def of skip}
= (halt� eflag � skip);P {; distributes over cond}
= (halt;P) � eflag � (skip;P) {assumption}
= halt� eflag � P {Def of halt}
= skip� eflag � P

The nonderterminic choice and sequential composition have exactly the same
meaning as operators on the single predicates defined in [14].

UTP Semantics for Web Services 359

Theorem 3.3

Let b = b1 ∨ b2 and c = c1 ∨ c2. Then

(1)
(
b1
b2

)

‖=
(
S1

S2

)

!
(
c1
c2

)

‖=
(
T1

T2

)

=

(
b1 ∧ c ∨ c1 ∧ b
b2 ∧ c ∨ c2 ∧ b

)

‖=
(
b1 ∧ S1 ∨ c1 ∧ T1

b2 ∧ S2 ∨ c1 ∧ T2

)

(2)
(
b1
b2

)

‖=
(
S1

S2

)

;
(
c1
c2

)

‖=
(
T1

T2

)

=

(
b1 ∧ ¬(R1;¬c)

b1 ∧ ¬(R1;¬c) ∨ b2

)

‖=
(

S1; (c1 ∧ T1)

b1 ∧ ¬(S1;¬c) ∧ (R1; (c2 ∧ T2)) ∨ b2 ∧ S2

)

(3)
(
b1
b2

)

‖=
(
S1

S2

)

� d�

(
c1
c2

)

‖=
(
T1

T2

)

=

(
b1 � d� c1

b2 � d� c2

)

‖=
(
S1 � d� T1

S2 � d� T2

)

The definition of the assignment needs to take into account the possibility that
evalation of the expression is undefined..

Definition 3.3 (Assignment)

For each expression e of a reasonable programming language, it is possible to
calculate a condition D(e), which is true in just those circumstances in which e
can be successfully evaluated [20]. For example

D(17) = true

D(true) = D(false) = true

D(b ∨ c) = D(b) ∧ D(c)

D(x) = true

D(e+ f) = D(e) ∧ D(f)

D(e/f) = D(e) ∧ D(f) ∧ f 	= 0

D(e� b� f) = (b⇒ D(e)) ∧ (¬b ⇒ D(f)) if b is well-defined

For any expression e, D(e) is a well-defined Boolean expressuion.

Successful execution of an assignment relies on the assumption that the expres-
sion will be successfully evaluated. So we formulate our definition of assignment

beh1(x := e) =df

(
D(e)
¬D(e)

)

‖=
(
x′ = e ∧ y′ = y ∧ .. ∧ z′ = z

x′ = x ∧ y′ = y ∧ ... ∧ z′ = z

)

Expressed in words, this definition states that

360 H. Jifeng

– Either the initial values of the variables are such that evaluation of e fails
(¬D(e)), and the execution halts with all variables unchanged.

– or the program terminates successfully, and the value of x′ is e, and the final
values of all the other variables are the same as their initial values.

The following laws express the basic properties of assignment: that variables not
mentioned on the left of := remain unchanged, that the order of the listing is
immaterial.

Theorem 3.4 (Algebraic laws for assignment)

(1) (x := e) = (x, y := e, y)

(2) (x, y, z := e, f, g) = (y, x, z, := f, e, g)

Guarded choice is defined as usual, and will be shown as the finite normal form
in the later discussion.

Definition 3.4 (Guarded choice)

Let {bi | 1 ≤ i ≤ n} be a set of boolean expressions, and {Pi | 1 ≤ i ≤ n} a set of
programs.

beh1(if b1 → P1, .., bn → Pn fi) =df

⎛

⎜
⎝

∨
i(bi ∧ D(b) ∧ Pi) ∨

(
∧

i ¬bi) ∧ D(b) ∧⊥ ∨
¬D(b) ∧ halt

⎞

⎟
⎠

The following theorem enables us to focus on the guarded choices with well-
defined boolean guards in the rest of this section.

Theorem 3.5

if(b1 → P1, ..., bn → Pn)fi =

if((b1 � D(b) � false) → P1, .., (bn � D(b) � false) → Pn, ¬D(b) → halt)fi

The next theorem collects a set of well-known algebraic laws for guarded choice,
which will be used in the normal form reduction later.

Theorem 3.6

(1) if(b1 → P1, .., bn → Pn)fi = fi(bπ(1) → Pπ(1), .. bπ(n) → Pπ(n))fi

where π is any permutation of the list {1, 2, .., n}.
(2) if(b→ P, b→ Q, G)fi = if(b→ (P !Q), G)fi =

if(b→ P, G)fi ! if(b→ Q, G)fi

(3) if(b1 → P1, .., bn → Pn)fi;Q = if(b1 → (P1;Q), .., bn → (Pn;Q))fi

(4) if(b→ if(c1 → Q1, .., cn → Qn)fi, G)fi =

if(b ∧ c1 → Q1, ..., b ∧ cn → Qn, G)fi provided that
∨

i ci = true

(5) if(b→ P, c→ P, G)fi = if((b ∨ c) → P, G)fi

(6) if(false→ P, G)fi = if(G)fi

(7) if()fi = ⊥

UTP Semantics for Web Services 361

(8) if(b1 → P1, .., bn → Pn)fi = if(b1 → P1, .., bn → Pn,
∧

i ¬bi → ⊥))fi

(9) P = if(true → P)fi

Conditional choice is a special kind of guarded choice.

P � b�Q =df if(b→ P, ¬b→ Q)fi

Definition 3.5 (Total assignment)

An assignment is a total one if all the variables of the program appear on the
left hand side in some standard order

x, y, .., z := e, f, .., g

and all the expressions on the right hand side are well-defined.

Total assignments satisfy the algebraic laws given in [14], for example

Theorem 3.7 (Algebraic laws for total assignment)

(1) skip = (v := v)

(2) (v := e ; v := f) = (v := f(e))

(3) v := e; if

⎛

⎜
⎝

b1(v) → P1,

..,

bn(v) → Pn

⎞

⎟
⎠fi = if

⎛

⎜
⎝

b1(e) → (v := e;P1),

...,

bn(e) → (v := e;Pn)

⎞

⎟
⎠fi

We can transform an assignment into a total one by using guarded choice.

Theorem 3.8

x := e = if

(
D(e) → x := (e� D(e) � x),

¬D(e) → halt

)

fi

In the following we will use v := e to denote a total assignment. The following
laws enable us to merge alternatives of a guarded choice.

Theorem 3.9

(1) if(b→ v := e, c→ v := f, G)fi =

if(b ∨ c→ (v := (e� b� (f � c� v)) ! v := (f � c� (e� b� v))), G)fi

(2) if(b→ v := e; halt, c→ v := f ; halt, G)fi =

if(b ∨ c→ (v := (e� b� (f � c� v)) ! v := (f � c� (e� b� v))); halt, G)fi

Definition 3.6 (Finite normal form)

A finite normal form has the following structure

if (b→ !i(v := ei), c→ !j(v := fj); halt)fi

where
– b and c are well-defined.
– all assignments are total assignment.

362 H. Jifeng

Theorem 3.10 (Normal form reduction)

Any finite program can be transformed into a normal form using the laws given
previously.

Proof. First we show how to convert primitive commands into normal form.

(1) Chaos:

⊥ {Theorem 3.6(7)}
= if()fi {Theorem 3.6(6)}
= if(false→ v := v, false→ v := v; halt)fi

(2) Halt:

halt {Theorem 3.6(9)}
= if(true→ halt)fi {Theorem 3.6(6)}
= if(false→ v := v, true→ halt)fi {left unit}
= if(false→ v := v, true→ (v := v; halt))fi

(3) Assignment:

x := e {Theorem 3.8}
= if(D(e) → x := e � D(e) � x, ¬D(e) → halt)fi {Theorem 3.4}
= if(D(e) → x, y, .., z := e � D(e) � x, y, ..., z,

¬D(e) → halt)fi

In the following we show how to eliminate programming combinators betwen nor-
mal forms.

(4) Nondeterministic choice.

if

(
b1 → �i(v := ei),

b2 → �j(v := fj); halt

)

fi �

if

(
c1 → �l(v := gl),

c2 → �m(v := hm); halt

)

fi {Theorem 3.6(2), (9)}

= if

⎛

⎜
⎜
⎜
⎜
⎝

true → if

(
b1 → �i(v := ei),

b2 → �j(v := fj); halt

)

fi,

true → if

(
c1 → �l(v := gl),

c2 → �m(v := gm); halt

)

fi

⎞

⎟
⎟
⎟
⎟
⎠

fi {Theorem 3.6(4), (8)}

= if

⎛

⎜
⎝

b1 → �i(v := ei), c1 → �l(v := gl),

b2 → �j(v := fj); halt, c2 → �m(v := gm); halt,

¬c → ⊥, ¬b → ⊥

⎞

⎟
⎠fi {Theorem 3.6(1), (2)}

= �i, j, l, mif

⎛

⎜
⎝

b1 → (v := ei), c1 → (v := gl),

b2 → (v := fj); halt, c2 → (v := gm); halt,

¬c → ⊥, ¬b → ⊥

⎞

⎟
⎠fi {Theorem 3.9}

UTP Semantics for Web Services 363

= �i, j, l, mif((b1 ∨ c1) →
(

(v := (ei � b1 � (gl � c1 � v))�
v := (gl � c1 � (ei � b1 � v)))

)

,

(b2 ∨ c2) →
(

((v := fj � b2 � (hm � c2 � v)))�
((v := hm � c2 � (fj � b2 � v)))

)

; halt)fi {Theorem 3.6(2), (8)}

= if((b1 ∧ c ∨ c1 ∧ b) →

�i, j

(
(v := (ei � b1 � (gl � c1 � v)))�
(v := (gl � c1 � (ei � b1 � v)))

)

,

(b2 ∧ c ∨ c2 ∧ b) →

�j, m

(
(v := fj � b2 � (hm � c2 � v))�
(v := hm � c2 � (fj � b2 � v))

)

; halt)fi

(5) Composition: From (4) we are only required to consider the case P ;Q where
P = if(b1 → v := e, b2 → v := f ; halt)fi
Q = if(c1(v) → v := g(v), c2(v) → v := h(v); halt)fi

P ;Q {Theorem 3.1 and 3.6(3)}

= if

(
b1 → (v := e);Q,

b2 → (v := f); halt

)

fi {Theorem 3.7(2), (3)}

= if

⎛

⎜
⎝
b1 → if

(
c1(e) → (v := g(e))

c2(e) → (v := h(e); halt)

)

fi

b2 → (v := f); halt

⎞

⎟
⎠ {Theorem 3.6(4), (8)}

= if

⎛

⎜
⎜
⎜
⎜
⎝

b1 ∧ c1(e) → (v := g(e))

b1 ∧ c2(e) → (v := h(e); halt)

b1 → ¬c(e) → ⊥
b2 → (v := f); halt

⎞

⎟
⎟
⎟
⎟
⎠

from which and Theorem 3.9 follows the conclusion.
(6) Guarded choice: From (4) and Theorem 3.6(2) we will only examine the case
if(c1 → P1, .., cn → Pn)fi where

Pi = if(bi1 → (v := ei), bi2 → (v := fi; halt))fi

Let bi = (bi1 ∨ bi2.
if(c1 → P1, .., cn → Pn)fi {Theorem 3.6(4), (8)}

= if

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1 ∧ b11 → (v := e1),

c1 ∧ b12 → (v := f1; halt),

c1 ∧ ¬b1 → ⊥,
...

cn ∧ bn1 → (v := en),

cn ∧ bn2 → (v := fn; halt),

cn ∧ ¬bn → ⊥,

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

fi

from which and Theorem 3.9 follows the conclusion.

364 H. Jifeng

4 Link with the Design Calculus

This section discusses the relationship between the design calculus in [14] with
the refinement calculs for fault handling. We will show there exists a retract to
link these two calculi.

First we define a mapping G1 from design to Req1-healthy designs:

G1(D) =df H1(D ‖ (true . (eflag′ = eflag)))

where ‖ stands for disjoint parallel combinator [14]:

(b . R)‖(c . S) =df (b ∧ c) . (R ∧ S)

Theorem 4.1

G1(b . R) =

(
b

false

)

‖=
(

R
false

)

LHS {Def of disjoint parallel}
= H1(b . (R ∧ eflag′ = eflag)) {Def of H1}
= H1(b . R ∧ ¬eflag′) {ordering of design calculus}
= H1(b . (b ∧R ∧ eflag′)) {Def 2.2}
= RHS

G1 distributes over the standard programming combinators.

Theorem 4.2 (Homomorphism)

(1) G1(D1;D2) = G1(D1);G1(D2)

(2) G1(D1 !D2) = G1(D1) ! G1(D2)

(3) G1(D1 � b�D2) = G1(D1) � b� G1(D2) provided that b is well-defined.

Now we define a function F1 which maps a Req1-healthy design to a design

F1(P) =df P [false/eflag]; (¬eflag . v′ = v)

Theorem 4.3

F1

((
b1

b2

)

‖=
(
R1

R2

))

= ((b1 ∨ b2) ∧ ¬(b2 ∧R2; true)) . (b1 ∧R1)

Proof. LHS {Def of F1}
= (b1 ∨ b2) . (b1 ∧R1) � ¬eflag′ � (b2 ∧R2) ;

(¬eflag . (v′ = v)) {Refinement calculus}
= RHS

Corollary. If [b2 ⇒ ∃v′R2], then

F1

((
b1

b2

)

‖=
(
R1

R2

))

= (b1 ∧ ¬b2) . R1

UTP Semantics for Web Services 365

Theorem 4.4

Let P =df

(
b1

b2

)

‖=
(
R1

R2

)

and Q =df

(
c1

c2

)

‖=
(
S1

S2

)

If [b2 ⇒ ∃v′ •R2] and [c2 ⇒ ∃v′ • S2], then

(1) F1(P !Q) = F1(P) ! F1(Q)

(2) F1(P ;Q) = F1(P);F1(Q)

(3) F1(P � d�Q) = F1(P) � d� F1(Q) provided that d is well-defined.

Finally we show that the pair (F1, G1) is a retract.

Theorem 4.5 (Retract)

(F1, G1) is a Galois connection satisfying

(1) F1(G1(D)) = D

(2) G1(F1(P)) � P

Proof
(1) F1(G1(b . R)) {Theorem 4.1}

= F1

((
b

false

)

‖=
(

R

false

))

{Corollary}

= b . R
(2) G1(F1(P)) {Theorem 4.3}

= G1((b1 ∨ b2) ∧ ¬(b2 ∧R2; true) . (b1 ∧R1)) {Theorem 4.1}

=

(
(b1 ∨ b2) ∧ ¬(b2 ∧R2; true)

false

)

‖=
(
b1 ∧R1

false

)

{Theorem 2.3}

� P

5 Rollback

To equip a program with compensation mechanism, it is necessary to characterise
the cases when the control has to be passed to the compensation components.
Following the line adopted by the fault handling model, we introduce a new
logical variable forward to describe the status of control flow of the execution
of a program:

– forward′ = true indicates successful termination of the execution of the
program. In this case, its successor will carry on with the initial state set up
by the program.

– forward′ = false indicates the program has to roll back its execution to
the original state. In this case, its corresponding compensation module will
be invoked.

366 H. Jifeng

As a result, when a program Q is asked to start in a state where forward =
false, it has to remain silent, i.e., Q is required to meet the following healthiness
condition:

(Req2) Q = II � ¬forward �Q

This condition can be captured by the following mapping

H2(Q) =df II � ¬forward �Q

in the sense that a program satisfies Req2 iff it is a fixed point of H2

Theorem 5.1

H2 ◦ H1 = H1 ◦ H2 where ◦ denotes functional composition.

Proof. From the fact that

H1(H2(Q)) = II � eflag ∨ ¬foward �Q = H2(H1(Q))

Let et H =df H1 ◦ H2.

Theorem 5.2

A design satisfies both Req1 and Req2 iff it is a fixed point of H.

Like the mapping H1, H is also a homomorphism.

Theorem 5.3

(1) H(P !Q) = H(P) ! H(Q)

(2) H(P � b�Q) = H(P) � b� H(Q)

(3) H(P ;H(Q)) = H(P);H(Q)

Similar to the Req1-healthy designs in Section 2, we introduce the following
notation to specify both error handling and rollback mechanism. Define

⎛

⎝
b1
b2
b3

⎞

⎠ ‖=

⎛

⎝
R1

R2

R3

⎞

⎠ =df H

⎛

⎜
⎝

(b1 . R1); succ⊕
(b2 . R2); fail⊕

(b3 . R3); rollback

⎞

⎟
⎠

where

succ =df (succ1 ‖ (true . forward′))

fail =df (fail1 ‖ (true . forward′))

rollback =df true . ((v′ = v) ∧ ¬forward′)

We add a primitive command undo into our language, whose execution gives rise
to the change of control flow

beh(undo) =df

⎛

⎝
false
false
true

⎞

⎠ ‖=

⎛

⎝
false
false
v′ = v

⎞

⎠

UTP Semantics for Web Services 367

Theorem 5.4

A program Q is a fixed point of H iff it satisfies the left zero laws

undo;Q = undo and halt;Q = halt

The definitions of the programming language of Section 3 remain the same except
that we have to take Req2 into account:

beh(Q) =df H2(beh1(Q)) ‖ (true . (forward′ = forward))

The new model preserves all the algebraic laws given in Section 3. Our extended
language has a new normal form

Definition 5.1 (Finite normal form)

A finite normal form has the following structure

if (b→ !i(v := ei), c→ !j(v := fj); halt, d→ !k(v := gk); undo)fi

Theorem 5.5 (Normal form reduction)

Any finite program can be transformed into a normal form using the laws given
previously.

Proof. Similar to Theorem 3.10.

We define the following mappings to link the new model with the model of
Section 2

G2(P) =df H2(P ‖ (true . forward′))

F2(Q) =df Q[true/forward]; (forward . ((v′ = v) ∧ (eflag′ = eflag)))

Theorem 5.6

(1) F2

⎛

⎝

⎛

⎝
b1
b2
b3

⎞

⎠ ‖=

⎛

⎝
R1

R2

R3

⎞

⎠

⎞

⎠ =
((

b1 ∧ ¬b3
b2 ∧ ¬b3

)

.
(
R1

R2

))

(2) G2

((
b1
b2

)

.
(
R1

R2

))

=

⎛

⎝

⎛

⎝
b1
b2

false

⎞

⎠ .

⎛

⎝
R1

R2

false

⎞

⎠

⎞

⎠

Theorem 5.7

(F2, G2) is a retract, i.e. it is a Galois connection satisfying

(1) F2(G2(P)) = P

(2) G2(F2(Q)) � Q

6 Compensation

The ability to declare compensation logic alongside forware-working logic is the
underpinning of the application-controlled error-handling framework of

368 H. Jifeng

WS-BPEL. This section will provide a design-based model for transation which
consists of forware activity (for application task) and backward activity (for
compensation).

Definition 6.1 (Forward and Backward Activities)
Let P be a design with forward, forward′ ∈ α(P). Its forward activity

→
P and

backward activity
←
P are defined by

→
P =df P � forward � II

←
P =df II � forward � (P ; (¬forward)⊥)

The definition states that

1. P exhibits its forward-working behaviour when it is activated with
forward = true.

2. P performs compensation when forward is false initially. However, this
compensation-logic is irreversible.

Theorem 6.1

(1)
→
→
P =

→
P

(2)
←
←
P =

←
P

(3)
→
←
P = II =

←
→
P

→ and ← distribute over the standard programming combinators.

Theorem 6.2

(1)
−−−→
P !Q =

→
P !

→
Q

(2)
−−−−→

P � b�Q =
→
P �b�

→
Q

(3)
−−−→

P ;
→
Q =

→
P ;

→
Q

(4)
−−−→
→
P ;Q =

−−−→
P ;Q

Theorem 6.3

(1)
←−−−
P !Q =

←
P !

←
Q

(2)
←−−−−

P � b�Q =
←
P �b�

←
Q

(3)
←−−−

P ;
←
Q =

←
P ;

←
Q =

←−−−
←
P ;Q

The following laws enable us to eliminate the nested ← and →

UTP Semantics for Web Services 369

Theorem 6.4

(1)
−−−→
←
P ;Q =

→
Q

(2)
←−−−
→
P ;Q =

←
Q

(3)
→
P ;

←
Q =

←
Q;

−−−→

P ;
←
Q

Definition 6.2 (Transaction)

T is a transaction if it satisfies

T =
→
T �forward�

←
T

Clearly transactions form a complete lattice.

Theorem 6.5

The set of transactions is closed under conditional and nondeterministic choices.

Definition 6.3 (Chain)

Let P and Q be transactions. Their chain P >> Q is defined by

P >> Q =df (
→
P ; (

−−−→

Q;
←
P)) � forward � (

←
Q;

←
P)

Theorem 6.6 (Associativity)

(P >> Q) >> R = P >> (Q >> R)

Proof.
−→
LHS {Def 6.3}

=
−−−→
P >> Q ;

−−−−−→

R;
←−−−
P >> Q {Def 6.3}

=
→
P ;

−−−→

Q;
←
P ;

−−−−→

R;
←
Q;

←
P {Theorem 6.2(4)}

=
→
P ;

−−−→
→
Q;

←
P ;

−−−−→

R;
←
Q;

←
P {Theorem 6.2(3)}

=
→
P ;

−−−−−→

(
→
Q;

←
P ;

−−−−→

(R;
←
Q;

←
P)) {Theorem 6.4(3)}

=
→
P ;

−−−−−→

(
→
Q;

−−−→

(R;
←
Q);

←
P) {Theorem 6.2(4)}

=
−→
RHS

Definition 6.4 (Forward transaction)

T is a forward transaction if its forward-working thread never rolls back its
execution: →

T =
→
T ; (forward)⊥

370 H. Jifeng

Forward transactions form a complete lattice, and are are closed under !, �b�
and >>.

Theorem 6.7

If P and Q are forward transactions, then

P >> Q = (
→
P ;

→
Q) � forward � (

←
Q;

←
P)

Theorem 6.8

Let P , Q and R be forward transactions. If
←
P =

←
Q, then

(1) (P � b�Q) >> R = (P >> R) � b� (Q >> R)

(2) (P !Q) >> R = (P >> R) ! (Q >> R)

Definition 6.5 (Parallel)

Let P and Q be transactions with disjoint alphabets. The notation P×Q denotes
the program which runs P and Q in parallel, and rolls back its forware-working
activities when either P or Q does so.

P ×Q =df

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
P [ok′1, foward′1, ef lag′1/ok′, forward′, ef lag′] ∧
Q[ok′2, foward

′
2, ef lag

′
2/ok

′, forward′, ef lag′]

)

;

ok1 ∧ ok2 ⇒

⎛

⎜
⎝

ok′ ∧ (v′ = v)

forward′ = forward1 ∧ forward2

eflag′ = eflag1 ∨ eflag2

⎞

⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Theorem 6.9 (Properties)

(1) P ×Q = Q× P

(2) P × (Q×R) = (P ×Q) ×R

(3) (P ! Q) ×R = (P ×R) ! (Q×R)

(4) (P � b� Q) ×R = (P ×R) � b� (Q×R)

7 Conclusion

A theory of programming is intended to support the practice of programming by
relating each program to the specification of what it is intended to achieve. An
unifying theory is one that is applicable to a general paradigm of computing, sup-
porting the classification of many programming languages as correct instances
ofthe paradigm. This paper indicates that the UTP approach is effective in the
following aspects

– a new model can be built by adding healthiness conditions:

1. the model of designs is characterised by the left zero law ⊥;P = ⊥ and
the unit laws skip;P = P = P ; skip

UTP Semantics for Web Services 371

2. the model of Req1-healthy designs is captured as a subset of designs
that meet the new left zero law halt;P = halt

3. the model in dealing with compensation is seen as a submodel of the
Req1-healthy designs which satisfies the left zero law undo ; P = P .

– we can explore the links among the models by providing the Galois retracts.
– the model extension is ecnomical since the original algebraic laws remain

valid.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

2. Alonso, G., Kuno, H., Casati, F., et al.: Web Services: Concepts, Architectures and
Applications. Springer, Heidelberg (2003)

3. Bhargavan, K., et al.: A Semantics for Web Service Authentication. Theoretical
Computer Science 340(1), 102–153 (2005)

4. Bruni, R., Montanari, H.C., Montannari, U.: Theoretical foundation for compensa-
tion in flow composition languages. In: Proc. POPL 2005, 32nd ACM SIGPLAN-
SIGACT symposium onprinciple of programming languages, pp. 209–220. ACM
Press, New York (2004)

5. Bruni, R., et al.: From Theory to Practice in Transactional Composition of Web
Services. In: Bravetti, M., Kloul, L., Zavattaro, G. (eds.) Formal Techniques
for Computer Systems and Business Processes. LNCS, vol. 3670, pp. 272–286.
Springer, Heidelberg (2005)

6. Bulter, M.J., Ferreria, C.: A process compensation language. In: Grieskamp, W.,
Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 61–76. Springer,
Heidelberg (2000)

7. Bulter, M.J., Ferreria, C.: An Operational Semantics for StAC: a Lanuage for Mod-
elling Long-Running Business Transactions. In: De Nicola, R., Ferrari, G.L., Mered-
ith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 87–104. Springer, Hei-
delberg (2004)

8. Butler, M.J., Hoare, C.A.R., Ferreria, C.: A Trace Semantics for Long-Running
Transactions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating
Sequential Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

9. Curbera, F., Goland, Y., Klein, J. et al.: Business Process Execution Language for
Web Service (2003) http://www.siebei.com/bpel

10. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

11. Gordon, A.D., et al.: Validating a Web Service Security Abstraction by Typing.
Formal Aspect of Computing 17(3), 277–318 (2005)

12. Jifeng, H., Huibiao, Z., Geguang, P. (eds.): A model for BPEL-like languages.
Frontiers of Computer Science in China, vol. 1(1), pp. 9–20. Higher Education
Press (2007)

13. Hoare, C.A.R.: Communicating Sequential Language. Prentice-Hall, Englewood
Cliffs (1985)

14. Hoare, C.A.R., Jifeng, H.: Unifying theories of programming. Prentice-Hall, En-
glewood Cliffs (1998)

15. Leymann, F.: Web Service Flow Language (WSFL1.0). IBM (2001)

http://www.siebei.com/bpel

372 H. Jifeng

16. Laneve, C., et al.: Web-pi at work. In: De Nicola, R., Sangiorgi, D. (eds.) TGC
2005. LNCS, vol. 3705, pp. 182–194. Springer, Heidelberg (2005)

17. Jing, L., Jifeng, H., Geguang, P.: Towards the Semantics for Web Services Chore-
ography Description Language. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 246–263. Springer, Heidelberg (2006)

18. Lucchi, R., Mazzara, M.: A Pi-calculus based semantics for WS-BPEL. Journal of
Logic and Algebraic Programming (in press)

19. Milner, R.: Communication and Mobile System: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

20. Morris, J.M.: Non-deterministic expressions and predicate transformers. Informa-
tion Processing Letters 61, 241–246 (1997)

21. Geguang, P., et al.: Theoretical Foundation of Scope-based Compensation Flow
Language for Web Service. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 251–266. Springer, Heidelberg (2006)

22. Qiu, Z.Y., et al.: Semantics of BPEL4WS-Like Fault and Compensation Handling.
In: Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
350–365. Springer, Heidelberg (2005)

23. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5, 285–309 (1955)

24. Thatte, S.: XLANG: Web Service for Business Process Design. Microsoft (2001)

Combining Mobility with State

Damien Karkinsky, Steve Schneider, and Helen Treharne

Department of Computing, University of Surrey

Abstract. Our work is motivated by practice in Peer-to-Peer networks
and Object-Oriented systems where instantiation and dynamically re-
configurable interconnection are essential paradigms. For example, in a
Peer-to-Peer network nodes can exchange data to complete tasks. Nodes
can leave or join the network at any time. In Object-Oriented systems,
an object can be uniquely identified and will communicate with other
objects. In this paper we outline a formal framework which supports
this kind of interaction so that the integrity of each active object or
node is preserved, and so that we can reason about the overall behaviour
of the system. The formal framework is based on a combination of the
π-calculus and the B-Method.

1 Introduction

Implementations of distributed systems involve setting up a network or networks,
managing the communication that occur between the nodes in a network and
transferring data between nodes. Networks can be static and comprise a fixed
number of nodes or they can be more dynamic in which the number of nodes in
a network may vary over time. Peer-to-Peer (P2P) networks are typically large-
scale with potentially millions of nodes which join and leave a network regularly;
the nodes are autonomous but co-operate to share and retrieve resources. Much
of the research conducted in the area of P2P networks has focused on describ-
ing possible network architectures [4] and also on simulations to reason about
the performance of networks [10]. Orthogonally, the formal methods commu-
nity has also contributed to reasoning about dynamic distributed systems which
can evolve in their architecture but has focused on proving the correctness of
their communication protocols. For example, the π-calculus [9] has been used
to prove properties of communication protocols and P2P algorithms [2,3]. The
research emphasis to date is based on a high level of abstraction of the data
being transferred across systems. We are interested in exploring how to specify
systems which are dynamic in nature and to ensure the integrity of the data
being transferred between nodes. The inherent difficulty with this is that when
data is transferred between nodes the receiving node has no control over the
data, but may need to make some assumptions about it before it can be used
reliably. It is clear that there are two aspects to such a specification: the patterns
of behaviour and state information.

The Formal Methods Group at the University of Surrey has been working on
developing techniques for specifying and verifying distributed systems so that

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 373–392, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

374 D. Karkinsky, S. Schneider, and H. Treharne

the patterns of behaviour are made explicit and captured separately from the
specification of the data in the system. The approach is referred to as CSP‖B.
CSP [6] is a process algebra that is concerned with the evolution of systems as
they execute sequences of events. The B Method [1] focuses on defining how the
data within a system can be managed through operations.

Early research detailing the CSP‖B approach [15] focused on the sequential
aspects of CSP and was concerned with identifying how sequences of events
could control the way the data were being updated. Both B and CSP were
chosen because they were individually mature notations with strong tool sup-
port.The goal in their integration was to preserve the original semantics of both
languages whilst building a framework for defining and reasoning about a com-
bined system. The overhead of keeping both descriptions separate is the ad-
ditional proof obligations that need to be proved for each particular system
in order to show that the combined views are consistent. Consistency in the
CSP ‖ B approach means demonstrating divergence freedom and deadlock free-
dom of the process/machines pairs [16,11]. Inappropriate behaviour (such as
calling operations outside their preconditions) is modelled as divergence, so di-
vergence freedom is at the core of the approach and this must be established be-
fore considering any other safety and liveness properties of interest. The CSP ‖ B
approach adopts a particular style of specification constraining the architecture
of a system to be static. The data held within B machines are tightly coupled
with their corresponding CSP processes, and this relationship is fixed from the
outset. Therefore, the approach does not support dynamic reconfiguration.

Our research aim is to model P2P architectures using the π-calculus and B
but we begin by developing techniques to support a model of a simplified server-
node network. In this paper we explore the use of the π-calculus to describe the
dynamic patterns of behaviour of a system and model the data within a system
separately using the B method. We use a behavioural type-system with variant
types, introduced in [8] and in Section 2, to maintain server/client style inter-
action between instances of machines and π processes. The interactions enable
π processes to call operations of instances of B machines. We provide a proof
obligation framework to show that none of these operation calls violate the oper-
ations’ preconditions. The proof obligation framework is formally underpinned
by the π-calculus semantic framework. In order to achieve this formal justifi-
cation we provided a π operational semantics for B machines in [7], which is
informally discussed in this paper. The novelty in the work is that we can verify
that the state within a system will always be dynamically transferred in a way
which ensures that the operations which manage the state can be called safely.

The paper is organised as follows: Section 2 provides some background no-
tation on B and the π-calculus, Section 3 discusses how to construct combined
specifications using B and the π-calculus, Section 4 illustrates the concepts of
constructing and verifying a combined specification using a running example,
Section 5 defines how to ensure that B machines and π processes are combined
in a consistent way, i.e. divergence free, and Section 6 provides a summary, a
discussion of related work and future plans.

Combining Mobility with State 375

2 Notation

B specifications are structured into units called machines. Each machine contains
some state describing the data of interest, and operations to manipulate the state.
A B machine also contains an invariant that declares properties of the state
variables, and specifies what must be preserved by the execution of operations.
The B Toolkit automatically generates proof obligations that must be discharged
in order to verify that the invariant is preserved.

An operation takes the form PRER THEN S END where R is a predicate
and S represents the statements that update the variables. In CSP ‖ B we use
classical B which supports operations with preconditions. In this paper we focus
on operations without input and outputs for simplicity, as an initial step towards
developing a general framework for combining π with B. We discuss the future
incorporation of input/output in operations in Section 6.2.

Following [8], we use variant type extensions to the π-calculus [9]. The π-
calculus classifies channels and values as being drawn from a set of names N . A
process can be defined in terms of channels and values as follows:

Definition 1

P :: = 0 | a(w).P | a〈w〉.P | τ.P |
P1 + P2 | (P1 | P2) | (ν v)(P) | !P

The process 0 cannot perform any action. For a channel a, the process a(w).P
initially performs an input action where w is bound to the value input along a,
and the process a〈w〉.P initially performs an output action where the name w
is sent along a. The process τ.P initially performs an internal action. Different
processes can be executed using choice and they can execute in parallel. (ν v)(P)
creates a new name v with scope P . The replication process (!P) is an unbounded
number of Ps running concurrently. We will use free and bound names, and α-
renaming in the usual way. In the syntax, the binding constructs are the ν
operator and input prefix a(w).

The behavioural type system in [8] separates channel communications into
capabilities for inputting and outputting. This will enable us to specify how
the environment may use a channel it has received. The benefit of using the
variant type extensions from our point of view will be to prevent π processes
from making calls to non-existent B-operations.

A process term without free names (closed) can be typed by assigning types
to every channel bound by the ν operator. Such processes can be type checked
using inference style rules. For example, in the process (νv)(P), we can express
the requirement that v is of type T with the term (νv : T)(P). The most basic
type for T is �unit . A channel of type iV represents the requirement that it can
be used only to input a value of type V . Similarly, oV permits the use of the
channel only to output a value of type V . The type �V permits both input and
output.

The construct [l1 Y1, . . . , ln Yn] in π represents a variant type, and can be
thought of as a set of label/value pairs. In our case the labels will correspond to B

376 D. Karkinsky, S. Schneider, and H. Treharne

operation names, and there will be no values (since there are no inputs/outputs).
Thus, we define a simplified variant type associated with a machine M :
VM = [l1, . . . , ln] where l1 to ln are the operations of machine M .

3 Combining B Machines and π Processes

In this section we consider how to structure the communication between a B ma-
chine and a π process. We can think of a machine as a node servicing requests to
execute its operations. The operations (services) are offered via a single channel
drawn from a special set of channels, MR, that are used to communicate with
B machines. A particular channel is referred to as a machine reference to an
instance of a machine M . We allow multiple instances of M and they each have
a unique machine reference and their own local copy of the state.

A machine reference is given a particular type, �VM , and when a machine
reference z is used to make an operation call, that call is considered to be a
variant label of VM . In order to execute an operation a π process selects an
operation and sends it along the appropriate machine reference channel. For
example z GetBusy represents a machine reference z and a call to the operation
GetBusy.

From the point of view of a B machine the type of a machine reference is iVM
because it is only permitted to service incoming requests whereas a π process
considers a machine reference to be of type oVM because it is only permitted to
issue operation calls (i.e. output on the machine reference channel).

In our specifications we want the flexibility of being able to dynamically create
instances of B machines. In order to achieve this we define a process which can
be interpreted as having the capability of infinitely supplying machine instances
and we refer to this process as MGEN , defined below. The process is replicated
infinitely and each replication can engage in an interaction on the create channel
and then engage in initialising a new instance of a machine M .

In order to allow B machines to be considered in parallel with π processes they
are given a π-wrapper, i.e. a machine is packaged up so that it can synchronise
on special channels createM and initM so that it can be created with a unique
machine reference, and initialised and after that it can receive operation calls
via a unique machine reference.

The π-wrapped machine M , ready to be created, is denoted by [[BEGIN]]M (z)
within the process MGEN and we will elaborate on its definition in Section 5.1.
Note that the type of initM is �unit , and the π-wrapped machine, [[BEGIN]]M (z),
can only receive requests to create a machine instance.

Definition 2

MGEN =!(ν z : �VM , initM : �unit)

(createM 〈z 〉.initM .0 | [[BEGIN]]M (z))

We can extend the MGEN process to enable a supply of different B machines,
M1 . . .Mn , which we may want to use in our combined specifications. This is
expressed as follows:

Combining Mobility with State 377

Definition 3

MGEN =!(ν z : �VM1 , initM1 : �unit)

(createM1〈z 〉.initM1.0 | [[BEGIN]]M1
(z))

| . . .
|!(ν z : �VMn , initMn : �unit)

(createMn 〈z 〉.initMn .0 | [[BEGIN]]Mn
(z))

Furthermore, in practice we may use a global MGEN process across the system,
or we may use several local copies, as illustrated in Figure 5 within Section 4.

3.1 Mediators

Now we consider how to define the π processes which communicate with the
B machines. We refer to these processes as mediators since they control the
operation calls made to machines instances. Mediators can engage in three kinds
of events: they can synchronise internally or with other mediators, they can
issue operation calls, and they can take control or relinquish control of machines
instances. We identify specific channels, referred to as control points, in order
to identify the latter two kinds of communication. Control points are formally
defined as follows:

Definition 4. A channel is a control point if and only if

1. it is used to transmit machine references only,
2. it is a monadic channel,
3. it always transmits the same kind of machine.

Control points, machine references, and other synchronisations are all modelled
as names within the π-calculus. However, the need to distinguish between them
necessitates the identification of various disjoint subsets of the set of π names:

– SN is the set of standard names,
– CP is the set of control points,
– MR is the set of machine references.

In a particular specification, elements of these sets are given types as follows:
machine references are channels which carry a type �VM , as stated earlier; control
points are channels which carry the output capability of machine references and
are of type �oVM ; and channels from SN are not concerned with the B machine
framework and thus carry names from SN .

Controllers for machines are constructed in a particular way, in order to ensure
that a machine reference is held by no more than one execution thread at a time.
This enables us to manage the operation calls to machines through the design
of the controllers, to ensure that state updates to machines occur only in a
structured way by tracking the locus of control over the machine. As we will

378 D. Karkinsky, S. Schneider, and H. Treharne

illustrate, this makes it possible to verify the combined system with respect to
correctness of operation calls.

Controllers which are of the right form are termed mediators. Mediators are
constructed from sequential finite controllers (SFCs), which are processes con-
structed from the sequential parts of the language (prefix and choice) with con-
ditions on the handling of machine references. Informally, the conditions amount
to the following:

1. an SFC should not contain any free machine references. This means that any
machine reference occurring in the SFC must be bound by a control point
input.

2. whenever an SFC outputs a machine reference z (i.e. on a control point) then
the subsequent process description should not contain any free occurrences
of z .

Definition 5 (Sequential finite controller (SFC)). We define SFC terms
using the following clauses.

1. 0 is an SFC term;
2. If P is an SFC term then

(a) if a ∈ SN or a ∈ CP then a(w).P is an SFC term,
(b) if a ∈ SN then a〈w〉.P is an SFC term,
(c) if cp ∈ CP and z is not free in P then cp〈z 〉.P is an SFC term,
(d) if z ∈ MR and l is a label for z then z l .P is an SFC term,
(e) τ.P is an SFC term,
(f) if x ∈ SN then (νx)(P) is an SFC term

3. if P1 and P2 are SFC terms then (P1 + P2) is an SFC term.

Then a sequential finite controller (SFC) is an SFC term with no free occurrences
of any machine references.

Example 1. To illustrate the definition we give some examples of what is per-
mitted and what is not permitted:

– cp1(z).z l .cp2〈z 〉.0 is an SFC.
– cp1(z).z l .cp2〈z 〉.z l .0 is not an SFC: there should not be any occurrence of

z l following the output of z on cp2. For the same reason, it is not an SFC
term.

– z l .cp2〈z 〉.0 is not an SFC, since the machine reference z is free. However, it
is an SFC term.

– cp1(z).cp1(w).z l .cp2〈z 〉.w m.cp2〈w〉.0 is an SFC.
– (νz)(z l .cp2〈z 〉.0) is not an SFC or an SFC term: ν bindings of machine

references are not permitted.

Types have been omitted for simplicity in this example, and in Example 2 below.

Mediators are then constructed by composing sequential finite controllers by
means of parallel composition, replication, and restriction.

Combining Mobility with State 379

Definition 6 (Mediator). We define mediators using the following clauses.

1. If P is an SFC then P is a mediator.
2. If D1 and D2 are mediators, then D1 | D2 is a mediator.
3. If P is an SFC then !P is a mediator.
4. If D is a mediator then (νw)(D) is a mediator.

Example 2. To illustrate the definition we give some examples of mediators:

– cp1(z).z l .cp1〈z 〉.0 is a mediator, since it is an SFC.
– !(cp1(z).z l .cp1〈z 〉.0) is a mediator.
– (cp0(z).cp1〈z 〉.0) |!(cp1(z).z l .cp1〈z 〉.0) is a mediator.
– (νcp1)((cp0(z).cp1〈z 〉.0) |!(cp1(z).z l .z m.cp1〈z 〉.a(w).0)) is a mediator.

The last mediator on the list has one free control point, cp0, and then one
internal control point cp1. A machine reference z can be accepted on cp0, and
then passed along cp1 to the replicated component. Observe that only one thread
in the replicated component can be in possession of z at any point.

We are now in a position to define control systems for generating and controlling
mobile B machine instances. These are made up of two parts: mediators, which
are responsible for managing machine references and passing them around; and
machine generators, which are responsible for creating new machine references
and introducing them into the system.

Given a mediator D , the associated control system CSYSTEMD therefore
consists of the mediator composed with an MGEN with matching vector ˜createM
and corresponding vector of types ˜�oVM as follows:

CSYSTEMD =(ν ˜createM : ˜�oVM)(D | MGEN)

4 Example

To illustrate the treatment of mobile B processes presented in this paper, we
consider an example of allocating resources within a network. Resources are
passed around a network, to service areas of high demand. Servers in the network
autonomously decide how best to respond to a request for further resources,
either by creating a fresh resource, by allocating one from a local pool of free
resources, or by passing a request to another server. The description presented
below abstracts away the decision making process of the servers, and focuses
purely on the range of possibilities open to them.

The system is called the Resource Allocation Service (RAS). It offers clients
the opportunity to request increases and decreases in the quantity of resource
currently allocated. The interface between an individual client and the RAS con-
sists of two channels, inc and dec, which are used to request an increase of a
resource, and a decrease of a resource, respectively. We will model resources as
B ‘Node’ machines which can be allocated to particular tasks. Figure 1 gives
the description of the Node machine. The machine has three possible states, and

380 D. Karkinsky, S. Schneider, and H. Treharne

operations for switching between them. It is initially in state Fresh, and once
it is activated it alternates between Busy and Free, by means of the operations
GetBusy and GetFree. The preconditions of these operations introduce the re-
quirement that an operation should only be called from the appropriate state,
and it will be important to ensure that the RAS does not violate this require-
ment when activating Node machines. A particular Node machine with machine
reference z will have its operations called through occurrences of z GetBusy and
z GetFree.

MACHINE Node
SETS STATUS = {Fresh, Busy, Free}
VARIABLES status
INVARIANT status : STATUS
INITIALISATION status := Fresh
OPERATIONS
GetBusy = PRE (status = Free) or (status = Fresh)

THEN status := Busy
END;

GetFree = PRE status = Busy
THEN status := Free
END

END

Fig. 1. The B description of a Node

The SERVER Mediators

The system will be controlled by a collection of SERVER mediators. These
mediators will provide the external interface (inc and dec) with the clients, and
they will activate and manage resources. They will also transfer resources in
order to meet areas of high demand.

SERVERiSERVERj SERVERk

inci deci

reqj ,i reqi,k

ci,j ck,ipi
createi

Fig. 2. SERVERi in its start state

The architecture of a SERVER mediator is given in Figure 2, and the de-
scription in the π-calculus is given in Figure 3. The mediator SERVERi is able
to handle requests for a resource from an external client, through the particular
channel inci . Requests can also arrive along req channels from other servers; the

Combining Mobility with State 381

SERVERi = (νpi : �oVNode)

(! (inci . (createi (z) . WORKi(z)

+ pi(z) . WORKi(z)

+ Σk∈Si reqi,k . ck,i (z) . WORKi(z))
+ Σj∈Ci (reqj ,i . (createi (z) . SENDi(j , z)

+ pi(z) . SENDi(j , z)

+ Σk∈Si reqi,k . ck,i (z) . SENDi(j , z)))))

WORKi(z) = z GetBusy . deci . z GetFree . pi〈z〉 . 0

SENDi(j , z) = ci,j 〈z〉 . 0

Fig. 3. Description of a server controller

channel reqj ,i is used to pass a request from SERVERj to SERVERi . When a
request has been received (from either of these sources), there are three ways
of obtaining the resource required. The first is through the creation of a new
resource, provided by a machine generator on channel createi (we use createi
rather than createNode for readability within the example); the second is by
identifying a free resource currently in the local pool of available resources, and
this is done through the server’s internal channel pi ; and the third is by pass-
ing the request to another server k , along channel reqi,k , and then receiving the
response along channel ck ,i . These three possible reactions to inci (and also to
reqj ,i) are illustrated in Figure 4.

SERVERiSERVERj SERVERk

inci deci

reqj ,i reqi,k

ci,j ck,ipi
createi

freefree busy
NodeNodeNode

Fig. 4. Possible responses to inci (and also to reqj ,i) from SERVERi

Each of the channels createi , pi , and ck ,i are used to communicate a machine
channel z , and so they are all control points of the mediators. Observe that
the description of SERVERi is consistent with the requirement on a mediator:
that when a machine reference is output on a control point then the subsequent
description should not contain any free occurrence of the machine reference.
In the case of SERVERi we see that when machine reference z is output along

382 D. Karkinsky, S. Schneider, and H. Treharne

control point pi or ci,j , then the subsequent description on that thread of control
is in fact 0, which indeed does not contain z .

When SERVERi has control of a Node through a link z , it is able to activate
it and shut it down by use of z GetBusy and z GetFree. Requests to reduce
resource usage along the deci channel result in the closing down of node activity,
and the release of the node into the local pool of available resources along the
channel pi .

The use of replication in the server description indicates that any number of
inci or reqj ,i requests can be handled. However, observe that deci is possible
only when there are active nodes, and it will be blocked otherwise.

The set Ci denotes the other servers which can make a resource request of
SERVERi : it is those j ’s for which a reqj ,i will be allowed. Conversely, the set
Si denotes the servers from which SERVERi can request a resource, and for
consistency we require that j ∈ Ci ⇔ i ∈ Sj for any i and j . If the set Si is
empty then it will not be possible for SERVERi to pass the request on, and it
will have to be serviced either by recycling a resource, or by creating a new one.
Conversely, if Ci is empty then SERVERi will not receive requests from any
other servers.

The sets Ci or Si will correspond to a network structure or hierarchy of
resource allocators, which will vary according to the considerations of the RAS
design. For example, it may be a requirement that there should be no cycles in
the graph of request links.

Servers and Nodes

The SERVERi mediators are combined with a mechanism for generating Node
machines, which may be thought of as a Node factory. The process MGENi is
used to generate and initialise Node machines, raising a fresh machine reference
z for that node, and passing that machine reference to SERVERi along their
joint channel createi . The description of MGENi is given in Figure 5, following
Definition 2. The process [[BEGIN]]Node(z) is the Node machine inside a π-
calculus wrapper, with machine reference z , awaiting initialisation through the
channel initNode. The reference z is passed along createi (to SERVERi), and
the Node machine is initialised. The encapsulation ensures that z is fresh and
so is known only within MGENi . The combination of SERVERi and a newly
generated Node is illustrated in Figure 6.

We consider a RESOURCERi to consist (initially) of a SERVERi and the
associated machine generator MGENi . Observe that RESOURCERi is a control
system for SERVERi , CSYSTEMSERVERi . The Resource Allocation System will
then consist of the parallel composition of all the nodes, as shown in Figure 5.

Figure 7 illustrates a scenario of a Node instance being passed from one server
to another. The first event in this scenario is a request inci for another resource
at SERVERi . In this case the request results in a request to a neighbouring
server SERVERk along reqi,k . That server picks up a machine reference z from
the pool of local free machines, and then passes z along channel ck ,i in re-
sponse to SERVERi ’s request reqi,k . Once this last communication has occurred,

Combining Mobility with State 383

MGENi = !(νzi : �VNode , initNode : �unit)

(createi 〈zi 〉.initNode.0 | [[BEGIN]]Node(zi))

RESOURCERi = (νcreatei : �oVNode)(SERVERi | MGENi)

RAS = (νC : �oVNode ,R : �unit)(RESOURCER1 | . . . | RESOURCERn)

where

C =
⋃

i∈I

{ci,j | j ∈ Ci}

R =
⋃

i∈I

{reqi,j | j ∈ Si}

Fig. 5. The architecture of RAS

SERVERiSERVERj SERVERk

inci deci

reqj ,i reqi,k

ci,j ck,ipi
createi

z GetBusy
z GetFree

fresh
Node

Fig. 6. SERVERi following creation of a node

SERVERk no longer has access to z . Thus the node becomes wholly under the
control of SERVERi , which is now able to issue the instruction z GetBusy and
make use of this resource.

Assertions

Now we consider the behaviour of RAS , and introduce the notion of assertions
on control points. Section 5 will provide the formal approach, but we motivate
it informally here.

It is necessary to ensure that z GetBusy is invoked only when the Node in-
stance referenced by z is not already busy, since this requirement is encapsulated
by the precondition of the operation. In order to guarantee this, we identify as-
sertions on the states of the machine instances whose references are passed across
control points. We can see that any machine reference passed along createi must
have status = Fresh for the associated machine instance, since such an instance
will still be in its initial state. Further, any machine whose unique reference z is

384 D. Karkinsky, S. Schneider, and H. Treharne

SERVERiSERVERj SERVERk

1.inci deci

reqj ,i 2.reqi,k

ci,j

4.ck,i .w
pi 3.pk .w

createi

FreeFree Busy
NodeNodeNode

w w

Fig. 7. Requesting and passing a node from SERVERk to SERVERi

Control Point Assertion

createi status = Fresh
pi status = Free
ci,j status �= Busy

Fig. 8. Assertions associated with the control points within RAS

passed on pi must have status = Free, since it can only appear on pi following
z GetFree. Finally, we can associate the assertion status 	= Busy with machine
references passed along the ci,j control points. The collection of assertions on
the control points is given in Figure 8.

We are then able to use rely/guarantee style reasoning to ensure the control
point assertions are respected, and that operations are never called out of their
preconditions. Whenever a machine reference is input at a control point we may
assume that the machine instance satisfies the corresponding assertion. This is
then enough to ensure (1) that the mediator receiving the machine reference
calls operations appropriately; and (2) that it can guarantee the assertion is
true at any control point where it outputs the machine reference. The nature
of mediators ensures that a machine reference is always located at no more
than one mediator, ensuring that state updates are strictly controlled, and are
the responsibility of a single mediator from the point the machine reference is
received on the control point. Hence there can be no interference on the updates
of the machine’s state.

In SERVERi , the event inci is followed by the input of a machine reference
z on one of three control points. If it is on createi , then the assertion for createi
states that status = Fresh for the machine instance when z is input. This is
ensured by the initialisation clause of the Node machine. It is then enough to
guarantee that z GetBusy is called within its precondition, and subsequently
that z GetFree is called within its own precondition, and finally that the state
of the machine instance is status = Free at the point z is output on pi , ensuring
the assertion associated with pi . If the input of z is on pi then the corresponding
assertion tells us that the associated machine instance is in state status = Free,

Combining Mobility with State 385

and this is sufficient to provide the same guarantees as in the previous case.
Finally, if the input of z is on ck ,i for some k (in response to a request reqi,k) then
the assertion tells us that the corresponding machine instance has status 	= Busy,
which is again sufficient to provide the necessary guarantees.

The other behaviour possible for SERVERi is in response to a reqj ,i event.
This is again followed by the input of a machine reference z on one of the
three control points. If z is input on createi , then the corresponding assertion
status = Fresh on the machine instance is sufficient to ensure that status 	= Busy
when z is immediately passed as output on ci,j . Similarly, if z is received on pi ,
then the assertion status = Free again is sufficient to ensure that status 	= Busy.
Finally, if z is received on ck ,i then the machine instance has status 	= Busy,
which remains true when z is output on ci,j .

Hence in SERVERi , if machine references are consistent with assertions on
inputs, then operations will only ever be called within their preconditions, and
machine references are consistent with assertions on outputs.

5 Identifying and Discharging Assertions

In the above example we identified assertions on the states of machine instances
at control points within the mediators, i.e. when the instances were created,
when they were passed from one mediator to another, and during internal com-
munication. When a mediator receives a reference to a newly created machine
instance then we can assume that the instance is in its initial state. When a
machine instance is received by a mediator we may assume the instance will be
a particular state. It is the responsibility of the mediator relinquishing control
of the instance to guarantee that this assumption is met.

We use tags to associate control points with their corresponding assertions.

Definition 7 (Tags). A tag t is a mapping from control points to predicates
on the states of machine instances. The notation tcpz denotes the assertion as-
sociated with control point cp, on the specific machine instance referenced by z .

Definition 8 (Tagged SFC). For a given tag t and SFC P, Pt is a tagged
SFC if t has a predicate for each of the control points in P.

A similar definition is given for mediators:

Definition 9 (Tagged Mediator). A mediator M is a tagged mediator Mt if
each (bound or free) control point within its definition is tagged with t.

The purpose of introducing tags is to give a definition of consistency between
mediators and machine instances. The key idea is that we extract a sequence
of B operations and assertions from each SFC Pt within a tagged mediator.
The tagged SFC Pt will be consistent with the assertions on its control points
and the sequence of its B operations, if the sequence of operations assumes the

386 D. Karkinsky, S. Schneider, and H. Treharne

assertions for any input control points, and then ensures the assertions on any
output control points. Input assertions are translated to rely assertions, which
can be assumed. Within B this is modelled as a blocking (SELECT) assertion.
Output assertions are translated to guarantee assertions, which will need to be
established. Within B this is modelled as a diverging (PRE) assumption.

We extract the relevant sequence of B operations from a Pt by examining the
structure of the syntax of Pt as follows:

Definition 10. Given a tagged sequential finite controller, Pt , its correspond-
ing sequence of operations and assertions, bseq(Pt) is defined recursively below.
Assume bseq(P1t), bseq(P2t) are defined, where P1 and P2 are SFCs tagged
with t.

bseq(0) = skip
bseq(cp(b).P1t) = SELECT tcpb THEN skip END ; bseq(P1t)

bseq(z l .P1t) = lz ; bseq(P1t)
bseq(cp〈z 〉.P1t) = PRE tcpz THEN skip END ; bseq(P1t)

bseq(π.P1t) = bseq(P1t) for any prefix π not covered by above cases
bseq((ν v : S)(P1t)) = bseq(P1t) where v ∈ SN

bseq(P1t + P2t) = CHOICE bseq(P1t)OR bseq(P2t)END

The process 0 is converted to skip as it does not perform any actions. At an
input control point we identify the appropriate assertion, and introduce a corre-
sponding guard. An operation call z l is converted to the AMN lz , which means
the operation l for the particular machine reference z . Tracking the machine ref-
erence z is necessary because an SFC Pt may perform sequences of operations
from different instances and we need to be able to distinguish between those
instances. At an output control point we embed the assertion as a precondition
predicate. A correctness proof will require this assertion to be established.

All other syntactic constructs are ignored by bseq since they are not concerned
with the execution of operations, they are related to communication between
mediators.

Example 3. Consider the control point cp which handles machine references
which refer to instances of the Node machine. A tag t associates cp with the
assertion status = Fresh. The tagged SFC given by

(cp(z) . cp(w) . z GetBusy . w GetBusy . 0)t

translates as follows:

bseq((cp(z).cp(w).z GetBusy.w GetBusy.0)t)
= SELECT tcpz THEN skip END ; SELECT tcpw THEN skip END ;

GetBusyz ; GetBusyw ; skip

Combining Mobility with State 387

= SELECT statusz = Fresh THEN skip END ;
SELECT statusw = Fresh THEN skip END ;
PRE (statusz = Free) or (statusz = Fresh) THEN statusz := Busy END ;
PRE (statusw = Free) or (statusw = Fresh) THEN statusw := Busy END ;
skip

Observe the two machine references received along cp are handled separately so
that the two calls of GetBusy are to two different instances of the Node machine,
and in both cases the precondition is true.

We now define consistency of a tagged SFC as follows:

Definition 11 (Tagged SFC Consistency). A tagged sequential finite con-
troller Pt is sfc-consistent if wp(bseq(Pt), true) holds.

By discharging the weakest precondition proof obligation we can conclude that
Pt is divergence-free and hence that it guarantees all the output assertions and
valid operation calls.

Mediator consistency is then defined as follows:

Definition 12 (Tagged Mediator Consistency). A tagged mediator Dt is
m-consistent if each tagged SFC Pt in Dt is sfc-consistent. Consistency of a
tagged mediator can be defined inductively through the four mediator clauses:

– Pt is m-consistent if Pt is SFC consistent
– (!P)t is m-consistent if Pt is SFC consistent
– (D1 | D2)t is m-consistent if (D1)t and (D2)t are m-consistent
– (νcp)(D)t is m-consistent if Dt is m-consistent

Once we have shown mediator consistency then we have ensured that all the op-
eration calls within the mediator D will be within their precondition. The other
requirement for consistency of a control system is that the generated machines
should initially meet the assertions on their associated create channels. Thus,
we introduce the additional requirements that each initialisation clause TMi of
any generated Mi should establish the assertion on the createMi channel. This
is captured in Definition 13.

Definition 13 (Tagged CSYSTEMD consistency). A CSYSTEMDt is con-
sistent if Dt is m-consistent and wp(TMi , tcreateMi) holds for each Mi which
MGEN can generate.

Then a CSYSTEMD is consistent if we can find a tag t for which CSYSTEMDt
is consistent. An important result from [7] is the following theorem:

Theorem 1. If CSYSTEMD is consistent then CSYSTEMD is divergence-free.

5.1 Underlying Semantics

This proof obligation framework above is underpinned by the π-calculus semantic
framework, and a π semantics for B machines is provided to support reasoning

388 D. Karkinsky, S. Schneider, and H. Treharne

about π mediators and B machines within a single semantic framework. In [7]
we defined an approach which enables the interpretation of a B machine as a
π-calculus labelled transition system.

Initially, we consider a B machine M to be uninitialised and [[BEGIN]]M (z)
represents an uninitialised machine which will be able to receive operations calls
along z . The only transition possible in this state is the initialisation transi-
tion. This will be executed in parallel with initM when machines are created in
MGEN .

Once a machine is initialised, we consider the execution of an operation (with-
out inputs and outputs) in two stages. First, the precondition of the operation
is checked and this is represented by a transition labelled by z l . Second, if
the precondition holds then the state is updated with respect to the opera-
tion’s definition otherwise the operation has diverged and the state of the B ma-
chine is mapped to ⊥ since no further guarantees can be made about the state.
This second stage is associated with two different transitions: an internal tran-
sition which can be performed when the precondition holds and a div transition
otherwise.

When the π wrapped B machine instance is placed in parallel with a π process
all communications between them become internal transitions apart from the div
transition, and this is significant when proving Theorem 1 above. The key feature
of its proof is the argument that no execution of the mediators in D leads to an
operation from any of its instances being called outside its precondition. This is
established by examining the possible transitions of a CSYSTEMD and showing
that at each step no divergence has occurred. We can achieve this by appealing
to the fact that we have already demonstrated CSYSTEMD consistency and
therefore the div transition will never be a possible transition for the B machines
in CSYSTEMD .

The benefit of this theorem is that, in practice, we can focus on examining the
individual sequential finite controllers and their corresponding machine instances
but that these individual results can be composed together to ensure divergence
freedom of the whole system.

6 Discussion

In this paper we have shown that state and the operations which update and
query the state can be described in conjunction with a mobile paradigm. We
have extended the notion of B machines with unique references so that they can
be instantiated at run-time by a π process. We defined a syntactic framework
for π processes in order to control the execution of B operations. We used a
behavioural type system within the π-calculus to provide guarantees on the way
machine instances and processes should interact. We converted the signature of
a machine instance into a variant type which specifies the operations a π process
can execute. Without such a type system it would be difficult to specify the
interface of a machine instance and ensure that π processes do not call operations
which are not in that interface. The typing system provides the guarantee that

Combining Mobility with State 389

any operation call will always be serviced appropriately by a machine instance
and not by another π processes (pretending to be a machine).

We have established that the behavioural requirements on π processes to-
gether with discharging the weakest-precondition proof obligations ensure that
B machine instances do not diverge when controlled by π processes. We out-
lined that this rely-guarantee style of reasoning is formally justified using the
operational semantics.

6.1 Related Work

In our CSP ‖ B [15] approach we also introduced wp proof obligations to show
that CSP controllers were consistent with B machines. We considered each con-
troller as a collection of sequential CSP processes. These sequential processes are
similar to the sequential finite controllers presented in this paper but they do
not have control points and there is no notion of being able to create instances
of machines. In order to demonstrate consistency we examined each sequential
CSP process separately, extracted the B operations from each process and this
was done in a similar way to how bseq is used. In CSP ‖ B we had to introduce
the notion of a control loop invariant so that we could make assumptions about
the state at the beginning and end of each recursive call. In the approach pre-
sented in this paper we do not have a global notion of an invariant that we are
trying to preserve after a sequence of operations calls. However, the assertions
on the control points play a similar role. We can simply check that a sequence
terminates and this check incorporates verifying any rely/guarantee assertions
to deal with dynamic behaviour. We have added another wp obligation, which
is not needed in CSP ‖ B, to deal with ensuring that machines are created in an
appropriate state.

Taguchi et al. [13] have integrated Object-Z and the π-calculus into a single
formal framework (PiOZ). In their framework they have extended the π-calculus
syntax to allow operations to be called explicitly within π processes and to
include guards which can refer to the Object-Z state. Their syntax is limited
and does not include the (ν v) operator and !, and therefore the framework
relies on channel generation from the Object-Z semantics. This is visible in their
π descriptions because a π channel is semantically identified as an Object-Z state
variable. In essence it resonates with our work but we believe that they are not
making the best use of the dynamic features of the π-calculus.

Smith [12] also used Object-Z to model mobile systems. A Node class in [12] is
similar to a SERVERi process together with a Node machine in our example. The
Object-Z framework allows the network architecture to be explicitly defined. In
our example, the topology of the servers is governed by the way the request and
control point channels are defined. It would be interesting to investigate how we
could also make this more explicit in our models.

The notion of mobility is also introduced in [14] so that the Circus [18] frame-
work can be extended to deal with dynamic behaviour. In [14] processes are
assigned to variables and these variables can be passed around using mobile
output channels. We can compare a mobile output channel to a control point

390 D. Karkinsky, S. Schneider, and H. Treharne

output in our framework. The authors in [14] also note that if a process outputs
a process variable then any subsequent reference to it may provide unpredictable
behaviour. In our framework we disallow any further interaction after a machine
reference has been output from a process because we cannot provide any guaran-
tees about the state of the instance following the output of the reference (unless,
of course, control is returned).

The mobile channels introduced by Welch and Barnes in Occam-π [17] are
more flexible than our control points. In Occam-π communication via channels
also has a notion of an originator and recipient but they allow their channels
to change ownership during run-time, which we have currently disallowed in
order to enable our rely/guarantee proofs. The motivation for Occam-π originally
came from CSP. However, CSP does not explicitly define which process has
the responsibility for its channel ends. Therefore, Welch proposed that mobile
channels be modelled as CSP processes, and each process is produced on demand.
Each of these processes has an unique identifier number and the mobility in a
formal model comes from communicating the index. The formal model presented
in [17] is very low level and reflects how it has been implemented successfully in
Occam-π.

6.2 Future Work

We illustrated our ideas by using a running example which highlighted dynamic
instantiation and control passing communication. We could extend the notion
of dynamic instantiation so that the servers, as well as workers, could also be
generated dynamically, possibly by some kind of server controller, and they could
even dynamically change the network by adding new links allowing them to pass
requests for resource to new servers. Furthermore, we could consider descriptions
of a P2P network overlay, as in [2], where the complex topology of the servers
was stored in the B and this information passed to the π processes.

One of the principal motivations for this work was to draw out the complex
issues related to dynamic interactions so that it could inform potential extensions
to CSP ‖ B . We now also feel that the work is interesting in its own right and
there are many extensions to be explored and open issues to be addressed.

Firstly, we need to consider how the weakest-precondition proof obligations,
identified in Definitions 11 and 13, would be generated in practice and how they
would be proved using tool support. We would also need to determine whether
there could be problems in general with circularity.

Secondly, we could extend the framework to allow control points to be passed
along channels. In our RAS specification, the control points between servers
are static. For example, currently a B machine reference can be passed from
oneserver to another one via an intermediate server but the receiving server must
have included an explicit control point in its description to enable references of
that kind to be passed to it from the intermediate server. We would want to
consider allowing servers to receive machine instances via control points which
had been set up dynamically. In the example, this would mean that instance
would then not be required to be passed via an intermediate server; instead a

Combining Mobility with State 391

control point could be set up dynamically between the two servers who could
then send and receive a machine reference between each other, eliminating the
need to go via the intermediate server. The introduction of mobile control points
would impact on the definitions of the weakest-precondition proof obligations
and this would need to be investigated.

Thirdly, we need to allow the framework to support operations which have
input and output parameters. This could be achieved by extending the type
system to include linearly receptive types [9]. Operations in a B machine can
receive input, update state, and provide output simultaneously. The π calculus
would not support this using one action in a process and therefore we would
need to split an operation call into a sequence of actions. By using linearly
receptive types we can ensure that if an operation has an output then it will
be received by a mediator. We anticipate the need to define private channels
((νq)(z op 〈x , q〉 | q(y).P)) to gather the output from an operation. Without
such strict typing the mediator would not be under any obligation to pick up
the output of an operation.

Fourthly, we may want to weaken the behavioural requirement of only allowing
one π process to interact with a machine instance at any one time. We could allow
other processes to execute query operations on the machine instance while one
process retained overall control of the instance. We could support the definition
of a control point that outputs a machine reference so that the process receiving
the reference has the ability to call a reduced set of operations from that machine
instance’s interface. The type system, with variant sub-typing, would be integral
to facilitate this extension. The challenge with this extension will be how to
maintain the guarantees that can be made about the state of a machine instance.
Such an extension would mean that each B machine instance could be viewed
more autonomously in order to make the approach more compatible with a
component-oriented view of a system.

Finally, by incorporating session types [5] into the type system we can add
further constraints on how operations of a machine instance should be called
when a mediator passes control of instances from itself to another mediator.
For example, given D1 = cp.0 and D2 = cp(z).z inc.z inc.0 and the session
type of the control point cp permitting only the sequence of inc followed by dec
operation calls, then D1 | D2 is not typeable. This could be useful in specifying
access control properties on B machine instances.

Acknowledgments. The authors are grateful to AWE for funding a research
studentship in order to conduct this work. Thanks also to the anonymous referees
for their detailed comments.

References

1. Abrial, J-R.: The B Book: Assigning Programs to Meaning, CUP (1996)
2. Bakhshi, R., Gurov, D.: Verification of Peer-to-Peer Algorithms: a Case Study. In:

Proceedings of 2nd International Workshop on Methods and Tools for Coordinating
Concurrent, Distributed and Mobile Systems (MTCoord’06). ENTCS (2006)

392 D. Karkinsky, S. Schneider, and H. Treharne

3. Berger, M., Honda, K.: The Two-Phase Commitment Protocol in an Extended
pi-Calculus. In: Proceedings of EXPRESS’00. ENTCS, vol. 39(1) (2003)

4. Eng, K.L., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A Survey and Comparison
of Peer-to-Peer Overlay Network Schemes. IEEE Communications Surveys and
Tutorials 7(2), 72–93 (2005)

5. Gay, S.J., Hole, M.J.: Types and Subtypes for Client-Server Interactions. In: Swier-
stra, S.D. (ed.) ESOP 1999 and ETAPS 1999. LNCS, vol. 1576, pp. 74–90. Springer,
Heidelberg (1999)

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

7. Karkinsky, D.: Mobile B machines. PhD thesis, University of Surrey (2007)
8. Pierce, B.C., Sangiorgi, D.: Typing and Subtyping for Mobile Processes. Mathe-

matical Structures in Computer Science 6(5), 409–454 (1996)
9. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. CUP

(2001)
10. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A Measurement Study of Peer-to-Peer

File Sharing Systems. In: Kienzle, M.G., Shenoy, P.J. (eds.) Proceedings of Multi-
media Computing and Networking 2002. SPIE, vol. 4673, pp. 156–170 (2002)

11. Schneider, S., Treharne, H.: CSP Theorems for Communicating B machines. Formal
Aspects of Computing 17(4), 390–422 (2005)

12. Smith, G.: A Framework for Modelling and Analysing Mobile Systems. In: Aus-
tralasian Computer Science Conference (ACSC), pp. 193–202 (2004)

13. Taguchi, K., Dong, J.S., Ciobanu, G.: Relating π-calculus to Object-Z. In: Bellini,
P., Bohner, S., Steffen, B. (eds.) Proceedings of IEEE International Conference on
Engineering Complex Computer Systems (ICECCS’04), pp. 97–106. IEEE Press,
New York (2004)

14. Tang, X., Woodcock, J.: Towards Mobile Processes in Unifying Theories. SEFM
2004, pp. 44–55. IEEE Computer Society Press, Los Alamitos (2004)

15. Treharne, H., Schneider, S.: Using a Process Algebra to Control B OPERATIONS.
IFM, pp. 437–456. Springer, Heidelberg (1999)

16. Treharne, H., Schneider, S., Bramble, M.: Composing Specifications using Com-
munication. In: Bert, D., Bowen, J.P., King, S. (eds.) ZB 2003. LNCS, vol. 2651,
pp. 58–78. Springer, Heidelberg (2003)

17. Welch, P., Barnes, F.: Communicating mobile processes: introducing occam-pi.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. LNCS, vol. 3525, pp. 175–210. Springer, Heidelberg (2005)

18. Woodcock, J.C.P., Cavalcanti, A.L.C.: A Concurrent Language for Refinement. In:
5th Irish Workshop on Formal Methods (2001)

Algebraic Approaches to Formal Analysis of

the Mondex Electronic Purse System

Weiqiang Kong, Kazuhiro Ogata, and Kokichi Futatsugi

Graduate School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

{weiqiang,ogata,kokichi}@jaist.ac.jp

Abstract. Mondex is a payment system that utilizes smart cards as
electronic purses for financial transactions. This paper first reports on
how the Mondex system can be modeled, specified and interactively
verified using an equation-based method – the OTS/CafeOBJ method.
Afterwards, the paper reports on, as a complementarity, a way of auto-
matically falsifying the OTS/CafeOBJ specification of the Mondex sys-
tem, and how the falsification can be used to facilitate the verification.
Differently from related work, our work provides alternative ways of (1)
modeling the Mondex system using an OTS (Observational Transition
System), a kind of transition system, and (2) expressing and verifying
(and falsifying) the desired security properties of the Mondex system
directly in terms of invariants of the OTS.

1 Introduction

Mondex [1] is a payment system that utilizes smart cards as electronic purses
for financial transactions. The system has recently been chosen as a challenge
for formal methods [2,4], after it was originally specified and manually proved
for correctness (of refinement) using the Z notation described in [9]. The purpose
of setting up this challenge is to see what the current state-of-the-art is in mech-
anizing the specification, refinement, and proof, and ultimately to contribute to
the Grand Challenge – Dependable Software Evolution [2,3,4]. As a response, dif-
ferent formal methods have been applied to tackle this same problem, including,
for example, KIV [5,6], RAISE [7], Alloy [8] etc.

In this paper, we report on how this problem can be tackled by using an
equation-based method – the OTS/CafeOBJ method [10]. Specifically, we de-
scribe how the Mondex system is modeled as an OTS (Observational Transi-
tion System), a kind of transition system that can be straightforwardly writ-
ten in terms of equations; and how to specify the OTS in CafeOBJ [11,12], an
algebraic specification language; and finally how to express the desired security
properties of the Mondex system as invariants of the OTS, and to verify the
invariants by writing and executing proof scores using CafeOBJ system.

As a complement to the interactive verification of the OTS/CafeOBJ method,
we also report on a way of automatically falsifying (finding counterexamples)
the OTS/CafeOBJ specification of the Mondex system by using Maude search
command [13]. The basis of this way of falsification is an automatic translation

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 393–412, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

394 W. Kong, K. Ogata, and K. Futatsugi

from the OTS/CafeOBJ specification into the corresponding Maude specification
[14,15]. The falsification has been shown, from our experience, to be useful for
facilitating the OTS/CafeOBJ method in its different verification stages.

Differently from related work, our work provides an alternative way of mod-
eling the Mondex system in an operational style (in terms of transition system),
which is inspired by [5,6], rather than in a relational style as used in [7,8,9]; and
our work also provides an alternative way of expressing and verifying (and fal-
sifying) desired properties of the Mondex system directly in terms of invariants,
rather than using the refinement construction and proof that were originally
used in the Z method [9] and then also used in [5,6,7,8]. This work therefore
provides a different way of viewing the Mondex analysis problem, and can be
used to compare different modeling and proof strategies.

The rest of the paper is organized as follows: Section 2 outlines the main parts
of the Mondex electronic purse system. Section 3 introduces the OTS/CafeOBJ
method. Sections 4 and 5 describe how to model and specify the Mondex system,
and how to express the desired security properties of the Mondex system as
invariants and their corresponding verification method. Section 6 discusses the
motivation of falsifying the OTS/CafeOBJ specification of the Mondex system,
and our proposed method for doing so. Section 7 discusses related work. And
finally Section 8 concludes the paper and mentions future work.

2 Overview of the Mondex Electronic Purse System

In the Mondex system, cards, which are used as electronic purses, store monetary
value as electronic information, and exchange value with each other through
a communication device without using a central controller (such as a remote
database). The communication protocol, which is used for transferring electronic
values between two cards, say FromPurse (the paying purse) and ToPurse (the
receiving purse), is as follows:

1. The communication device ascertains a transaction by collecting cards’ in-
formation and sending two messages startFrom and startT o.

2. FromPurse receives the startFrom message that contains information of the
ToPurse, and the amount of value to be transferred.

3. ToPurse receives the startT o message that contains information of the
FromPurse, and the amount to be transferred. As a result, ToPurse sends a
Req message to FromPurse requesting that amount.

4. FromPurse receives the Req message and decreases its balance, and then
sends a message Val to ToPurse for transferring value.

5. ToPurse receives the Val message and increases its balance, and then sends
a message Ack to FromPurse acknowledging the transaction.

Although the communication protocol seems to be simple, it is complicated
by several facts as pointed out in [8,9]: (1) the protocol can be stopped at any
time, either due to internal reasons of cards, or due to card-holders intentionally
doing so; (2) a message can be lost and replayed in the communication channel,

Algebraic Approaches to Formal Analysis 395

and (3) a message can be read by any card. Note, however, that it is assumed
that the Req, Val and Ack messages cannot be forged, which is guaranteed by
some (unclear) means of cryptographic system [9].

Two key security properties demanded by the Mondex system are ([9]):
1. No value may be created in the system,
2. All value is accounted for in the system (no value is lost).

Note that in this paper, we omit another protocol of the Mondex system
that deals with uploading exception logs1 onto a central archive, since it is not
directly related to the above properties.

3 The OTS/CafeOBJ Method

3.1 CafeOBJ: Algebraic Specification Language

Abstract machines as well as abstract data types can be specified in CafeOBJ
[11,12] mainly based on hidden and initial algebras. CafeOBJ has two kinds of
sorts: visible and hidden sorts that denote abstract data types and the state
spaces of abstract machines, respectively. There are two kinds of operators for
hidden sorts: action and observation operators. Action operators denote state
transitions of abstract machines, and observation operators let us know the sit-
uation where abstract machines are located. Both an action operator and an
observation operator take a state of an abstract machine and zero or more data,
and return the successor state of the state and a value that characterizes the
situation where the abstract machine is located.

Declarations of action and observation operators start with bop, and those
of other operators with op. Declarations of equations start with eq, and those
of conditional ones with ceq. The CafeOBJ system rewrites a given term by
regarding equations as left-to-right rewrite rules.

Basic units of CafeOBJ specifications are modules. The CafeOBJ built-in
module BOOL that specifies proposition logic is automatically imported by al-
most every module unless otherwise stated. In the module BOOL, visible sort
Bool denoting truth values, and the constants true and false, and some logical
operators such as not_ (negation), _and_ (conjunction), and _implies_ (impli-
cation) are declared. The operator if_then_else_fi is also available.

3.2 Observational Transition Systems (OTSs)

We assume that there exists a universal state space called Υ , and also that data
types used, including the equivalence relation (denoted by =) for each data type,
have been defined in advance. An OTS S [10] consists of 〈O, I, T 〉, where:
– O : A finite set of observers. Each o ∈ O is a function o : Υ → D, where D is

a data type and may differ from observer to observer. Given an OTS S and
two states υ1, υ2 ∈ Υ , the equivalence (denoted by υ1 =S υ2) between them
wrt S is defined as ∀o ∈ O, o(υ1) = o(υ2).

1 Exception logs are used to record information of those failed transactions in which
value may be lost (detailed in Section 4).

396 W. Kong, K. Ogata, and K. Futatsugi

– I : The set of initial states such that I ⊆ Υ .
– T : A finite set of conditional transitions. Each τ ∈ T is a function τ : Υ → Υ ,

provided that τ(υ1) =S τ(υ2) for each [υ] ∈ Υ/ =S and each υ1, υ2 ∈ [υ].
τ(υ) is called the successor state of υ ∈ Υ wrt τ . The condition cτ of τ is
called the effective condition. For each υ ∈ Υ such that ¬cτ (υ), υ =S τ(υ).

Reachable states wrt S are inductively defined: (1) each υ0 ∈ I is reachable,
and (2) for each τ ∈ T , τ(υ) is reachable if υ ∈ Υ is reachable. An invariant wrt
S is a state predicate p : Υ → Bool, which holds in all reachable states wrt S.

Observers and transitions may be parameterized. Generally, observers and
transitions are denoted by oi1,...,im and τj1,...,jn , provided that m,n ≥ 0 and
there exists a data type Dk such that k ∈ Dk (k = i1, . . . , im, j1, . . . , jn).

3.3 Specification of OTSs in CafeOBJ

The universal state space Υ is denoted by a hidden sort, say H. An observer
oi1,...,im ∈ O is denoted by a CafeOBJ observation operator and declared as
bop o : H Vi1 . . . Vim-> V ., where Vi1 , . . . , Vim and V are visible sorts.

Any initial state in I is denoted by a constant, say init, which is declared as
op init : -> H . The equation expressing the initial value of oi1,...,im is as follows:

eq o(init, Xi1 , . . . , Xim) = f(Xi1 , . . . , Xim) .

Xk is a CafeOBJ variable of Vk, where k = i1, . . . , im, and f(Xi1 , . . . , Xim) is
a CafeOBJ term denoting the initial value of oi1,...,im .

A transition τj1,...,jn ∈ T is denoted by a CafeOBJ action operator and de-
clared as bop a : H Vj1 . . . Vjn -> H ., where Vj1 , . . . , Vjn are visible sorts. τj1,...,jn

may change the value returned by oi1,...,im if it is applied in a state υ such that
cτj1,...,jn

(υ), which can be written generally as follows:

ceq o(a(S,Xj1 , . . . , Xjn), Xi1 , . . . , Xim)

= e-a(S, Xj1 , . . . , Xjn , Xi1 , . . . , Xim) if c-a(S, Xj1 , . . . , Xjn) .

S is a CafeOBJ variable for H and Xk is a CafeOBJ variable of Vk, where
k = i1, . . . , im, j1, . . . , jn. a(S, Xj1 , . . . , Xjn) denotes the successor state of S wrt
τj1,...,jn . e-a(S, Xj1 , . . . , Xjn , Xi1 , . . . , Xim) denotes the value returned by oi1,...,im

in the successor state. c-a(S, Xj1 , . . . , Xjn) denotes the effective condition
cτj1,...,jn

.
τj1,...,jn changes nothing if it is applied in a state υ such that ¬cτj1,...,jn

(υ),
which can be written generally as follows:

ceq a(S,Xj1 , . . . , Xjn) = S if not c-a(S, Xj1 , . . . , Xjn) .

3.4 Verification of Invariants of OTSs

Some invariants may be proved by case analysis only. But we often need to do
induction on the reachable state space of an OTS S (the number of transitions
applied). We describe how to prove a predicate p1 is invariant to S using in-
duction by writing proof scores in CafeOBJ. The proof that p1 is invariant to S

Algebraic Approaches to Formal Analysis 397

often needs other predicates. We suppose that p2, . . . , pn are such predicates. We
then prove p1 ∧ . . . ∧ pn invariant to S. Let xi1 , . . . , ximi

of types Di1 , . . . , Dimi

be all free variables in pi (i = 1, . . . , n) except for v whose type is Υ .
We first declare the operators denoting p1, . . . , pn. Their defining equations

in a module INV (which imports the module where S) are written as follows:

op invi : H Vi1 . . . Vimi
-> Bool

eq invi(S, Xi1 , . . . , Ximi
) = pi(S, Xi1 , . . . , Ximi

) .

where i = 1, . . . , n. Vk (k = i1, . . . , imi) is a visible sort denoting Dk, and Xk

is a CafeOBJ variable whose sort is Vk. pi(S,Xi1 , . . . , Ximi
) is a CafeOBJ term

denoting pi. In INV, we also declare a constant xk denoting an arbitrary value of
Vk (k = 1, . . . , n). We then declare the operators denoting basic formulas to show
in the inductive cases and their defining equations in a module ISTEP (which
imports INV) as follows:

op istepi : Vi1 . . . Vimi
-> Bool

eq istepi(Xi1 , . . . , Ximi
) = invi(s, Xi1 , . . . , Ximi

) implies invi(s
′, Xi1 , . . . , Ximi

) .

where i = 1, . . . , n. s and s′ are constants of H , denoting an arbitrary state and
a successor state of s.

The proof of each inductive case often requires case analysis. Let us consider
the inductive case where it is shown that τj1,...,jn preserves pi. Suppose that the
state space is split into l sub-spaces for the proof of the inductive case, and that
each sub-space is characterized by a predicate casek (k = 1, . . . , l) such that
(case1 ∨ . . .∨ casel) ⇔ true. Also suppose that τj1,...,jn is denoted by an action
operator a, and visible sorts Vj1 , . . . , Vjn correspond to data types Dj1 , . . . , Djn

of the parameters of τj1,...,jn . The proof for case casek is shown here:

open ISTEP

-- arbitrary objects

op yj1 :-> Vj1 op yjn :-> Vjn .

-- assumptions

Declarations of equations denoting casek.

-- successor state

eq s′ = a(s, yj1 , . . . , yjn) .

-- check if the predicate is true

red SIHi implies istepi(xi1 , . . . , ximi
) .

close

where i = 1, . . . , n. A comment starts with -- and terminates at the end of
the line. SIHi is a CafeOBJ term denoting what strengthens the inductive hy-
pothesis invi(s,Xi1 , . . . , Ximi

) and can be the (and) concatenation of different
predicates ranging from inv1(. . .) to invn(. . .). The CafeOBJ command red is
used to reduce a term denoting a proposition to its truth value. open creates
a temporary module that imports a module given as an argument, and close
destroys the temporary module. Parts enclosed with open and close are basic
units of proof scores, which are called proof passages.

398 W. Kong, K. Ogata, and K. Futatsugi

4 Formalization of the Mondex System

4.1 Basic Data Types

Key data types used in the OTS model of the Mondex system include: Purse,
Message and Ether. Each Purse of the Mondex system is constructed using the
CafeOBJ operator mk-purse that takes the following arguments:

(1) Name: the name of the purse, which is used as identifier of the purse.
(2) Previous Balance: the balance before a coming transaction. Note that this

component is introduced and used by us only with the purpose to express and
verify the desired properties directly as invariants, while this component is
not used in the Z method and its follow-up work. The value of this component
is set (updated) to the current balance when a transaction is going to happen.

(3) Current Balance: the current balance of the purse.
(4) Seqnum: the sequence number, which is globally unique and is to be used in

the next transaction. This number is increased during any transaction, and
thus it is necessary in avoiding replay attacks.

(5) Status: the status of the purse. Possible status of a purse includes: idle,
epr, epv, and epa. idle denotes that a purse is in a status either before
or after a transaction. The other three status labels denote that a purse is
expecting a value-request message, expecting a value-transfer message, and
expecting an acknowledgement message, respectively.

(6) Paydetail: the payment detail of a transaction that the purse is currently in-
volved in or just finished. A payment detail is constructed using the CafeOBJ
operator mk-pay that takes five arguments: the name of the FromPurse
and its sequence number, the name of the ToPurse and its sequence num-
ber, and the amount of value (also of sort Bal for simplicity) to be trans-
ferred. Given a payment detail mk-pay(FN:Name, FS:Seqnum, TN:Name,
TS:Seqnum, V:Bal), projection operators from, fromno, to, tono, and
value are defined to obtain each of its components.

(7) Exlog: the exception log, which is a list of payment details of failed trans-
actions. A transaction can fail since a message may be lost, and cards may
abort a transaction, etc. If there are possibilities that money may be lost
during a failed transaction, the current payment detail will be recorded into
the exception log. A predicate _/inexlog_ is defined to check whether a
payment detail is in the exception log or not.

Given a purse mk-purse(N:Name, PB:Bal, CB:Bal, SE:Seqnum, ST:Status,
P:Paydetail, E:Exlog), projection operators name, pbal, bal, seq, sta, pay,
and exlog are defined to obtain each of its components.

According to the communication protocol, there are five kinds of Messages:
startfrom(N:Name, V:Bal, S:Seqnum), startto(N:Name, V:Bal, S:Seqnum),
req(P:Paydetail), val(P:Paydetail), and ack(P:Paydetail). For each kind
of message, there exists a predicate to check the attribution of the message, such
as isstartfrom and isreq etc. For the first two messages, projection operators
nameofm,valueofm and seqofm are defined, and for the remaining three messages,
projection operators pdofm are defined.

Algebraic Approaches to Formal Analysis 399

The Ether is considered as a bag (multi-set) of messages, which is used to
formalize the communication channel. All messages sent are put into the ether
and a purse receives a message by selecting one from the ether. In this way, we
model that a message can be read by any purse. The constructors of Ether are
CafeOBJ operators nil and _,_ (of Ethers, where Message is declared as a sub-
sort of Ether). And there are two predicates_/in_ and empty? checking whether
a message is in ether or whether the ether is empty. Another two operators, get
and top, are defined to remove the first element and obtain the first element of
ether, respectively.

4.2 OTS Model and Its CafeOBJ Specification

Two observers denoted by CafeOBJ observation operators purse and ether are
declared as follows:

bop purse : Sys Name -> Purse. bop ether : Sys -> Ether.

where sort Sys is a hidden sort denoting the universal state space Υ of the
OTS model of the Mondex system. Given a state and a purse name, observer
purse returns the content (components) of the purse in this state, and given a
state, observer ether returns the content (messages) of the ether in this state.

Given a constant init:Sys denoting any initial state of the Mondex system,
the initial state is characterized by the following equations:

eq purse(init,P)
= mk-purse(P,ib(P,seedv),ib(P,seedv),is(P,seedn),idle,none,emptyexlog).

eq ether(init) = nil.

In the first equation, variable P:Name denotes an arbitrary purse; ib(P,seedv) is
a term denoting the previous balance of P, which is equal to its current balance
in initial state; is(P,seedn) is a term denoting the initial sequence number
of P; and any purse denoted by P is initially in the status idle, and there
are no payment details or exception logs for P (denoted by none and emptylog,
respectively). The second equation says that initially the ether is empty (denoted
by nil), namely that no message exists in the ether.

Nine transitions, which characterize sending and receiving messages, and also
the security features of the Mondex system, are declared as follows:
bop startpay : Sys Name Name Bal -> Sys
bop recstartfrom : Sys Name Message -> Sys
bop recstartto : Sys Name Message -> Sys
bop recreq : Sys Name Message -> Sys
bop recval : Sys Name Message -> Sys
bop recack : Sys Name Message -> Sys
bop drop : Sys -> Sys
bop duplicate : Sys -> Sys
bop abort : Sys Name -> Sys

(1) Transition denoted by the CafeOBJ action operator startpay characterizes
that the communication device ascertains a transaction and sends the startfrom
and startto messages.

400 W. Kong, K. Ogata, and K. Futatsugi

op c-startpay : Sys Name Name Bal -> Bool
eq c-startpay(S,P1,P2,V)

= sta(purse(S,P1)) = idle and sta(purse(S,P2)) = idle and not(P1 = P2).
ceq purse(startpay(S,P1,P2,V),Q) = purse(S,Q) if c-startpay(S,P1,P2,V).
ceq ether(startpay(S,P1,P2,V))

= startfrom(P2,V,seq(purse(S,P2))),
startto(P1,V,seq(purse(S,P1))),ether(S) if c-startpay(S,P1,P2,V).

ceq startpay(S,P1,P2,V) = S if not c-startpay(S,P1,P2,V).

The effective condition denoted by c-startpay demands that (the first equa-
tion): the two purses denoted by P1 and P2 be in the idle status, namely that
they are currently not involved in any other transactions; and that they be dif-
ferent purses. If startpay is applied when the condition holds: the components
of any purse denoted by Q are not changed (the second conditional equation);
and two messages startfrom and startto are put into the ether (the third con-
ditional equation). The last conditional equation says that even if startpay is
applied when the condition does not hold, nothing changes.

(2) Transition denoted by the CafeOBJ action operator recstartfrom char-
acterizes that a purse receives the message startfrom.
op c-recstartfrom : Sys Name Message -> Bool
eq c-recstartfrom(S,P,M)

= M /in ether(S) and isstartfrom(M) and sta(purse(S,P)) = idle and
not(P = nameofm(M)) and valueofm(M) <= bal(purse(S,P)) .

ceq purse(recstartfrom(S,P,M),Q)
= mk-purse(Q,(if (P=Q) then bal(purse(S,Q)) else pbal(purse(S,Q))fi),

bal(purse(S,Q)),(if (P=Q) then nextseqnum(seq(purse(S,Q)))
else seq(purse(S,Q)) fi),

(if (P = Q) then epr else sta(purse(S,Q)) fi),
(if (P = Q) then mk-pay(Q,seq(purse(S,Q)),

nameofm(M),seqofm(M),valueofm(M))
else pay(purse(S,Q)) fi),

exlog(purse(S,Q))) if c-recstartfrom(S,P,M).
ceq ether(recstartfrom(S,P,M)) = ether(S) if c-recstartfrom(S,P,M).
ceq recstartfrom(S,P,M) = S if not c-recstartfrom(S,P,M).

The effective condition denoted by c-recstartfrom demands that: there exist
a startfrommessage in the ether; the purse P that is going to receive the message
be in the status idle; the name argument of the startfrom message be other
than P (namely that P is not going to do a transaction with itself); and last P
have enough value for this request.

If recstartfrom is applied when the condition holds: the previous balance
of P is updated to its current balance, namely to record the current balance
before a coming transaction as the previous balance; increase the sequence num-
ber; change the status of P to epr; and generate a payment detail. Note that two
variables P and Q both denote purses. However, P denotes the purse receiving the
message startfrom (executing the transition recstartfrom), and Q denotes the
purse that the observer purse are “observing” on. After applying recstartfrom,
P becomes the FromPurse of a transaction denoted by its payment detail.

Algebraic Approaches to Formal Analysis 401

(3) Transition denoted by the CafeOBJ action operator recstartto character-
izes that a purse receives the message startto.

op c-recstartto : Sys Name Message -> Bool
eq c-recstartto(S,P,M)

= M /in ether(S) and isstartto(M) and sta(purse(S,P)) = idle and
not(P = nameofm(M)) .

ceq purse(recstartto(S,P,M),Q)
= mk-purse(Q,(if (P=Q) then bal(purse(S,Q)) else pbal(purse(S,Q))fi),

bal(purse(S,Q)),(if (P=Q) then nextseqnum(seq(purse(S,Q)))
else seq(purse(S,Q)) fi),

(if (P = Q) then epv else sta(purse(S,Q)) fi),
(if (P = Q) then mk-pay(nameofm(M),seqofm(M),

Q,seq(purse(S,Q)),valueofm(M))
else pay(purse(S,Q)) fi),

log(purse(S,Q))) if c-recstartto(S,P,M).
ceq ether(recstartto(S,P,M))

= req(pd(nameofm(M),seqofm(M),P,seq(purse(S,P)),valueofm(M))),
ether(S) if c-recstartto(S,P,M).

ceq recstartto(S,P,M) = S if not c-recstartto(S,P,M).

Equations defining effective condition and application of transition recstartto
are similar to those of transition recstartfrom, except that: the condition de-
mands a startto message in the ether; the status of the purse is changed to epv;
and a req message is put into the ether. After applying recstartto, P becomes
the ToPurse of the transaction denoted by its payment detail.

(4) Transition denoted by the CafeOBJ action operator recreq characterizes
that a purse receives the message req.

op c-recreq : Sys Name Message -> Bool
eq c-recreq(S,P,M)

= M /in ether(S) and isreq(M) and sta(purse(S,P)) = epr and
pay(purse(S,P)) = pdofm(M) .

ceq purse(recreq(S,P,M),Q)
= mk-purse(Q,pbal(purse(S,Q)),

(if (P = Q) then (bal(purse(S,Q)) - value(pdofm(M)))
else bal(purse(S,Q)) fi),

seq(purse(S,Q)),
(if (P = Q) then epa else sta(purse(S,Q)) fi),
pay(purse(S,Q)),log(purse(S,Q))) if c-recreq(S,P,M).

ceq ether(recreq(S,P,M)) = val(pdofm(M)),ether(S) if c-recreq(S,P,M).
ceq recreq(S,P,M) = S if not c-recreq(S,P,M).

The effective condition denoted by c-recreq demands that: there exist a req
message in the ether; the purse P that is going to receive the req message be
in the status epr; and the payment detail of the req message be equal to the
payment detail of P. If recreq is applied when the condition holds, the current
balance of P is deceased with the requested amount of value; the status of P is
changed to epa; and a val message is put into the ether.

402 W. Kong, K. Ogata, and K. Futatsugi

(5) Transition denoted by the CafeOBJ action operator recval characterizes
that a purse receives the message val.

op c-recval : Sys Name Message -> Bool
eq c-recval(S,P,M)

= M /in ether(S) and isval(M) and sta(purse(S,P)) = epv and
pay(purse(S,P)) = pdofm(M) .

ceq purse(recval(S,P,M),Q)
= mk-purse(Q,pbal(purse(S,Q)),

(if (P = Q) then (bal(purse(S,Q)) + value(pdofm(M)))
else bal(purse(S,Q)) fi),

seq(purse(S,Q)),
(if (P = Q) then idle else sta(purse(S,Q)) fi),
pay(purse(S,Q)),log(purse(S,Q))) if c-recval(S,P,M).

ceq ether(recval(S,P,M)) = ack(pdofm(M)),ether(S) if c-recval(S,P,M).
ceq recval(S,P,M) = S if not c-recval(S,P,M).

The effective condition denoted by c-recval demands that: there exist a val
message in the ether; the purse P that is going to receive the message be in the
status epv; and the payment detail of the val message be equal to the payment
detail of the purse P. If recval is applied when the condition holds: the cur-
rent balance of P is increased with the transferred amount of value; the status
of P is changed to idle, which means that the transaction is completed at the
ToPurse’s side; and an ack message is put into the ether.

(6) Transition denoted by the CafeOBJ action operator recack characterizes
that a purse receives the message ack.

op c-recack : Sys Purse Message -> Bool
eq c-recack(S,P,M)

= M /in ether(S) and isack(M) and sta(purse(S,P)) = epa and
pay(purse(S,P)) = pdofm(M) .

ceq purse(recack(S,P,M),Q)
= mk-purse(Q,pbal(purse(S,Q)),bal(purse(S,Q)),seq(purse(S,Q)),

(if (P = Q) then idle else sta(purse(S,Q)) fi),
pay(purse(S,Q)),log(purse(S,Q))) if c-recack(S,P,M).

ceq ether(recack(S,P,M)) = ether(S) if c-recack(S,P,M).
ceq recack(S,P,M) = S if not c-recack(S,P,M).

The effective condition denoted by c-recack demands that: there exist an
ack message in the ether; the purse P that is going to receive the ack message
be in the status epa; and the payment detail of the ack message be equal to the
payment detail of P. If recack is applied when the condition holds: the status of
P is changed to idle, which denotes that a transaction is successfully completed.

Besides the above described transitions that correspond to sending and receiv-
ing messages of the communication protocol of the Mondex system, there are
three more transitions to characterize security features of the Mondex system,
which include: the ether is unreliable, and a transaction can be stopped at any
time.

Algebraic Approaches to Formal Analysis 403

(7) To characterize that the messages in the ether may be lost and replayed,
we define two more transitions: drop and duplicate. As long as the ether is
not empty, transition drop can remove a message from the ether, and transition
duplicate can duplicate a message in the ether. Equations defining these two
transitions are as follows:

op c-drop : Sys -> Bool
eq c-drop(S) = not empty?(ether(S)) .
ceq purse(drop(S),Q) = purse(S,Q) if c-drop(S).
ceq ether(drop(S)) = get(ether(S)) if c-drop(S).
ceq drop(S) = S if not c-drop(S).

op c-duplicate : Sys -> Bool
eq c-duplicate(S) = not empty?(ether(S)) .
ceq purse(duplicate(S),Q) = purse(S,Q) if c-duplicate(S).
ceq ether(duplicate(S)) = top(ether(S)),ether(S) if c-duplicate(S).
ceq duplicate(S) = S if not c-duplicate(S).

(8) To characterize that a transaction can be stopped at any time, namely that
a purse can abort a transaction at any time the card-holder wishes, we define
the transition abort as follows:

eq purse(abort(S,P),Q)
= mk-purse(Q,pbal(purse(S,Q)),bal(purse(S,Q)),

(if (P = Q) then nextseqnum(seq(purse(S,Q)))
else seq(purse(S,Q)) fi),

(if (P = Q) then idle else sta(purse(S,Q)) fi),
pay(purse(S,Q)),
(if (P = Q) then

(if (sta(purse(S,Q)) = epa or sta(purse(S,Q)) = epv)
then pay(purse(S,Q)) @ log(purse(S,Q))
else log(purse(S,Q)) fi)

else log(purse(S,Q)) fi)).
eq ether(abort(S,P)) = ether(S) .

Note that no effective condition is defined for transition abort, which means
that the transition abort can be executed at any time. When a purse aborts a
transaction, the status of the purse is changed to idle, and its sequence number
is increased. In addition, if a purse aborts a transaction in status epa or epv, the
payment detail of this transaction must be recorded to the exception log of the
aborting purse (through concatenation operator @). This is because that there
exist possibilities that value may be lost when a FromPurse has transferred value
(in epa) or a ToPurse is waiting for value being transferred (in epv, namely that
it has not received the value). Note that a same payment detail may be logged in
both FromPurse and ToPurse, although a value is only lost once. The purpose
of this is to analyze the exception logs in the future by comparing the two logs
and refund value if value did be lost.

404 W. Kong, K. Ogata, and K. Futatsugi

5 Verification of the Mondex System

5.1 Formal Definitions of the Properties

Through making use of the introduced component “previous balance”, we are
able to define the two desired security properties of the Mondex system as in-
variants. Formal definitions of the properties are below.
1. For any reachable state s, any two purses denoted by p1 and p2:

(sta(purse(s,p1)) = idle and sta(purse(s,p2)) = idle and

pay(purse(s,p1)) = pay(purse(s,p2)) and not(p1 = p2))

implies

(bal(purse(s,p1)) + bal(purse(s,p2)) <= pbal(purse(s,p1)) + pbal(purse(s,p2))).

In the premise of Property 1, two arbitrary different purses denoted by p1

and p2 are both in the status idle, which means that p1 and p2 are currently
not involved in any transactions; additionally, the equality of their payment
details expresses that either they are never involved in any transactions (thus the
payment details are both none), or a transaction between them has just finished
(finished normally or abnormally by aborting the transaction does not matter).
Therefore, Property 1 can be stated as: for two arbitrary different purses, (1)
if no transaction ever happens for each of the two purses, or (2) after any one
transaction between them, the sum of their current balances will not be increased
(less than or equal to the sum of their balances before the transaction). This
implies the informal description of Property 1 that covers all possible purses for
any number of transactions.
2. For any reachable state s, any two purses denoted by p1 and p2:

(sta(purse(s,p1)) = idle and sta(purse(s,p2)) = idle and

pay(purse(s,p1)) = pay(purse(s,p2)) and not(p1 = p2))

implies

(if pay(purse(s,p1)) /inexlog log(purse(s,p1)) and

pay(purse(s,p2)) /inexlog log(purse(s,p2))

then bal(purse(s,p1)) + bal(purse(s,p2)) + lost(pay(purse(s,p1)))

= pbal(purse(s,p1)) + pbal(purse(s,p2))

else bal(purse(s,p1)) + bal(purse(s,p2))

= pbal(purse(s,p1)) + pbal(purse(s,p2)) fi).

The premise of Property 2 is exactly same as Property 1. To understand the
conclusion of Property 2, let us see the following table, which analyzes, under
the property’s premise, whether value is lost or not during a transaction.2

A FromPurse can be in the status idle, epr or epa, and a ToPurse can be in
the status idle or epv. Since aborting transaction by either the FromPurse or
the ToPurse in status idle only increases its sequence number, and the current
and previous balances remain unchanged, we only analyze the situations that

2 As to the situation where two purses are never involved in any transactions, it is
trivial that no value is lost. So this situation is omitted in the following discussion.

Algebraic Approaches to Formal Analysis 405

tofrom

abort
log

non-log

non-abort

abort non-abort

lost not lost

not lost impossible

impossible not lost

(a)

(c)

(e)

(b)

(d)

(f)

��������

a purse aborts in the status epr, epa (for FromPurse) and epv (for ToPurse).
non-abort in the table denotes that a purse successfully finished the transaction
on its side, and abort denotes that a purse finished the transaction (on its side)
by aborting it. log and non-log are used to distinguish that FromPurse aborts
the transaction on status epa or epr (only aborting in epa will be logged). The
ToPurse will always log the transaction when aborting the transaction (in epv).
The items of the table (labeled (a) – (f)) are explained as follows:

(a) The FromPurse aborts the transaction after it decreases its current balance
and sends the val message (in epa), and the ToPurse aborts the transaction
before it receives the val message (in epv). Therefore value is lost.

(b) The FromPurse aborts the transaction after it decreases its current balance
and sends the val message, and the ToPurse does not abort the transaction.
Since the ToPurse is in status idle (as the premise says), it has successfully
received the val message and therefore no value is lost.

(c) The FromPurse aborts the transaction before it decreases its current balance
(in epr), and the ToPurse aborts while waiting for the val message (in epv).
Therefore no value is lost.

(d) The FromPurse aborts the transaction before it decreases its current bal-
ance, and the ToPurse finishes the transaction successfully. This situation is
impossible since no val message was sent.

(e) The FromPurse successfully finished the transaction, and the ToPurse aborts
the transaction while waiting for the val message. This situation is impos-
sible since no ack message was sent.

(f) Both the FromPurse and ToPurse finish the transaction successfully. There-
fore no value is lost.

The above analyzed situations from (a) – (f) are reflected in the formula for
Property 2, in which lost is a function that counts the lost value of a transaction
(denoted by the payment detail). Therefore, for any one transaction between two
arbitrary different purses, if value is lost, the value is logged in the exception
logs of both the FromPurse and ToPurse, and the sum of their current balances
plus the lost value is equal to the sum of their previous balances before this
transaction; otherwise, value is not lost, and the sum of their current balances
is equal to the sum of their previous balances before this transaction.

5.2 Verification of the Properties

We describe partly an inductive case of the proof of Property 2, which shows that
transition abort preserves the property. Among those invariants that are used

406 W. Kong, K. Ogata, and K. Futatsugi

as lemmas to strengthen the inductive hypothesis of Property 2, we introduce
two of them (which are called Properties 3 and 4), and a proof passage that uses
these two lemmas. Formal definition of Properties 3 and 4 are as follows:
3. For any reachable state s and any purse denoted by p :

sta(purse(s,p)) = epv implies bal(purse(s,p)) = pbal(purse(s,p)).

4. For any reachable state s and any purse denoted by p :

pay(purse(s,p)) /inexlog log(purse(s,p)) and from(pay(purse(s,p))) = p

implies

bal(purse(s,p)) = pbal(purse(s,p)) - value(pay(purse(s,p))).

As introduced in Section 2, we declare the operators denoting Properties 2, 3
and 4 in a module INV as follows:

op inv2 : Sys Name Name -> Bool
op inv3 : Sys Name -> Bool op inv4 : Sys Name -> Bool

The operators are defined with equations to denote the properties. We also
declare the operator denoting the basic formula to prove in each inductive case
of the proof of Property 2 and its defining equation in a module ISTEP as follows:

op istep2 : Name Name -> Bool
eq istep2(P1,P2) = inv2(s,P1,P2) implies inv2(s’,P1,P2) .

where s and s’ are constants of sort Sys. s denotes an arbitrary state and s’
denotes a successor state of s.

The proof passage for proving the inductive case abort of Property 2, which
uses Properties 3 and 4 to strengthen the inductive hypothesis, is as follows:

open ISTEP
-- arbitrary objects
op q : -> Name.
-- assumption
eq (p1 = q) = false. eq p2 = q.
eq sta(purse(s,q)) = epv.
eq (pay(purse(s,p1)) /inexlog log(purse(s,p1))) = true.
eq sta(purse(s,p1)) = idle . eq pay(purse(s,q)) = pay(purse(s,p1)).
eq (bal(purse(s,q)) = pbal(purse(s,q))) = false.
-- successor state
eq s’ = abort(s,q).
-- check if the predicate is true.
red inv3(s,q) and inv4(s,p1) implies istep2(p1,p2).

close

The equations in the “assumption” part characterize the case being analyzed.
In this proof passage, inv3(s,q) and inv4(s,p1) are used to strengthen the
inductive hypothesis denoted by inv2(p1,p2). Proof passages for the other cases
of the inductive case abort are written similarly, and some other properties are
used as lemmas to prove this inductive case.

Algebraic Approaches to Formal Analysis 407

Here is a brief summarization of the OTS/CafeOBJ specification and verifi-
cation of the Mondex system. The CafeOBJ specification of the OTS model of
the Mondex system is approximately 1100 lines. And 53 other invariant proper-
ties are proved and used as lemmas to prove the two desired properties of the
Mondex system. The proof scores are approximately 47000 lines. Although the
proof scores seem to be long, most of the work is “copy-and-paste” work, and the
difficult task in verification is to come up with some of those 53 lemmas. It took
about 5 minutes to have the CafeOBJ system load the CafeOBJ specification
and execute all the proof scores on a computer with 3.2GHz processor and 2GB
memory. It took a couple of weeks to complete the case study.

6 Falsification of the Mondex System

As a complement to the interactive verification of the OTS/CafeOBJ method,
we report on a way of automatically falsifying the Mondex system by employing
Maude model checking facilities (in particular the Maude search command [13])
to take advantage of (1) the fully automatic verification/falsification procedure,
and (2) informative counterexamples.

An implemented prototype translator [15] that translates the OTS/CafeOBJ
specifications into corresponding Maude specifications is used as the basis for
this falsification. As a sibling language of CafeOBJ, Maude is a specification and
programming language based on rewrite logic, which is equipped with model
checking facilities. The primary reason for choosing Maude is that it supports
model checking on abstract data types, including inductively defined data types,
and does not require the state space of a system to be finite, although the
reachable state space of the system should be finite. This finiteness restriction can
be abandoned when using Maude search command to explicitly explore a finite
reachable state space of a system for counterexamples (namely falsification).

One may wonder why we need falsification of the Mondex system, since we
have already verified it using the OTS/CafeOBJ method. The reasons are that
falsification can be used to facilitate, in different stages, the interactive verifica-
tion of the two security properties:

1. Before carrying out the interactive verification, falsifying the two properties
can help obtain a certain degree of confidence of the correctness (within a
finite reachable state space) of the system and property specifications.

2. While conducting the interactive verification, generating good and correct
lemmas is not a simple task. Falsification can help, in this stage, to filter out
those lemmas generated which are essentially wrong.

6.1 Maude Specification of the Mondex System

We show directly the translated Maude specification for transition recack as a
demonstration example. More technical details (translation rules and soundness
proof wrt counterexamples 3) can be found in [14,15].
3 i.e. for any counterexample reported by Maude for the translated specification, there

exists a corresponding counterexample in the original OTS/CafeOBJ specification.

408 W. Kong, K. Ogata, and K. Futatsugi

Consider two different purses denoted by Maude constants p1 and p2 of sort
Name, the Maude specification of the OTS/CafeOBJ transition recack is:
crl[recack_p1]:

(purse[p1] : PS1) (purse[p2] : PS2) (ether : (M,EH)) (steps : C)
=>
(purse[p1] :
mk-purse(p1,pbal(PS1),bal(PS1),seq(PS1),idle,pay(PS1),log(PS1)))
(purse[p2] :
mk-purse(p2,pbal(PS2),bal(PS2),seq(PS2),sta(PS2),pay(PS2),log(PS2)))
(ether : (M,EH)) (steps : (C + 1))

if (isack(M) and sta(PS1) = epa and pay(PS1) = pdofm(M) and C < bound).

The set of equations of the OTS/CafeOBJ specification that characterizes the
transition recack is translated into Maude conditional rewrite rules. crl is the
keyword to declare a conditional rewrite rule, and recack_p1 in the bracket is
the label of this rule, which denotes that p1 receives the message ack.

The left-hand side of the rule (before =>) denotes the current state of the
OTS, which consists of four terms of observations. Maude variables PS1 and PS2
of sort Purse denote the return values of observer purse on purses p1 and p2,
respectively. The term (M,EH) of sort Ether denotes that current ether consists
of a message M and the remaining part EH of the ether. The right-hand side of
the rule (after =>) denotes the successor state of the OTS wrt the execution
of the rule. The component status of purse p1 is changed to idle, and other
components remain unchanged. The return value of observer purse on purse p2,
and the return value of observer ether remain unchanged.

Note that an additional observer steps is introduced in the rule. The return
value of steps is increased by 1 after the execution of the rule. Through defining
a predicate C < bound in the condition of the rule, we can restrict execution of
the OTS within finite steps (less than bound, a natural number determined by
human verifiers), which is inspired by Bounded Model Checking.

Predicates in the condition of the rule check that: there exists an ack message
in the ether; the purse p1 that is going to receive the message is in the status epa;
and the payment detail of the ack message is equal to the payment detail of p1.
Note that another similar Maude rewrite rule is also generated to characterize
the situation in which purse p2 receives the ack message.

6.2 Falsification of the Mondex System

We show the translated Maude specification of Property 1 of the Mondex system
as follows, and Property 2 is translated similarly:
search [1] in MONDEX :
init =>* (purse[P1] : PS1) (purse[P2] : PS2) S

such that not((sta(PS1) = idle and sta(PS2) = idle and
pay(PS1) = pay(PS2) and not(P1 = P2))
implies
(bal(PS1) + bal(PS2) <= pbal(PS1) + pbal(PS2))).

Maude search command explores the tree of possible rewrites starting at
an initial state init to a final state that matches pattern (purse[P1] : PS1)

Algebraic Approaches to Formal Analysis 409

(purse[P2] : PS2) S and satisfies the condition denoted by the term after
such that. In the above command, MONDEX is a Maude module that describes
the OTS of the Mondex system (in which the equation defining init and those
rewrite rules are defined). P1 and P2 are variables of sort Name denoting two
arbitrary purses. S is a variable of sort Sys denoting an arbitrary state of the
OTS. Note that in the condition part, we use the negation operator not in front
of the term denoting Property 1, since we aim at falsification of the property.

Setting bound to 9, and considering two purses p1 and p2 in the initial state
init, we feed the above search command into Maude system, and No Solution
is returned, which denotes that no counterexample is found.

We now give a simple example showing that the falsification can help filter out
a lemma generated during interactive verification of the OTS/CafeOBJ method.
The lemma, named here as Property 5, is as follows:
5. For any reachable state s, any two purses denoted by p1 and p2:

pay(purse(s,p1)) = none and from(pay(purse(s,p2))) = p1 and not(p1 = p2)

implies

fromno(pay(purse(s,p2))) = seq(purse(s,p1)).

Intuitively Property 5 says that: if a purse p1’s payment detail is none, and
the from component of the payment detail of another purse p2 is equal to p1,
then the fromno component of the payment detail of p2 is equal to p1’s current
sequence number. This seems to be reasonable since, when p1’s payment detail is
none, this means that p1 has never been involved in any transactions. And thus
p1’s sequence number has never increased. The property describes the situation
when two purses p1 and p2 are going to have a transaction, and p2 has received
the startto message, but p1 has not yet received the startfrom message.

However, Property 5 is actually incorrect, because even if p1’s payment de-
tail is none, it could execute the abort transition freely before it receives the
startfrom message, since no condition is defined for abort. Therefore, p1’s
sequence number may increase. A correct conclusion of Property 5 should be
fromno(pay(purse(s,p2))) <= seq(purse(s,p1)).

To realize this incorrectness of Property 5 by using the interactive verifica-
tion of the OTS/CafeOBJ method, a certain amount of proof effort is needed,
however, the incorrectness can be immediately reported by Maude system as a
counterexample as follows:
state 0: ...

===[crl ... [label startpay_p1_p2_con]]===>
state 1: ...

===[crl ... [label recstartto_p2]]===>
state 8: ...

===[crl ... [label abort_p1]]===>
state 51: ...

where state 0 denotes the initial state and state 51 denotes the state where
a counterexample is found. The omitted parts after each numbered state are
terms denoting corresponding states, and the omitted parts after crl are terms
denoting the rewrite rules with corresponding labels. In state 51, the fromno

410 W. Kong, K. Ogata, and K. Futatsugi

component of p2 is is(p1,seedn), but the sequence number of p1 is nextseqnum
(is(p1, seedn)), which is contrary to Property 5.

7 Related Work

The Mondex system was originally specified and manually proved for correctness
using the Z method [9]. In [9], two models of the Mondex system were developed,
where the first is an abstract model that models value exchanges between purses
as atomic transaction, and the second is a concrete model that models value ex-
changes between purses following the communication protocol. It is then proved
that the two security properties hold for the abstract model, and the concrete
model is a refinement of the abstract one.

Following the original Z work, a number of other formal methods, such as KIV
[5,6], RAISE [7] and Alloy [8] etc, have been employed for the Mondex problem.
We discuss these related work regarding the aspects of modeling, refinement
proof (or verification) and falsification, respectively.

The RAISE and Alloy work seem to intentionally follow closely the model-
ing methods of the original Z work, while keeping their own features. The KIV
work provides an alternative operational style formalization of the Mondex sys-
tem using (two) abstract state machines, and makes several simplifications and
modifications, which include, for example: removed of the global input while
obtaining the input from the ether; removed of the ignore operation that does
nothing (which is needed by the refinement theory used in Z work); and merging
the purses’ two idling status, eaFrom and eaTo, into one idle status, etc.

Our work of modeling the Mondex system as an OTS in an operational style
is inspired by the KIV work, which from our point of view is simpler than the Z
modeling method (a similar statement is made in the KIV work). In addition,
we made several further modifications to the KIV modeling as follows:
1. Since messages existing in ether can be lost, we abandoned the assumption

made in KIV modeling that startfrom and startto messages are always
available in ether. In our model, no message exists in the initial ether.

2. To reflect that a purse can abort a transaction at any time, as the card-
holder wishes, we did not define any effective condition for the transition
abort, while a condition was defined for abort in KIV modeling.

3. We explicitly defined two transitions, duplicate and drop, to characterize
that messages in the ether can be replayed or lost. The KIV modeling used
ether’ ⊆ ether to characterize that messages can be lost, but did not
explicitly show that messages can be replayed.

To show the correctness of the properties to the Mondex system, refinement
proofs are developed in Z, KIV, RAISE and Alloy work in different forms and
with different features. Although the refinement construction and proof strate-
gies are suitable for the Mondex problem, we employ an alternative way of
expressing and verifying the security properties of the Mondex system directly
as invariants, through using an introduced component “previous balance” into
purses. Note, however, that even if different proof strategies are used, we share

Algebraic Approaches to Formal Analysis 411

some similar or exactly same proof obligations. First, for the property of pay-
ment details that from and to components should be different (Section. 4.3.2 of
[9]), and for the properties P-2 to P-4 for purses (Section. 4.6 of [9]), which are
used in the refinement proofs of the Z and KIV work, we have proved and used
as lemmas exactly the same properties in our verification; and second, for some
of the properties B-2 to B-12 expressing constraints on ether (Section 5.3 of [9]),
we have proved and used as lemmas very similar properties in our work.

In the RAISE and Alloy work, two different ways of falsification of the Mon-
dex system are described, by means of translating the RSL (RAISE Specification
Language) specification of the Mondex system into SAL, and appealing the Alloy
analyzer (model-finding technique), respectively. In our work,Maude search com-
mand is used for conducting falsification through a translation into Maude spec-
ification of the Mondex system. Our work is similar to the above two work in the
sense that we all consider a finite reachable state space (called finite scope in Alloy
terminology), such as finite number of purses. However, our work is different from
the RAISE work in the sense thatwe do notneed to make those changes of the Mon-
dex system as RAISE work did: (1) the possible loss of messages was not modeled
in RAISE work to reduce possible changes to the ether, and (2) ranges of money
and sequence numbers were restricted to 0..3, etc. Possible reason for these may
be that we are able to do falsification on inductively defined data types. For exam-
ple, Ether is defined using constructors nil and _,_. This point is also a possible
difference between our work and Alloy work.

8 Conclusion

We have described two algebraic approaches to both verification and falsifica-
tion of the Mondex system, and how the latter can be used to facilitate the
former. We have employed alternative ways of (1) modeling the Mondex sys-
tem in an operational style, rather than in a relational style, and (2) expressing
and verifying (and falsifying) security properties of the Mondex system directly
in terms of invariants. This work therefore provides a different way of viewing
the Mondex analysis problem, and can be used to compare different modeling
and proof strategies. In addition, our model of the Mondex system makes sev-
eral simplifications to the original Z model (as inspired by the KIV model),
and several further modifications to the KIV model to keep closer to the real
problem. For more information about our work on Mondex, please visit URL:
http://www.ldl.jaist.ac.jp/mondex/.

Future Work. In our modeling and verification of the Mondex system, we did
not consider intruder purses that may send fake messages based on possibly
gleaned information. This is because it is assumed that the Req, Val and Ack
messages cannot be forged, which is guaranteed by some (unclear) means of
cryptographic system. In the KIV work, a possible communication protocol us-
ing cryptographic algorithm was developed. Our first future work is to extend
our verification by considering possible intruder purses. Our second future work
relates to falsification. We are going to investigate the technical issue of how

412 W. Kong, K. Ogata, and K. Futatsugi

many entities (such as purses) are enough to uncover possible counterexamples
when the number of entities has to be made finite for falsification.

Acknowledgements

This research is conducted as a program for the “21st Century COE Program” in
Special Coordination Funds for promoting Science and Technology by Ministry
of Education, Culture, Sports, Science and Technology. We would like to thank
Chris George and Anne E. Haxthausen for kindly sharing their RSL specification
of Mondex with us, and Mary Ann Mooradian for proof-reading the paper.

References

1. MasterCard International Inc. Mondex. URL: http://www.mondex.com/.
2. Mondex Case Study. URL: http://qpq.csl.sri.com/vsr/private/repository/Mondex-

CaseStudy
3. UK Computing Research Committee, Grand Challenges in Computer Research.

URL: http://www.ukcrc.org.uk/grand challenges/index.cfm
4. Woodcock, J.: Grand Challenges 6: Dependable Systems Evolution. URL:

http://www.fmnet.info/gc6/
5. Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The Mondex challenge: ma-

chine checked proofs for an electronic purse. Technical Report, University of Augs-
burg (2006)

6. Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The Mondex challenge: ma-
chine checked proofs for an electronic purse. In: Misra, J., Nipkow, T., Sekerinski,
E. (eds.) FM 2006. LNCS, vol. 4085, pp. 16–31. Springer, Heidelberg (2006)

7. Haxthausen, A., George, C., Schütz, M.: Specification and proof of the Mondex
electronic purse. In: AWCVS’06, UNU-IIST Report No. 347, pp. 209–224 (2006)

8. Ramananandro, T.: Mondex, An Electronic Purse: Specification and refine-
ment checks with the Alloy model-finding method. Internship Report (2006)
http://www.eleves.ens.fr/home/ramanana/work/mondex/

9. Stepney, S., Cooper, D., Woodcock, J.: An electronic purse specification, refine-
ment, and proof. Technical monograph PRG-126, Oxford University Computing
Laboratory (July 2000)

10. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

11. CafeOBJ Web Site (2007) URL: http://www.ldl.jaist.ac.jp/cafeobj/
12. Diaconescu, R., Futatsugi, R.K.: CafeOBJ report. AMAST Series in Computing,

vol. 6. World Scientific, Singapore (1998)
13. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,

Talcott, C.: Maude manual (Version 2.2) (2007) URL: http://maude.cs.uiuc.
edu/maude2-manual/

14. Nakamura, M., Kong, W., Ogata, K., Futatsugi, K.: A complete specification trans-
lation from OTS/CafeOBJ into OTS/Maude. IEICE TR, SS2006 13, 1–6 (2006)

15. Kong, W., Ogata, K., Futatsugi, K.: A lightweight integration of theorem proving
and model checking for system verification. In: APSEC’05, pp. 59–66. IEEE CS,
Washington, DC (2005)

http://www.mondex.com/.
http://www. fmnet.info/gc6/
http://www.eleves.ens.fr/home/ramanana/work/mondex/
http://www.ldl.jaist.ac.jp/cafeobj/
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://maude.cs.uiuc.edu/maude2-manual/
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://maude.cs.uiuc.edu/maude2-manual/

Capturing Conflict and Confusion in CSP

Christie Marr (née Bolton)

SALTIRE
University of St Andrews

Fife KY16 9AJ
christie.marr@st-andrews.ac.uk

Abstract. Traditionally, developers of concurrent systems have adopted
two distinct approaches: those with truly concurrent semantics and those
with interleaving semantics. In the coarser interleaving interpretation
parallelism can be captured in terms of non-determinism whereas in the
finer, truly concurrent interpretation it cannot. Thus processes a ‖b and
a.b+b.a are identified within the interleaving approach but distinguished
within the truly concurrent approach.

In [5] we explored the truly concurrent notions of conflict, whereby
transitions can occur individually but not together from a given state,
and confusion, whereby the conflict set of a given transition is altered
by the occurrence of another transition with which it does not interfere.
We presented a translation from the truly concurrent formalism of Petri
nets to the interleaving process algebra CSP and demonstrated how the
CSP model-checker FDR can be used to detect the presence of both con-
flict and confusion in Petri nets. This work is of interest firstly because,
to the author’s knowledge, no existing tool for Petri nets can perform
these checks, and secondly (and perhaps more significantly) because we
bridged the gap between truly concurrent and interleaving formalisms,
demonstrating that true concurrency can be captured in what is typically
considered to be an interleaving language.

In this paper we build on the work presented in [5] further embedding
the truly concurrent notions of conflict and confusion in the interleav-
ing formalism CSP by extending the domain of our translation from the
simplistic subset of safe Petri nets, in which each place can hold at most
one token, to standard Petri nets, in which the number of tokens in each
place is unbounded.

Keywords: True Concurrency, Interleaving Concurrency, Petri Nets,
CSP, Conflict, Confusion, Automatic Verification.

1 Introduction

Software is increasingly used in critical systems (financially critical, environmen-
tally critical, or safety critical) where correctness is paramount. For such systems
it is desirable, indeed it is often a legal requirement, to formally design, spec-
ify and analyse models of the system. Testing alone is insufficient as it simply
enables us to detect the presence of errors not prove their absence. Rather, we

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 413–438, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

414 C. Marr

must formally, and preferably automatically, prove that the system meets its re-
quirements. This is especially important for concurrent systems since their high
levels of complexity make them particularly vulnerable to errors.

Within concurrency theory two distinct approaches have arisen: those with
truly concurrent semantics and those with interleaving semantics. Examples of
the former include trace theory [13], Petri net theory [17], prime event struc-
tures [25], pomsets [18], and others (cf. e.g., [16,3]). Examples of the latter in-
clude CSP [10], CCS [14,15] and ACP [2]. Advocates of the true concurrency
argue that their approach is a more accurate model of “reality” whilst advocates
of the interleaving approach argue that their model is an adequate abstrac-
tion. A more in depth comparison of the merits of these approaches is given in
e.g. [18].

The main difference between true concurrency and the coarser interleaving
approach is that in truly concurrent formalisms we can distinguish between the
concurrent execution of actions and the non-deterministic choice between the
possible orders of their executions, whereas within the interleaving approach we
cannot. Thus processes a ‖b and a.b + b.a are identified within the interleaving
approach but distinguished within the truly concurrent approach.

Three notions central to true concurrency are causal dependency, conflict and
confusion. Causal dependence is when one action is enabled only when another
has occurred. Conflict is when two or more actions are enabled but if one occurs
the others cannot, that is the actions can occur individually but not together.
Confusion can arise when there is a mixture of conflict and concurrency.

In [5] we presented a translation from safe nets, a simple interpretation of the
truly concurrent formalism of Petri Nets [17] in which places can hold at most
one token, to the interleaving semantics of CSP [10,21]. Through this transla-
tion we explored the relationship between true concurrency and the interleaving
approach. We demonstrated how this simple class of nets could be captured
as CSP processes and, more specifically, went on to show how the truly con-
current concepts of conflict and confusion could be detected in safe nets using
FDR [8], the model-checker for CSP. The contribution of [5] was two-fold. Firstly,
and from a practical perspective, we demonstrated how conflict and confusion,
ideas central to true concurrency, can be automatically detected in Petri nets:
to the author’s knowledge, no existing tool for modelling Petri nets can perform
these checks [24,1]. Secondly, and perhaps more significantly, from a theoret-
ical perspective, we demonstrated how the gap between truly concurrent and
interleaving formalisms can be bridged and in particular how true concurrency
can be captured, and truly concurrent properties reasoned about, in what is
traditionally considered to be an interleaving language.

In this paper, we build on the work presented in [5], revising, developing and
extending definitions for safe nets to cope with the less simplistic generalised
(unsafe) nets [17,20] thereby strengthening the links between these formalisms,
further cementing the truly concurrent notions of conflict and confusion into the
toolbox of users of CSP. Where appropriate, and to facilitate understanding, we

Capturing Conflict and Confusion in CSP 415

present corresponding definitions for safe and unsafe nets side-by-side and discuss
how the structures of our model for the latter mirror those for the former.1

The paper begins with an introduction to Petri net theory, identifying in par-
ticular the differences between safe and unsafe nets. This is followed by a discus-
sion of the concepts of concurrency, causal dependency, conflict and confusion.
After an introduction to the subset of the language of CSP that is needed for the
rest of the paper we present our translations from safe and unsafe Petri nets to
CSP. We then develop tests for using the CSP model-checker to automatically
detect conflict and both conflict-increasing and conflict-decreasing confusion in
unsafe Petri nets, building on techniques presented in [5]. We conclude with a
discussion of this and related work.

2 Petri Nets

Petri net theory was first proposed by Carl Petri in the early 1960s [17]. His
intention was to develop a technique for modelling distributed systems and in
particular notions of concurrency and non-determinism, that was at the same
time both graphical and intuitive, and formal and mathematical.

As discussed in e.g. [19] there are a number of different categories of Petri
net. Here we restrict ourselves to safe Petri nets in which each place contains
at most one token and standard (unsafe) nets in which places can contain more
than one token.

2.1 Graphical Representation

In their graphical representation, Petri’s nets are built using collections of three
types of object: circles or places denoting local state; boxes or transitions denot-
ing actions; and directed arcs, or arrows, from places to transitions and transi-
tions to places denoting flow. Thus a net is an ordered bipartite directed graph.
Places may or may not be named within the graphical representation of a Petri
net. In a marked graph, places within the graph may contain tokens (filled cir-
cles), indicating which transitions are enabled.

Safe Nets. In safe nets, places can contain at most one token and a transi-
tion is enabled precisely when all the places that directly precede the transition
contain a token, and none of the places that the transition directly precedes
contain tokens: that is, all of its preconditions and none of its postconditions are
satisfied. By way of an example, Figures 1 (a) and (c) illustrate the safe nets
corresponding to a ‖ b, the parallel composition of a and b, and a.b + b.a, the
non-deterministic choice between their possible orderings. Note that this is the
simplest example of two processes that are distinguished in true concurrency but
not in the interleaving approach.
1 Although the definitions and discussion regarding safe nets have already been pub-

lished in [5] they are included here as they illuminate the more complex definitions
regarding unsafe nets.

416 C. Marr

(a) (b) (c) (d)

��

�
a
��

��

�
b
��

�

�
a
���

��

�
b
��

��

�� ��
a b
� �� �

� �
b a
� �� �

�

�� ��
a b
� ��� �

� �
b a
� �� �

s

u

t

v

s

u

t

v

s

t u

v w

s

t u

v w

Fig. 1. Safe Petri nets modelling a ||b and a.b + b.a before and after transition a

When a transition fires in a safe net, tokens are removed from all places
directly preceding the transition, and tokens are placed in all (empty) places
that the transition precedes. Thus, if transition a fires then the nets illustrated
in Figures 1 (a) and (c) will be transformed to the nets illustrated in Figures 1 (b)
and (d).

Unsafe Nets. In standard (unsafe) nets, places may contain multiple tokens.
Transitions may require multiple tokens in a single place in order to be enabled
and, upon firing, may provide multiple transitions to a single place. These mul-
tiplicities may be indicated either by labelling the arcs with the appropriate
multiplicity or by allowing multiple arcs between pairs of places and transitions.
We adopt the latter approach here. By way of an example, consider Figure 2.

(a) (b)
�
�

�
��� � �

� �����
a b
�

�
	

�� �� ����

�

� �� �

s

t u v

�� �

� �� ����
a b
�

�
	

�� �� ���
�

�
���

�

� ���
�

�
���

s

t u v

Fig. 2. A unsafe net before and after the firing of transition q

When transition b fires, two tokens are removed from place s , one is added to
place u, and two are added to place v .

Provided they do not interfere (that is they share no common preconditions
and, in the case of safe nets, share no common postconditions) a set of transitions,
all of which are enabled, may fire together in a single atomic step. Tokens are
removed from all places in the disjoint union of their presets and put in all places
in their postsets.

2.2 Formal Representation

As we have already observed, Petri nets not only have an intuitive, graphical
representation, as described above. They also have a fully formal mathematical
representation which we will discuss in this section.

Capturing Conflict and Confusion in CSP 417

Safe Petri Nets. As discussed in [19], there are a variety of formal represen-
tations of Petri Nets. In this paper a safe Petri Net NS is represented by the
quintuple (PNS ,TNS ,PreNS ,PostNS ,LNS) where PNS is the set of places and
TNS is the set of transitions. Partial functions PreNS : TNS �→ PNS and PostNS :
TNS �→ PNS respectively link transitions with their presets (or preconditions)
and postsets (or postconditions), whilst total function LNS : TNS → Action links
transitions and actions thereby facilitating one set of behaviours to be enabled
by the occurrence of an action in one context and another set of behaviours to
be enabled by the occurrence of the same action in a different context. Where
the labelling function LNS is injective it can either be represented as the identity
function or can be elided. This definition is the same as that presented in [5]
with the exception that the flow relation FNS ⊆ (PNS × TNS) ∪ (TNS × PNS)
linking places and transitions has been split into PreNS and PostNS .

The healthiness conditions for safe Petri Nets are as follows.

• PNS ∩TNS = ∅ (S-H1)
• domPreNS = domPostNS = TNS (S-H2)
• ranPreNS ∪ ranPostNS = PNS (S-H3)
• domLNS = TNS (S-H4)

Condition S-H1 states that no place is also a transition. Condition S-H2 states
that every transition has a before state and an after state whilst condition S-H3
states that every place is attached to at least one transition. Finally, condition
S-H4 states that every transition has an associated action.

Marked Safe Nets. A marked net records not only the structural relationship
between places and transitions but also the positions of the tokens. Thus a
marked safe net, where each place can hold at most one token, can be represented
by the a pair (NS ,MNS) where NS is as defined above and MNS ⊆ PN is the set
of all initially marked places.

Unsafe Nets. The difference between safe and standard (unsafe) nets is that
places can contain more than one token in an unsafe net. Rather than sim-
ply identifying those places that contain tokens we must record the number
of tokens in each place. Moreover, more than one token may be required by
or produced in a single place by a single transition. Thus unsafe net NU is
represented by (PNU ,TNU ,PreNU ,PostNU ,LNU) where total functions PreNU :
(TNU × PNU) → N and PostNU : (TNU × PNU) → N record the number of to-
kens in each place in the preset and postset of each transition. As with safe nets,
PNU , TNU , and LNU : TNU → Action respectively describe the set of places, the
set of transitions, and the labeling function relating transitions and actions.

The associated healthiness conditions mirror those of safe nets.2

2 Throughout this paper we use (∀ x : X • bool) to denote that Boolean bool holds for
all x in X . Further we use (∃ x : X • bool) to state that there exists an element x in
set X such that Boolean bool holds.

418 C. Marr

• PNU ∩TNU = ∅ (U-H1)
• ∀ t : TNU • (∃ pi : PNU • PreNU (t , pi) ≥ 1) ∧

(∃ po : PNU • PostNU (t , po) ≥ 1)
(U-H2)

• ∀ p : PNU • ∃ t : TNU • (PreNU (t , p) ≥ 1 ∨ PostNU (t , p) ≥ 1) (U-H3)
• domLNS = TNS (U-H4)

Once more the second and third conditions respectively state that every transi-
tion has a before state and an after state and that every place is attached to at
least one transition.

Marked Unsafe Nets. We introduce a marking function, a total function from
places to integers identifying each place with the number of tokens in that place.
Hence a marked, unsafe net is captured by the pair (NU ,MNU) where NU is as
defined above and where total function MNU : PNU → N records the number of
tokens initially in each place.

Examples. The marked safe nets modelling a ‖ b and a.b + b.a, as illustrated
in Figures 1 (a) and (c) can respectively be captured as (N , {s , t}) and (N ′, {s})
as follows.

N = ({s , t , u, v}, {a, b}, {(a, s), (b, t)}, {(a, u), (b, v)})
N ′ = ({s , t , u, v ,w}, {a1, a2, b1, b2},

{(a1, s), (b1, t), (b2, s), (a2, u), }, {(a1, t), (b1, v), (b2, u), (a2,w)},
{(a1, a), (a2, a), (b1, b), (b2, b)}).

Note that the definition of N ′ illustrates how the labelling function is used to
capture varying behaviour after different occurrences of the same transition. In
particular, although transitions a1 and a2 both correspond to action a, transition
b1, corresponding to action b, can occur after transition a1 but not after a2.

Setting all preconditions and postconditions to 0 and then, where necessary,
over-riding using the operator ⊕, the marked unsafe net depicted in Figure 2 can
be captured as the pair (N ′′, {(s , 3), (t , 0), (u, 1), (v , 0)}) where N ′′ is defined as
follows.

N ′′ = ({s , t , u, v}, {a, b},
(({a, b} × {s , t , u, v}) × {0}) ⊕ {((a, s), 1), ((b, s), 2)},
(({a, b} × {s , t , u, v}) × {0}) ⊕ {((a, t), 3), ((b, u), 1), ((b, v), 2)})

3 Concurrency, Conflict and Confusion

In this section we introduce and formally define the concurrent notions of conflict
and confusion in the context of both safe and unsafe nets.

3.1 Purity

In this paper we consider only pure nets, that is nets in which no place lies in
the preset and the postset of the same transition. In particular, safe and unsafe
nets NS and NU must respectively satisfy the following conditions.

Capturing Conflict and Confusion in CSP 419

∀ t : TNS • PreNS (t) ∩ PostNS (t) = ∅
∀ t : TNU • ∀ p : PNU • (PreNU (t , u) > 0 ⇒ PostNU (t , u) = 0)

3.2 Enabled Transitions and Pre- and Post-Conditions

A transition is enabled in a safe net precisely when all of its preset and none of its
postset is marked. Conversely, in an unsafe net in which places can contain more
than one token, a transition is enabled simply when its preset contains sufficient
tokens. More formally, given pure net N , transition t ∈ TN , and marking C
(that is CS : P PNS and CU : PNU → N), we write C [t〉N to indicate that t is
enabled from state C in N . Thus

C [t〉NS ≡ PreNS (t) ⊆ C ∧ PostNS ∩C = ∅
C [t〉NU ≡ ∀ p : PNU • PreNU (t , p) ≤ C (p).

Further, we write C [t〉NC ′ to indicate not only that t is enabled from state
C in N but also that should t occur, then N is transformed state C to state
C ′. Thus

C [t〉NS C ′ ≡ C [t〉NS ∧ C ′ = (C \ PreNS (t)) ∪ PostNS (t)

C [t〉NU C ′ ≡ C [t〉NU ∧
∀ p : PNU • C ′(p) = C (p) − PreNU (t , p) + PostNU (t , p).

Note that the above notation can be used in Boolean expressions. Hence expres-
sion ¬ C [t〉N states that transition t is not enabled from marking C .

3.3 Interference

Two transitions interfere with one another in a safe net NS when there is overlap
between the preset and postset of one and the preset and postset of the other.
This condition may be relaxed for unsafe nets as a transition is not prevented
from occurring by the presence of a token in its postset.

More formally, given pure net N , transitions t , t ′ : TN interfere precisely when
the function Interfere holds, where Interfere is defined as follows for safe and
unsafe nets NS and NU .

Interfere(safe,NS , t , t ′) ≡
t 	= t ′ ∧ (PreNS (t) ∪ PostNS (t)) ∩ (PreNS (t ′) ∪ PostNS (t ′)) 	= ∅

Interfere(unsafe,NU , t , t ′) ≡
t 	= t ′ ∧ ∃ p : PNU • (PreNU (t , p) > 0 ∧ PreNU (t ′, p) > 0) ∨

(PreNU (t , p) > 0 ∧ PostNU (t ′, p) > 0) ∨
(PostNU (t , p) > 0 ∧ PreNU (t ′, p) > 0)

Having considered pairwise interference, we next introduce the function IntFree
for safe and unsafe nets that returns true precisely when there is no interference

420 C. Marr

between transitions in a given set. More formally, given sets of transitions AS :
TNS and AU : TNU ,

IntFree(safe,NS ,AS) ≡ ∀ t , t ′ : AS • t 	= t ′ ⇒ ¬ Interfere(safe,NS , t , t ′)

IntFree(unsafe,NU ,AU) ≡ ∀ t , t ′ : AU • t 	= t ′ ⇒ ¬ Interfere(unsafe,NU , t , t ′).

Note that for later convenience we choose to parametrise functions Interfere and
IntFree with values safe and unsafe.

3.4 Concurrency

In Section 3.2 we introduced the notation C [t〉N to denote that transition t is
enabled in net N given marking C . To facilitate concurrency, we extend this
to sets of enabled transitions, insisting only that they do not interfere. Hence,
C [A〉N indicates that the set of transitions A ⊂ TN can occur individually
and without interference, and hence concurrently in N given marking C . More
formally, given sets of transitions AS : TNS and AU : TNU ,

C [AS 〉NS ≡ IntFree(safe,NS ,AS) ∧ ∀ t : AS • C [t〉NS

C [AU 〉NU ≡ IntFree(unsafe,NU ,AU) ∧ ∀ t : AU • C [t〉NU .

For later use we introduce the functions ReqU and YieldU for unsafe nets.
Given interference-free set of transitions AU : TNU and place p : PNU , they
respectively return the number of tokens required in the given place for the
whole set of transitions to be enabled, and the number of tokens yielded in the
given place should the whole set of transitions fire. More formally,

IntFree(unsafe,NU ,AU) ⇒ (ReqU (NU ,AU , p) ≡ Σt∈AU PreNU (t , p)

∧
YieldU (NU ,AU , p) ≡ Σt∈AU PostNU (t , p)).

We use these functions in the definition of C [AU 〉NU C ′, the concurrent exten-
sions of C [t〉NU C ′. Hence,

IntFree(safe,NS ,AS) ⇒
C [AS 〉NS C ′ ≡ C [AS 〉NS ∧ C ′ = (C \ (

⋃
t∈TNS

PreNS (t))) ∪ (
⋃

t∈TNS
PostNS (t))

IntFree(unsafe,NU , AU) ⇒
C [AU 〉NU C ′ ≡ C [AU 〉NU ∧

∀ p : PNU • C ′(p)=C (p) − ReqU (NU ,AU , p) + YieldU (NU , AU , p)

3.5 Conflict

Two transitions t and t ′ are in conflict in net N at a given marking C if they
can occur individually but not together at C . In particular predicates C [t〉N
and C [t ′〉N both hold but ¬ C [{t , t ′}〉N . Consider Figure 3 below in which we
explore the different conditions for conflict in safe and unsafe nets. We see that

Capturing Conflict and Confusion in CSP 421

(a) ��

�� ��
p q

� �� �

(b) �� ��

� �
r s
�� ���

(c) ��

�� ��
t u
� ��� �

(d)
�
�

�
�

���

��	 ��
v w
�

�
	

�� �� �

Fig. 3. Examples of conflict in safe nets ((a) and (b)) and unsafe nets ((c) and (d))

transitions p and q are in conflict in the safe net in Figure 3a since if one fires
then the preconditions of the other are no longer satisfied. Similarly, transitions
r and s are in conflict in the safe net in Figure 3b since if one fires then the
postset of the other will already contain a token. Transitions t and u are in
conflict in the unsafe net in Figure 3c since if one fires then the preconditions of
the other are no longer satisfied.3 Finally, we observe that transitions v and w
are in conflict in the unsafe net in Figure 3d since if either fires then there will
be insufficient tokens in the preset to enable the other.

For both safe and unsafe nets, we define Conflicts to be the set of all transi-
tions that are in conflict with a given enabled transition from a given marking.
More formally, given nets NS and NU , markings CS : P PNS and CU : (TNU ×
PNU) → N, and transitions tS : TNS and tU : TNU , such that CS [tS〉NS and
CU [tU 〉NU ,

ConflictsS (NS ,CS , tS) ≡ {t ′S : TNS | CS [t ′S 〉NS ∧ ¬ CS [{tS , t ′S}〉NS }
ConflictsU (NU ,CU , tU) ≡ {t ′U : TNU | CU [t ′U 〉NU ∧ ¬ CU [{tU , t ′U }〉NU }

Note that whilst these definitions are syntactically identical they are semantically
different: the differences are simply embedded within the definitions of CS [t ′S 〉NS ,
CS [{tS , t ′S}〉NS , CU [t ′U 〉NU , and CU [{tU , t ′U}〉NU .

3.6 Confusion

A mixture of concurrency and conflict may result in a system reaching a confused
state whereby the conflict set of one transition is altered by the occurrence of
another apparently unrelated transition. In particular, transition t is confused
at state C from which it is enabled in net N if there is another transition t ′

also enabled at C and with which it does not interfere such that the conflict
set of t before the occurence of t ′ is not equal to the conflict set of t after the
occurence of t ′. More formally, given nets NS and NU , markings CS : P PNS

and CU : (TNU × PNU) → N, and transitions tS : TNS and tU : TNU , such that
CS [tS 〉NS and CU [tU 〉NU ,

ConfusedS (NS , tS ,CS) ≡
∃ t ′S : TNS ; C ′

S : P PNS | CS [tS 〉NS C ′
S •

CS [{tS , t ′S}〉NS ∧ ConflictsS (NS ,CS , tS) 	= ConflictsS (NS ,CS , t ′S)

3 Note that were the net in Figure 3c a safe net, transitions t and u would not be in
conflict since t would not be enabled since its postset already contains a token.

422 C. Marr

ConfusedU (NU , tU ,CU) ≡
∃ t ′U : TNU ; C ′

U : PPNU | CU [tU 〉NU C ′
U •

CU [{tU , t ′U}〉NU ∧ ConflictsU (NU ,CU , tU) 	= ConflictsU (NU ,CU , t ′U).

Once again the differences between the functions are embedded within their
subfunctions.

There are two types of confusion: conflict-increasing (asymmetric) confusion
and conflict-decreasing (symmetric) confusion, although a single net can contain
instances or combinations of both.

Conflict-Increasing Confusion. Conflict-increasing confusion occurs when
conflict is introduced into the system: that is

Conflicts(N ,C , t) ⊂ Conflicts(N ,C , t ′).

Examples of conflict-increasing confusion in safe nets are illustrated in Fig-
ures 4 (a) and (b). The confusion in Figure 4 (a) arises from the preconditions of
q not being satisfied initially whilst the confusion in Figure 4 (b) arises from the
postconditions of q not being satisfied initially.4 An example of conflict-increasing

(a) ��

�
r
�

�� �

�� �� ��
p

�
�

q

�
�

�

�
r
�

�� ��

�� �� ��
p

�
�

q

�
�

(b) ��

�� ��
p

�
�

q

�
��

�
r
�
�

��

�� ��
p

�
�

q

�
�

�
r
�
��

(c) ��

�
r
�

�� ���

����� ��
p

�
�

q

�
�

�

�
r
�

��
�
�

�
�

���

����� ��
p

�
�

q

�
�

Fig. 4. (a) and (b) illustrate conflict-increasing confusion in safe nets: in both cases,
transitions p and q are not initially in conflict, although after the occurrence of r , tran-
sition q becomes enabled and conflict is introduced. (c) illustrates conflict-increasing
confusion in an unsafe net: initially transitions p and q are not in conflict, however
after the occurrence of r , transition q becomes enabled and conflict is introduced.

confusion in an unsafe net is illustrated in Figure 4 (c). Observe that since there
are no contraints on the postconditions in unsafe nets, confusion cannot arise
from postconditions not being satisfied initially.

Conflict-Decreasing Confusing. Conflict-decreasing confusion occurs when
conflict is eliminated from the system: that is

Conflicts(N ,C , t) ⊃ Conflicts(N ,C , t ′).

Examples of conflict-decreasing confusion in safe nets are illustrated Figure 5.
The confusion in Figure 5a arises from the preconditions of q not being satisfied

4 Note that were the net in Figure 4 (b) an unsafe net, there would be no confusion
since transitions p and q would not initially be in conflict.

Capturing Conflict and Confusion in CSP 423

(a) �� ��

�� �� �� ��
p

�
�

q

�
�

r
�
�

�� �

�� �� �� ��
p

�
�

q

�
�

r
�
��

(b) �� ��

�� �� �
p

�
�

q r
����
�

�� �

�� �� �
p

�
�

q r
����
��

Fig. 5. Examples of conflict-decreasing confusion in safe nets. Transitions p and q are
initially in conflict. After the occurrence of r they are no longer in conflict since q is
no longer enabled.

after the occurence of r whilst the confusion in Figure 5b arises from the post-
conditions of q not being satisfied after the occurence of r .5

An example of conflict-decreasing confusion in an unsafe net is illustrated in
Figure 6. Observe once again that since there are no contraints on the post-
conditions in unsafe nets, confusion cannot arise from postconditions not being
satisfied after the occurence of another transition.

��

�� ��

�
�

�
����

��	 ��
p

��

q

��

r
��

�� ���

��	�� �� ��
p

��

q

��

r
���

Fig. 6. An example of conflict-decreasing confusion in an unsafe net. Transitions p and
q are initially in conflict. After the occurrence of r they are no longer in conflict since
q is no longer enabled.

4 CSP

The process algebra Communicating Sequential Processes (CSP) [10,21] is a
mathematical language for capturing the behaviour of systems by recording the
occurrence of events. Analysis of the system can then be performed by using the
model-checker FDR to compare a formal specification SPEC , a simple process
capturing specific desired properties of the system, with the process describing
the model itself.

4.1 Syntax

In this section we give a brief introduction to the subset of the CSP syntax that
we will be using throughout the rest of the paper, as well as the traces semantic
model for the language [21].

A process, as defined in [10], is a pattern of communication that describes the
behaviour of a system. Behaviour is described in terms of events or synchronous
atomic communications, marking points in the evolution of the system. Com-
pound events can be constructed using ‘ . ’ the dot operator, and a family of
5 Note, once again, that were the net in Figure 5b an unsafe net, there would be no

confusion since p and q would still be in conflict after the occurence of r .

424 C. Marr

compound events is called a channel. Channels can be used to represent the
passing of values between components. Simple processes may be combined to
create more complex composite processes. Moreover processes can be defined in
terms of mutually-recursive equations.

The simplest process is Stop, the process that denotes deadlock. No events
can be performed and this process marks the end of a pattern of communication.
For any event a and process P , the process a → P is willing to communicate
event a and, if that event occurs, will subsequently behave as P .

The choice operator6 comes in two forms: the binary operator, and the choice
over an indexed set of processes. Given processes P and Q , a set of processes R(i)
indexed over some set I , and a predicate p(i) for i ∈ I , the following processes
are as described:

P � Q a choice betweenP andQ ;
� i : I | p(i) • R(i) a choice over the set of processesR(i) such that p(i).

There are various representations of the parallel operator in CSP. Throughout
the paper we will use the following: given processes P and Q and set of events X ,
the process P ‖X Q denotes the parallel combination of P and Q synchronised
on set X . Events in the alphabet of P but not in X can be performed without
the cooperation of Q and similarly events in the alphabet of Q but not in X can
be performed without the cooperation of P . No event in X can occur without
the cooperation of both P and Q . We write ‖ i : I • [A(i)]P(i) to denote an
indexed parallel combination of processes in which each process P(i) can evolve
independently but must synchronise upon every event from the set A(i). In an
interleaving parallel combination no synchronisation is required; therefore in the
combination P ||| Q , processes P and Q evolve independently.

Renaming is a useful technique. The process P [[a′/a]] behaves exactly as
process P except that every occurrence of the event a is replaced by the event
a′. Multiple renamings are performed in the natural way.

4.2 Semantics

There are various ways of describing the behaviour of CSP processes: we may
give them an algebraic semantics defined by a set of algebraic laws; we may give
them an operational semantics describing programs using transition diagrams;
or we may give them a denotational semantics mapping the language into an
abstract model based on sets of behaviours.

6 There are in fact two choice operators in CSP: one denoting internal choice and the
other denoting external choice. An internal choice is resolved between the processes
involved without reference to the environment, whereas an external choice may be
influenced by the environment and is resolved by the first event to occur. These
operators are indistinguishable within the traces semantic model with which we
are concerned here and which we will formally introduce in Section 4.2. Hence we
consider only external choice throughout this paper.

Capturing Conflict and Confusion in CSP 425

Various denotational semantic models have been proposed for CSP. Three es-
tablished models are the traces model, the stable failures model and the failures-
divergences model as defined by Roscoe [21]. In addition the singleton failures
model was introduced in [4] and a further family of failures-based models was
discussed in [6]. In this paper we are concerned only with the traces model, T .

The Traces Model. A trace records a history of behaviour. It is expressed
as a sequence of events in which the process has engaged with the head of the
sequence being the first event that was communicated. Given a process P , the
set T [[P]] is the set of all possible finite traces of P . Thus the semantic domain
of the traces model is the set P(Σ∗) where Σ is the set of all events.

Healthiness Conditions. The healthiness conditions of T are given below:

• 〈〉 ∈ T [[P]], (T1)
• tr � tr ′ ∈ T [[P]] ⇒ tr ∈ T [[P]]. (T2)

Condition (T1) states that the empty trace is a possible trace of every process
and condition (T2) states that the set of traces of any process is prefix-closed.

Semantic Laws.
The semantic laws for the traces model are then as follows:

T [[Stop]] = {〈〉}
T [[a → P]] = {tr : T [[P]] • 〈a〉 � tr} ∪ {〈〉}
T [[P � Q]] = T [[P]] ∪ T [[Q]]

T [[P ‖X Q]] = {tr : Σ∗ | ran tr ⊆ α(P) ∪ α(Q) ∧
tr (α(P) ∪X) ∈ T [[P]] ∧
tr (α(Q) ∪ X) ∈ T [[Q]] }

where α(P) is the alphabet of process P and where sequence tr X is the longest
subsequence of tr containing only elements from the set X .

4.3 Refinement

The refinement ordering induced by the traces model is based upon reverse
containment. One process is traces-refined by another if every trace of the second
is also a trace of the first. Given processes P and Q we write

P �T Q ⇔ T [[Q]] ⊆ T [[P]].

The model-checker FDR [8] is used for automatically analysing large or com-
plex systems in CSP. Typically a process IMPL modelling the system in question
is compared with a more abstract model SPEC : thus SPEC �T IMPL. Model-
checker FDR will perform an exhaustive breadth-first search identifying any
trace of IMPL that is not also a trace of SPEC .

426 C. Marr

5 Capturing Marked Petri Nets as CSP Processes

Used in the conventional manner, the process algebra CSP which adopts an
interleaving approach to concurrency cannot model truly concurrent systems.
However, in this section we demonstrate that this restriction, the inability to dis-
tinguish between the concurrent execution of actions and the non-deterministic
choice between the possible orders of their executions, can be overcome if presets
and postsets are taken into consideration.

5.1 Capturing Places

A net can be captured as the parallel combination of a collection of simple pro-
cesses, one for each place. In the case of safe nets, each such process records
the presence or absence of a token. It permits the execution of an event corre-
sponding to a transition it lies in the preset of only if that transition is currently
enabled, or equivalently if the place contains a token. Moreover, it permits the
execution of an event corresponding to a transition it lies in the postset of only
if that transition is currently enabled, or equivalently if the place contains no to-
ken. To accomodate the truly concurrent behaviour of Petri nets, we permit the
atomic execution of sets of transitions provided there is no interference. Hence,
the process corresponding to place pS ∈ PNS in a safe net can be captured by
the following pair of mutually recursive processes.

FullPlaceS (NS , pS) =
�AS : PTNS | pS ∈ (

⋃
tS∈AS

PreNS (tS)) • trans .AS → EmptyPlaceS (NS , pS)

EmptyPlaceS (NS , pS) =
�AS : PTNS | pS ∈ (

⋃
tS∈AS

PostNS (tS)) • trans .AS → FullPlaceS (NS , pS)

Unsafe nets can also be captured as the parallel combination of a collection of
simple processes, one for each place. In the case of unsafe nets, it is insufficient
to record simply the presence or absence of a token: we must record the number
of tokens. The process corresponding to a given place then permits the execution
of an event corresponding to a transition it lies in the preset of only if it contains
sufficient tokens. As with safe nets, to accomodate the concurrent behaviour of
Petri nets, we permit the atomic execution of sets of transitions provided there
is no interference. It therefore follows that the process corresponding to place
pU ∈ PNU in unsafe net NU is modelled as follows:

PlaceU (NU , pU , tokens) =

�AU : PTNU | ReqU (netU , AU , pU) ≤ tokens •
trans.A→PlaceU (NU , pU , tokens − ReqU (netU ,AU , pU) + YieldU (netU ,AU , pU))

where parameter tokens indicates the number of tokens in the place and where
functions Req and Yield are as defined in Section 3.4.

We observe that the alphabet, or set of events with which the processes cor-
responding to given place is concerned, contains all events trans .ts such that the

Capturing Conflict and Confusion in CSP 427

set ts : PTN contains a transition that the given place lies in the preset or (in
the case of safe nets) in the postset of. More formally,7 we define

αS (NS , pS) = {AS : P TNS ; tS : TNS |
p ∈ (PreNS (tS) ∪ PostNS (tS)) • trans .({tS} ∪ AS)}.

αU (NU , pU) = {AU : P TNU ; tU : TNU |
(PreNU (tU , pU) ≥ 1 • trans .({tU} ∪ AU)}.

We initialise the above processes corresponding to places pS : PNS and pU :
PNU according to initial markings. Thus

StartingPlaceS (NS ,MNS , pS) =
if pS ∈ MNS then FullPlaceS (NS , pS) else EmptyPlaceS (NS , pS)

StartingPlaceU (NU ,MNU , pU) = PlaceU (NU , pU ,MNU (pU)).

5.2 Eliminating Interference

The processes corresponding to individual places ensure that the event corre-
sponding to a given transition can fire only if that transition is enabled. How-
ever, since we permit sets of transitions to occur provided they do not interfere,
thereby mirroring the concurrency afforded by Petri nets, we need a further
process that restricts this behaviour to intereference-free sets.

NoInterferenceS (NS) =
�AS : P TNS | IntFree(safe,NS ,AS) • trans .AS → NoInterference(NS)

NoInterferenceU (NU) =
�AU :P TNU | IntFree(unsafe,NU ,AU) • trans .AU → NoInterferenceU (NU)

where IntFree is defined in Section 3.3.

5.3 Capturing Nets

The process corresponding to a given marked net (N ,MN) is therefore the par-
allel combination of the correctly initialised processes corresponding to each of
its places (StartingPlace(N ,MN , p) for each p : PN), each synchronising on the
set of events with which it is concerned (α(net , p)), and further constrained
by the process NoInterference(N) to ensure that only interference-free sets of
transitions may occur concurrently. Thus,

N(NS ,MNS) = (‖pS∈PNS
[α(NS , pS)]StartingPlace(NS ,MNS , pS))

‖ΣNS

NoInterferenceS (NS)

7 We use the notation {a1 : A1; . . . an : An | p(a1, . . . , an) • t(a1, . . . , an)} to denote
the set of terms t(a1, . . . , an) where tuple (a1, . . . an) is an element from the set
A1 × . . . × An subject to constraining predicate p(a1, . . . an).

428 C. Marr

N(NU ,MNU) = (‖pU∈PNU
[α(NU , pU)]StartingPlace(NU ,MNU , pU))

‖ΣNU

NoInterferenceU (NU)

where ΣNS = {trans .AS | AS ∈ P TNS } and ΣNU = {trans .AU | AU ∈ P TNU }.

6 Testing for Conflict

We observed in Section 3.5 that conflict occurs when a pair of transitions that
are both enabled from a reachable state interfere: thus we have conflict in marked
net (N ,MN) modelled by process N(N ,MN) if we can find a sequence of transition
events, tr ∈ Σ∗

N and a pair of distinct transitions t , t ′ ∈ TN that interfere such
that tr � 〈trans .{t}〉 ∈ T [[N(N ,MN)]] and tr � 〈trans .{t ′}〉 ∈ T [[N(N ,MN)]].

Recalling that given command LHS �T RHS the model-checker FDR [8]
performs a breadth-first search to check for the existence of a trace of process
RHS that is not also a trace of process LHS .8 Our goal is therefore to construct
processes LHS and RHS , both functions of the process corresponding to our
given net, that differ precisely when conflict is present.

Since FDR cannot perform backtracking we interleave two copies of the process
corresponding to the given net, one primed and one unprimed, and, for both LHS
and RHS , keep them in step through parallel combination with a control process.

6.1 The Control Processes

In [5], whilst testing for conflict, conflict-decreasing and conflict-increasing con-
fusion in safe nets, we defined six distinct Control processes—a pair (one for LHS
and one for RHS) for detecting conflict, a pair for detecting conflict-decreasing
confusion, and a pair for detecting conflict-increasing confusion—all of which
had very similar behaviour. In each case the control process kept two or three
copies of the process corresponding to the given net (in the case of detecting
conflict, two copies, one primed and one unprimed, and in the case of detecting
confusion, three copies, one unprimed, one primed and one double primed) in
step until the occurrence of a check event.

Here we are concerned not only with the six Control processes mentioned above
but also with their six counterparts for unsafe nets. Because of the similarities be-
tweeneachof theseprocesses and to facilitateunderstandingwe choose in this paper
to define a single parametrised Control process encompassing all twelve. The pa-
rameters ofControl are as follows: the first parameter,LR, takes values left or right
to indicate whether it is a control process for LHS or RHS ; the second parameter,
SU , takes values safe or unsafe to indicate whether it is a safe or unsafe net; the

8 Note that processes LHS and RHS are typically referred to as SPEC and IMPL,
denoting the specification and implementation: FDR searches for any behaviour in
the implementation that is not permitted by the specification. However, since in this
paper we are comparing two functions of the process corresponding to a given net,
these names are unhelpful.

Capturing Conflict and Confusion in CSP 429

third parameter, test , takes values conflict , dec or inc to indicate whether we are
testing for conflict, conflict-decreasing confusion, or conflict-increasing confusion;
finally the fourth parameter is the net under consideration.

Regardless of whether it is controlling the left-hand side or the right-hand
side or whether it is concerned with a safe or an unsafe net, when testing for
conflict the control process keeps the primed and unprimed copies of the process
corresponding to the given net in step until the occurrence of the check event.
After the check event, the Control process behaves as its associated AfterCheck
process since all parameters are preserved. Hence:

Control(LR,SU , test ,N) =
if (test == conflict) then

� ts : P TN • trans .ts → trans ′.ts → Control(LR,SU , test ,N)
�

check → AfterCheck(LR,SU , test ,N)

else . . .

Obviously, since we are concerned only with detecting conflict in this section,
we define only the parts of the Control processes concerned with this particular
test. We will complete the definition of Control in Sections 7 and 8 when we
consider conflict-decreasing and conflict-increasing confusion.

6.2 The AfterCheck Processes

The purpose of the Control process before the check event was to ensure that
all copies of the process corresponding to the given net reached the same state,
that is they had all performed the same transition events. The purpose of the
AfterCheck process is then to check subsequent availability of transition events.
In particular, when testing for conflict, we need to show that two interfering tran-
sitions can occur from the current state, one to be performed by the unprimed
copy of the process corresponding to the net and the other to be performed by
the primed copy. This is the case for both safe and unsafe nets, although the
specific conditions for interference, as defined in Section 3.3, are different.

The AfterCheck processes for both LHS and RHS permit one trans event,
trans .{t1} for some t1 ∈ TN . The left-hand side then deadlocks whilst the right-
hand side allows a further event trans ′.{t2} if there exists an available transition
t2 ∈ TN that interferes with t1: thus the right-hand side can extend its trace
where the left-hand side cannot precisely when there is conflict. Hence we define
the process AfterCheck as follows:

AfterCheck(LR,SU , test ,N) =
if (test == conflict) then (� t1 : TN • trans .{t1} →

(if (LR == left) then Stop
else (� t2 : TN | Interfere(SU ,N , t1, t2) • trans ′.{t2} → Stop)))

else . . .

Once again we will complete this definition in subsequent sections when we
consider conflict-decreasing and conflict-increasing confusion.

430 C. Marr

6.3 Processes LHS and RHS

We have already observed that we need a second, primed copy of the process
corresponding to the given net to overcome the fact that FDR cannot perform
backtracking. For both safe and unsafe nets we define the primed variants of
processes N(N ,MN) as follows:

N ′
(N ,MN) = N(N ,MN) [[trans ′.ts/trans .ts | ts ∈ P TN]]

The alphabet of the primed process is defined in the natural way. Thus Σ′
N =

{trans ′.ts | ts ∈ P TN }.
For both safe and unsafe nets, processes LHS and RHS comprise the parallel

combination of the relevant control process with an interleaving of the primed
and unprimed copies of the process corresponding to the given net. As above we
parametrise our processes: the first parameter, SU , takes values safe or unsafe to
indicate whether the net is safe or unsafe; the second, test , takes values conflict ,
dec or inc to indicate whether we are testing for conflict, conflict-decreasing con-
fusion, or conflict-increasing confusion; the third is the net under consideration;
and the fourth is the initial marking of that net.

LHS (SU , test ,N ,MN) =
if (test == conflict) then

((N(N ,MN) ||| N ′
(N ,MN)) ‖ΣNS ∪Σ′

NS
Control(left ,SU , conflict ,N))

else . . .

RHS (SU , test ,N ,MN) =
if (test == conflict) then

((N(N ,MN) ||| N ′
(N ,MN)) ‖ΣNS ∪Σ′

NS
Control(right ,SU , conflict ,N))

else . . .

Once again we will complete these definitions in subsequent sections when we
consider conflict-decreasing and conflict-increasing confusion.

6.4 The Test

We have constructed our processes so that the right-hand side will be able to
execute a trace that the left-hand side cannot precisely when conflict is present.
Model-checker FDR will detect this discrepancy and the appropriate refinement
check, that corresponding to either safe or unsafe nets, will fail.

LHS (safe, conflict ,NS ,MNS) �T RHS (safe, conflict ,NS ,MNS)
LHS (unsafe, conflict ,NU ,MNU) �T RHS (unsafe, conflict ,NU ,MNU)

7 Testing for Conflict-Decreasing Confusion

As observed in Section 3.5, conflict-decreasing confusion can arise when there
is a mixture of concurrency and conflict. We need to demonstrate that the con-
flict set of a given transition is reduced by the occurrence of another transition

Capturing Conflict and Confusion in CSP 431

with which it does not interfere. More specifically, we have conflict-decreasing
confusion in net N modelled by process N(N ,MN) after sequence of transitions
tr ∈ T [[N(N ,MN)]] if we can find transitions t1, t2, t3 ∈ TN where t1 and t3 do
not interfere such that t1, t2 and t3 are all enabled after tr and such that t1 and
t2 conflict after trace tr but not after trace tr � 〈trans .{t3}〉.

7.1 Processes LHS and RHS

Recall that in Section 6 when testing for conflict we needed to check the availabil-
ity of two transition events after the same trace and hence required two copies,
one primed and one unprimed, of the process corresponding to the given net.
Here we need to check the availability of three events and hence need a third,
double primed copy of the process corresponding to the given net. For both safe
and unsafe nets we define the double primed variant and its associated alphabet
in the natural way.

N ′′
(N ,MN) = N(N ,MN) [[trans ′′.ts/trans .ts | ts ∈ P TN]]

Σ′′
N = {trans ′′.ts | ts ∈ PTN }.

Processes LHS and RHS are once more constructed from the parallel combi-
nation of the relevant control process and (this time three) interleaved copies of
the process corresponding to the given net. We extend the definitions of processes
LHS and RHS as presented in Section 6.3 as follows:

LHS (SU , test ,N ,MN) =
if (test == conflict) then . . .

else if (test == dec) then
((N(N ,MN) ||| N ′

(N ,MN) ||| N ′′
(N ,MN)) ‖ΣNS ∪Σ′

NS
∪Σ′′

NS
Control(left ,SU , dec,N))

else . . .

RHS (SU , test ,N ,MN) =
if (test == conflict) then . . .

else if (test == dec) then
((N(N ,MN) ||| N ′

(N ,MN) |||N ′′
(N ,MN))‖ΣNS∪Σ′

NS
∪Σ′′

NS
Control(right ,SU , dec,N))

else . . .

These definitions will be further extended in Section 8 when we consider conflict-
increasing confusion.

7.2 The Control Processes

Before the check event occurs, the Control processes used in the detection of
conflict-decreasing confusion play the same role as the control processes used

432 C. Marr

in the detection of conflict. That is, regardless of whether the process is con-
trolling the left-hand side or the right-hand side, and regardless of whether it
is controlling a safe net or an unsafe net, it ensures that the copies of the net
are kept in step. Therefore, we simply extend the code for Control as intro-
duced in Section 6.1 taking the third, double primed copy of the process into
consideration.

Control(LR,SU , test ,N) =
if (test == conflict) then . . .

else if (test == dec) then
(� ts : P TN • trans .ts → trans ′.ts → trans ′′.ts→Control(LR,SU , dec,N)
�

check → AfterCheck(LR,SU , test ,N))

else . . .

Once again, after the check event, the Control process behaves as its associated
AfterCheck process since all parameters are preserved, and once again we will
further extend these definitions in Section 8 when we consider conflict-increasing
confusion.

7.3 The AfterCheck Processes

After the check event, for both safe and unsafe nets, the AfterCheck processes on
both sides permit three events: first event trans .{t1} for some t1 ∈ TN ; second
event trans ′.{t2} for some t2 ∈ TN such that t1 and t2 conflict; and third event
trans ′′.{t3} for some t3 ∈ TN that does not interfere with t1.9 Only after this
point, having demonstrated the availability of t1, t2 and t3, might the behaviour
of the left-hand side and the right-hand side differ. Regardless of whether the net
is safe or unsafe, the AfterCheck process on the left-hand side permits the event
trans ′′.{t2}, although this will be blocked by process N(N ,MN)

′′ if t2 is not enabled
after t3. Conversely, the process on the right-hand side always permits without
obstruction from N(N ,MN)

′′ the event trans ′′′.{t2} which will subsequently be
renamed to trans ′′.{t2}.10

AfterCheck(LR,SU , test ,N) =
if (test == conflict) then . . .

else if (test == dec) then
(� t1 : TN • trans .{t1} →

� t2 : TN | Interfere(SU ,N , t1, t2) • trans ′.{t2} →
� t3 : TN | IntFree(SU ,N , {t1, t3}) • trans ′′.{t3} →

(if (LR == left) then (trans ′′.{t2} → Stop)
else (trans ′′′.{t2} → Stop)))

else . . .

9 Note once more that the definition of interference depends on whether the net is safe
or unsafe.

10 The purpose of the renaming is to avoid synchronisation with N(N ,MN)
′′.

Capturing Conflict and Confusion in CSP 433

Once again we have extended the definition given in Section 3.5 and will finally
complete the definition in Section 8.

7.4 The Test

Through synchronisation with the appropriate Control and AfterCheck processes
we have constructed processes LHS and RHS so that, after the check event, if
one side can perform trace tr � 〈check , trans .{t1}, trans ′.{t2}, trans ′′.{t3}〉 then
so can the other. However, the right-hand side can always extend this trace
with the event trans ′′′.{t2}, to be renamed to trans ′′.{t2} but the left-hand side
can it extend it with trans ′′.{t2} only if t2 is still enabled after t3, that is if
conflict-decreasing confusion is not present. Hence, whenever conflict-decreasing
confusion is present, the right-hand side will be able to execute a trace that
the left-hand side can not. Model-checker FDR will detect this discrepancy and,
incorporating the necessary renaming, the appropriate refinement check, that
corresponding to either safe or unsafe nets, will fail.

LHS (safe, dec,NS ,MNS) �T
(RHS (safe, dec,NS ,MNS)) [[trans ′′.ts/trans ′′′.ts | ts ∈ P TNS]]

LHS (unsafe, dec,NU ,MNU) �T
(RHS (safe, dec,NU ,MNU)) [[trans ′′.ts/trans ′′′.ts | ts ∈ P TNU]]

8 Testing for Conflict-Increasing Confusion

Conflict-increasing confusion, like conflict-decreasing confusion, can arise when
there is a mixture of concurrency and conflict. This time the conflict set of a
given transition is augmented by the occurrence of another transition with which
it does not interfere. Equivalently, we have conflict-increasing confusion in net N
modelled by process N(N ,MN) after sequence of transitions tr ∈ T [[N(N ,MN)]]
if we can find transitions t1, t2, t3 ∈ TN where t1 and t3 do not interfere but t1
and t2 do, such that t1 and t3 are all enabled after tr and such that t2 is enabled
after trace tr � 〈trans .{t3}〉 but not after trace tr .

8.1 Processes LHS and RHS

The techniques for demonstrating the presence of conflict-increasing confusion
are similar to those for demonstrating the presence of conflict-decreasing con-
fusion. Once more both the left-hand side and the right-hand side are built
from the parallel combination of a control process and an interleaving of the un-
primed, primed and double-primed variants of the process corresponding to the
given net. Since these processes have the same structure as their counterparts for
detecting conflict-decreasing confusion, provided the appropriate parameters are
passed on to the control process, we can re-use the same definition. The complete
definitions of processes LHS and RHS , extended from those definitions given in
Sections 6.3 and 7.1 are therefore as follows:

434 C. Marr

LHS (SU , test ,N ,MN) =
if (test == conflict) then

((N(N ,MN) ||| N ′
(N ,MN)) ‖ΣNS ∪Σ′

NS
Control(left ,SU , conflict ,N))

else
((N(N ,MN) ||| N ′

(N ,MN) ||| N ′′
(N ,MN)) ‖ΣNS ∪Σ′

NS
∪Σ′′

NS
Control(left ,SU , test ,N))

RHS (SU , test ,N ,MN) =
if (test == conflict) then

((N(N ,MN) ||| N ′
(N ,MN)) ‖ΣNS ∪Σ′

NS
Control(right ,SU , conflict ,N))

else
((N(N ,MN) |||N ′

(N ,MN) ||| N ′′
(N ,MN)) ‖ΣNS ∪Σ′

NS
∪Σ′′

NS
Control(right ,SU , test ,N))

Note that the processes for detecting conflict differ in structure from their coun-
terparts for detecting confusion only in the number of copies of the process
corresponding to the given net.

8.2 The Control Processes

For both safe and unsafe nets, the identical behaviour of the left-hand side and
the right-hand side before the check event can be captured in exactly the same
way as when we were detecting conflict-increasing confusion. Therefore, provided
we pass on the correct parameters we can once more re-use our definitions. It
therefore follows that the full definition for the process Control , extended from
the part definitions given in Sections 6.1 and 7.2 is as follows:

Control(LR,SU , test ,N) =
if (test == conflict) then

� ts : P TN • trans .ts → trans ′.ts → Control(LR,SU , conflict ,N)
�

check → AfterCheck(LR,SU , test ,N)

else
(� ts : P TN • trans .ts→ trans ′.ts→ trans ′′.ts → Control(LR,SU , test ,N)
�

check → AfterCheck(LR,SU , test ,N))

8.3 The AfterCheck Processes

After the check event, for both safe and unsafe nets, the AfterCheck processes
on both sides permit three events: first event trans .{t1} for some t1 ∈ TN ; sec-
ond, event trans ′′.{t3} for some t3 ∈ TN such that t1 and t3 do not interfere;
and third event trans ′′.{t2} for some t2 ∈ TN that interferes with t1.11 Only
after this point, having demonstrated that t1 is enabled and that t3 and t2 are
11 Note once more that the definition of interference depends on whether the net is safe

or unsafe.

Capturing Conflict and Confusion in CSP 435

enabled in sequence, might the behaviour of the left-hand side and the right-
hand side differ. Regardless of whether the net is safe or unsafe, the AfterCheck
process on the left-hand side permits the event trans ′.{t2}, although this will be
blocked by process N(N ,MN)

′ if t2 was not enabled before the occurrence of t3.
Conversely, the process on the right-hand side always permits without obstruc-
tion from N(N ,MN)

′ the event trans ′′′.{t2} which will subsequently be renamed
to trans ′.{t2}.12 The complete definition of process AfterCheck , extended from
the part definitions given in Sections 6.2 and 7.3, is therefore

AfterCheck(LR,SU , test ,N) =
if (test == conflict) then (� t1 : TN • trans .{t1} →

(if (LR == left) then Stop
else (� t2 : TN | Interfere(SU ,N , t1, t2) • trans ′.{t2} → Stop)))

else if (test == dec) then
(� t1 : TN • trans .{t1} →

� t2 : TN | Interfere(SU ,N , t1, t2) • trans ′.{t2} →
� t3 : TN | IntFree(SU ,N , {t1, t3}) • trans ′′.{t3} →

(if (LR == left) then (trans ′′.{t2} → Stop)
else (trans ′′′.{t2} → Stop)))

else (� t1 : TN • trans .{t1} →
� t2, t3 : TN | Interfere(N , t1, t2) ∧ IntFree(SU ,N , {t1, t3}) •

trans ′′.{t3} → trans ′′.{t2} →
(if (LR == left) then (trans ′.{t2} → Stop)
else (trans ′′′.{t2} → Stop)))

If one side can perform trace tr�〈check , trans .{t1}, trans ′′.{t3}, trans ′′.{t2}〉 then
so can the other. However, the right-hand side can always extend this trace with
the event trans ′′′.{t2}, to be renamed to trans ′.{t2}, but the left-hand side can
it extend it with trans ′.{t2} only if t2 is enabled before t3, that is if conflict-
increasing confusion is not present.

8.4 The Test

We have constructed our processes for safe and unsafe nets so that, subject to
the appropriate re-naming, whenever conflict-decreasing confusion is present, the
right-hand side will be able to execute a trace that cannot. Model-checker FDR
will detect this discrepancy and the following refinement check, incorporating
the necessary renaming, will fail.

LHS (safe, inc,NS ,MNS) �T
(RHS (safe, inc,NS ,MNS)) [[trans ′′.ts/trans ′′′.ts | ts ∈ PTNS]]

LHS (unsafe, inc,NU ,MNU) �T
(RHS (safe, inc,NU ,MNU)) [[trans ′′.ts/trans ′′′.ts | ts ∈ PTNU]]

12 Once again, the purpose of the renaming is to avoid synchronisation with N(N ,MN)
′.

436 C. Marr

9 Discussion

In [5] we presented a translation from a safe nets, a simple subset of Petri nets,
to CSP. Through this translation we demonstrated the surprising result that the
CSP model-checker might be used to automatically detect instances of conflict
and confusion in CSP. This result was surprising since the interleaving semantic
models of CSP cannot distinguish between the concurrent execution of actions
and the non-deterministic choice between the possible orders of their executions.

In this paper we have developed the work presented in [5]. We have extended
the domain of our translation, removing the restriction on our Petri nets that
places can contain at most one token, thereby significantly increasing the number
of potential application domains. Once again we incorporated flow information,
or presets and postsets of transitions, into our model in order to capture and
detect the truly concurrent notions of conflict and confusion.

The Importance of Automatic Verification. In the development of critical systems
standards dictate that it is necessary to first design and analyse abstract models
of the system. Since concurrent systems have high levels of complexity making
them especially vulnerable to errors, automating this process is of paramount
importance. As observed by Clarke et al. in [7] and by Steiner et al. in [23],
model-checking is an increasingly important technique in the verification and
validation of the correctness of systems. As opposed to testing in which a pre-
chosen selection of executions of the system are analysed, the model-checker
exhaustively checks every reachable state in the system, thereby guaranteeing to
find conflict and confusion if either is present.

Why Confusion is of Concern. Motivations for truly concurrent models over their
interleaving counterparts are given in many papers on Petri nets, trace theory
and pomsets e.g. [18]. However, as decentralisation, re-use and component-based
specification become more prevalent we must pay particular attention to confu-
sion. The developer of a component might exploit, indeed rely on, the fact that
whenever one action is on the “menu” then so too is its companion action. How-
ever, as we have clearly demonstrated in previous sections, interference, arising
from combining one component with another, might mean that the companion
action is blocked. We demonstrated the problems that this might cause through a
simple example, the parallel combination of an alarm system and a maintenance
system, in the Discussion Section in [5].

Tractability of Verification. State space explosion is always a key concern when
model-checking any system. When considering safe nets in [5], assuming a finite
number of places in any given net, we could be certain that the number of
tokens would be finite. Here, although we do not have that guarantee, most
specifications of unsafe nets do give bounds on the number of tokens in each
place. Further, it should be noted that using standard tricks of CSP [12], even
systems with infinite state spaces can be model-checked. In these instances,
however, the code would need to be modified: here, as we did in [5], we have
chosen clarity over efficiency in our CSP models.

Capturing Conflict and Confusion in CSP 437

Related work. Whilst there has been little previous work translating from Petri
Nets to CSP, there is a significant body of work in which the translation is
performed in the other direction. Examples include [9] and [11]. In addition,
there has also been a significant body of work translating from the process
algebra CCS [15,14] to Petri Nets, including [22].

Conclusions. As systems get more and more complex there is a move towards
building separate components for managing distinct parts of a system. Whilst
factorisation is a useful technique, detection of confusion will become increasingly
significant. It is therefore important that software engineers using CSP to develop
distributed systems learn to recognise, detect and avoid building confusion into
their systems.

References

1. Petri nets tool database. Available via URL http://www.daimi.au.dk/PetriNets/
tools/

2. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstraction.
Theoretical Computer Science, vol. 37(1) (1985)

3. Best, E., de Boer, F.S., Palamidessi, C.: Partial order and sos semantics for linear
constraint programs. In: Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997.
LNCS, vol. 1282, Springer, Heidelberg (1997)

4. Bolton, C.: On the Refinement of State-Based and Event-Based Models. D.Phil.,
University of Oxford (2002)

5. Bolton, C.: Adding conflict and confusion to CSP. In: Fitzgerald, J.A., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, Springer, Heidelberg (2005)

6. Bolton, C., Lowe, G.: A hierarchy of failures-based models. In: Proceedings of
the 10th International Workshop on Expressiveness in Concurrency: EXPRESS’03
(2003)

7. Clarke, E., Grumberg, O., Peled, D.: Model-Checking. The MIT Press, Cambridge
(1999)

8. Formal Systems (Europe) Ltd. Failures-Divergence Refinement FDR 2 User Man-
ual, (1999) Available via URL: http://www.fsel.com/fdr2 manual.html

9. Goltz, U., Reisig, W.: CSP-programs as nets with individual tokens. In: Rozenberg,
G. (ed.) Advances in Petri Nets 1984. LNCS, vol. 188, Springer, Heidelberg (1985)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

11. Kavi, K., Sheldon, F., Shirazzi, B., Hurson, A.: Reliability analysis of CSP spec-
ifications using petri nets and markov processes. In: Proceedings of 28th Annual
Hawaii International Conference on System Sciences, IEEE, Los Alamitos (1995)

12. Lazic, R.: A Semantic Study of Data Independence with Applications to Model
Checking. PhD thesis, University of Oxford (1999)

13. Mazurkiewicz, A.: Introduction to trace theory. In: Diekert, V., Rozenberg, G.
(eds.) The book of traces, World Scientific, Singapore (1995)

14. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

15. Milner, R.: Communications and concurrency. Prentice-Hall, Englewood Cliffs
(1989)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://www.daimi.au.dk/PetriNets/tools/
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.daimi.au.dk/PetriNets/tools/

438 C. Marr

16. Olderog, E.-R.: Nets, Terms and Formulas: Three Views of Concurrent Processes
and Their Relationship. Cambridge University Press, Cambridge (1991)

17. Petri, C.A.: Fundamentals of a theory of asynchronous information flow. In: Pro-
ceedings of IFIP, Congress’62, pp. 386–390 (1962)

18. Pratt, V.: On the composition of processes. In: Proceedings of 1982 ACM Sympo-
sium on Principles of Programming Languages (POPL) (1982)

19. Reisig, W.: Petri Nets. Springer, Heidelberg (1982)
20. Reisig, W., Rozenberg, G.: Informal introduction to petri nets. LNCS, vol. 1491.

Springer, Berlin Heidelberg (1998)
21. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood

Cliffs (1997)
22. Schreiber, G.: Functional equivalences of petri nets. In: DeMichelis, G., Dı́az, M.

(eds.) Application and Theory of Petri Nets 1995. LNCS, vol. 935, Springer, Hei-
delberg (1995)

23. Steiner, W., Rushby, J., Sorea, M., Pfeifer, H.: Model checking a faulttolerant
startup algorithm: From design exploration to exhaustive fault simulation. In: Pro-
ceedings of Dependable Systems and Networks (DSN 2004) (2004)

24. Störrle, H.: An evaluation of high-end tools for petri-nets. Technical Report 9802,
Ludwig-Maximilians-Universität München (1997)

25. Winskel, G.: Events in Computation. D.Phil, University of Edinburgh (1980)

A Stepwise Development Process for Reasoning

About the Reliability of Real-Time Systems

Larissa Meinicke1,� and Graeme Smith2

1 Department of Computer Science, Åbo Akademi, Finland
2 School of Information Technology and Electrical Engineering,

The University of Queensland, Australia

Abstract. This paper investigates the use of the probabilistic and con-
tinuous extensions of action systems in the development and calculation
of reliability of continuous, real-time systems. Rather than develop a new
semantics to formally combine the existing extensions, it investigates a
methodology for using them together, and the conditions under which
this methodology is sound. A key feature of the methodology is that it
simplifies the development process by separating the probabilistic calcu-
lations of system reliability from the details of the system’s real-time,
continuous behaviour.

Keywords: action systems, refinement, probability, real-time, reliability.

1 Introduction

System reliability is an important characteristic of safety-critical and mission-
critical systems. Informally, it may be defined as a measure of the ability of a
system to satisfy its specification in certain operational conditions over a period
of time [17].

McIver, Morgan and Troubitsyna [12] show how system reliability may be
calculated from component reliability via a stepwise development process us-
ing probabilistic datatypes. Building on this work, Troubitsyna [18] develops a
similar approach for probabilistic action systems [16]. These are an extension
of action systems [2,3] in which actions may be expressed and composed using
discrete probabilistic choices as well as demonic nondeterministic choices.

While Troubitsyna’s approach allows development at an abstract level, it does
not support the expression of real-time constraints, nor continuous behaviour.
These behavioural aspects are, however, relevant in many safety-critical and
mission-critical systems where software is embedded in a continuously changing
physical environment.

Back, Petre and Porres [4] propose an extension of action systems for devel-
oping hybrid systems, i.e., those in which both discrete and continuous real-time
behaviour coexist. It may therefore be of interest to develop an extension of ac-
tion systems which combines both probabilistic and continuous action systems.
� The first author carried out part of this work while at the School of Information

Technology and Electrical Engineering, The University of Queensland, Australia.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 439–458, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

440 L. Meinicke and G. Smith

The semantics of the individual extensions are, however, quite different. Hence
the semantic development would be non-trivial.

Rather than performing such a construction, in this paper we investigate the
possibility of using probabilistic action systems and continuous action systems
during the development of systems, without the development of a new action
system extension. Not only does this allow us to use the existing semantics and
definitions of refinement, but also allows us to simplify the overall development
process: probabilistic calculations are performed independently of the continu-
ous, real-time behaviour of the system being developed.

In our approach, probabilistic aspects of the program are first considered, and
developed. Non-probabilistic behaviour is then extracted from the specification,
and continuous behaviour is introduced and developed. Probabilistic calcula-
tions from the first part of the structured development process are then used
to estimate system reliability. We demonstrate our approach by extending the
probabilistic steam boiler example used by McIver, Morgan and Troubitsyna [12]
to include a more realistic specification of real-time aspects.

In Section 2 we briefly describe the theory of action systems. This is followed
by a brief introduction to both probabilistic action systems in Section 3, and
continuous action systems in Section 4. In Section 5 we outline our methodol-
ogy, and apply it to the probabilistic steam boiler case study. We discuss our
approach, including its limitations, in Section 6.

2 Action Systems

Action systems [2,3] are a construct for reasoning about concurrent, reactive
systems that can be analysed in the refinement calculus [6]. An action system is
of the form

|[var x1 : X1; ...; xn : Xn • A0; do A1 [] ... [] An od]|:< z1 : Z1; ...; zm : Zm >,

where each xi is a local variable, and each zj is a global variable. A0 is an
initialisation action that initialises the local variables without modifying the
global variables. A1, ...,An are actions that operate on the combined local and
global state space.

Each action Ai has a guard denoted by gd.Ai
1: as long as gd.Ai is satisfied,

action Ai is said to be enabled, meaning that it can execute. The predicate
¬gd.Ai thus models the states from which Ai is unable to be executed. Also,
term.Ai denotes the states from which action Ai terminates properly. The nega-
tion, ¬term.Ai , denotes the states from which action Ai is aborting.

The behaviour of an action system A may be informally described as follows:
first the local variables are initialised then, while the guard of at least one ac-
tion continues to hold, an enabled action is nondeterministically selected and
executed. In this way, concurrent behaviour is expressed by interleaving actions.
1 Throughout this paper we use the notation f .x to denote the application of function

f to argument x .

A Stepwise Development Process for Reasoning 441

When no more actions are enabled, the action system terminates. If an aborting
action is executed, then no more constraints are placed on future behaviour, that
is, the action system itself aborts.

2.1 Semantics

The state space ΣA of an action system A is a set of mappings from the names
of variables in A to the values of their types. The local and global parts of this
state space are denoted local .ΣA and global .ΣA, respectively.

A trace semantics may be used to describe the reactive behaviour of action
systems [5]. The trace semantics of an action system A is given in terms of
sets of behaviours that A may produce, beh.A. Each behaviour represents the
“output” of one possible execution of A, where the “output” is represented by
a sequence which records the states that are reached after the execution of each
action. Formally, beh.A is of type P(seq�.ΣA), where seq�.ΣA represents the
set of all finite and infinite sequences of ΣA, where the finite sequences may be
appended with a special state &, which represents termination. A behaviour b is
defined to be terminating if it is finite and its last state is &; it is aborting if it is
finite and its last state is not &; it is nonterminating if it is neither terminating
nor aborting.

An action system A is refined by another action system C, if the globally
visible behaviour of C is able to be produced by A. The globally visible view
of a behaviour b is a trace tr .b of type seq�.(global .ΣA). A trace of a behaviour
is simply the behaviour with local states and all finite sequences of stuttering
steps removed; a stuttering step is a step which does not modify the global state.
Traces are defined as terminating, aborting or nonterminating in the same way
as behaviours. Let traces .A denote the set of traces of action system A, i.e.,
{b : beh.A • tr .b}.

Definition 1. (from [5]). The trace refinement relation �tr between two action
systems A and C is defined as

A �tr C � ∀ tC : traces .C • (∃ tA : traces .A • tA "tr tC),

where tA "tr tC if, neither tA nor tC is aborting and tA = tC , or tA is aborting
and is a prefix of tC .

3 Probabilistic Action Systems

Probabilistic action systems [18] have the same general form as action systems.
They differ because actions may be expressed and composed using both nonde-
terministic choice and discrete probabilistic choice: we write A1 p⊕A2 to mean
that A1 is executed with probability p and A2 is executed with probability 1−p.
For example, consider the action system

|[n := 0; do n := n + 1 a⊕ abort od]|: 〈n : N〉. (1)

442 L. Meinicke and G. Smith

It has one global variable n, which counts the number of times the action has
been performed, and it has a probability of 1 − a of aborting on each iteration.
Strictly, action systems are not allowed to specify initial values of global variables
such as n. However, we do this as a shorthand for an initial action and a local
“program counter” variable which would ensure the initial action is the first to
occur and occurs exactly once.

It is possible to reason about the reliability of probabilistic action systems
such as this one. Reliability is a measure of the ability of a system to satisfy
its specification over a period of time, where time may be measured by some
abstract parameter [17]. If we equate aborting with behaviour that falls outside
the specification, then the reliability of (1) may be described by the function
R.n � an , where R.n specifies the probability the system has functioned
correctly for at least n iterations.

Now consider a more complex system which tolerates N consecutive transient
faults in a component which has an availability of 1 − c, i.e., a probability of
1 − c of functioning correctly at any instant2.

|[var i : int •

n, i := 0, 0;
do {i < N }; (i := i + 1 c⊕ i := 0); n := n + 1 od

]|: 〈n : N〉

(2)

This probabilistic action system aborts when the assertion i < N does not
hold. To calculate its reliability, it is possible to use data refinement. Using the
same reasoning presented by McIver, Morgan and Troubitsyna [12] for sequential
probabilistic programs3, it can be shown that (1) is data refined by (2) provided
a ≤ a′, where a′ is the largest solution for x ∈ [0..1] of the equation

xN = (1 − c)(xN−1 + cxN−2 + ...+ cN−2x + cN−1). (3)

Therefore, (2) is a refinement of a system which has reliability R.n = a′n ,
where a′ is calculated from parameters c and N , as shown above. Since system
reliability is only improved by refinement (i.e., by refining aborting behaviour),
this provides a lower bound for the reliability of (2), and for any of its refinements.

3.1 Semantics

To capture the reactive behaviour of probabilistic action systems they, like action
systems, may be given a trace semantics [13].

A probabilistic action system PA may be seen to generate a set of behaviour
trees, behTree.PA. These, similar to the behaviours of action systems, may be
seen to represent the possible deterministic probabilistic executions of the sys-
tem: that is, each behavior tree describes one way in which nondeterministic
2 See [17], page 167, for a more detailed discussion of availability.
3 The data refinement rule applied by McIver et al. in their proof [12] is applicable to

probabilistic action systems whose actions are unguarded (gd.A = true), hence their
proof is valid in a probabilistic action system setting.

A Stepwise Development Process for Reasoning 443

choices between different probabilistic next-state distributions may been resolved
during execution. Each behaviour tree is succinctly described by its expectation
of producing any finite prefix of a behaviour, and can be used to describe a dis-
tribution over behaviours. Given a finite behaviour prefix s , and a behaviour tree
t , prefixExpt.t .s denotes the probability that the behaviour tree t will produce
behaviour prefix s .

As for action systems, one probabilistic action system PA is refined by another
PC, if the globally visible behaviour of PC is able to be produced by PA. The
globally visible view of a behaviour tree t is a trace tree, trTree.t . Similar to the
standard case, this is the behaviour tree t with all local states and finite sequences
of stuttering steps removed. Like behaviour trees, trace trees are characterised
by their expectation to produce any finite trace prefix. Let trTree.PA denote
the set of trace trees of PA.

Definition 2. (from [13]). The trace tree refinement relation �⊕ between two
probabilistic action systems PA and PC that share the same global state space
Σ, is defined as

PA �⊕ PC � ∀ tC : trTree.PC • (∃ tA : trTree.PA • tA "⊕ tC),

where tA "⊕ tC � ∀ s : seq�.Σ • finite.s ⇒ prefixExpt.tA.s ≤ prefixExpt.tC .s.

The prefix relation between trace trees, "⊕, states that one trace tree tA is a
prefix of another tC if, for any finite trace prefix s , the probability of tC to
achieve s is at least that of tA. As for the standard case, this definition allows
aborting behaviour to be refined by terminating or by producing further states.
Since the set of trace trees are defined such that they are convex closed [13],

(∀ p : [0..1], t1, t2 : trTree.A • prefixExpt.t1.〈z0〉 = prefixExpt.t2.〈z0〉 ⇒
(∃ t3 : trTree.A •

(∀ s • prefixExpt.t3.s = p ∗ prefixExpt.t1.s + (1 − p) ∗ prefixExpt.t2.s)),

the definition of probabilistic action system refinement allows nondeterminism
between trace trees to be refined by probabilistic choice.

4 Continuous Action Systems

Continuous action systems [4] are a variant of the action system formalism for
modeling hybrid systems, i.e., systems with a discrete controller acting over a
continuously evolving environment. They differ from action systems in that each
local or global variable is a timed stream, i.e., a total function from the time
domain, Time � R+, to the set of values the variable may assume. The value
of such a variable x at time t is denoted x .t .

Timed stream variables are common in other formalisms for continuous, real-
time systems [19,11,15,7] and capture both the past and future values of the
variable in addition to its present value. In continuous action systems, the future

444 L. Meinicke and G. Smith

behaviour of a variable at any point in time is a default behaviour only. This
default behaviour may be changed by the subsequent occurrence of an action.

Additionally, continuous action systems support an implicit variable τ : Time
denoting the current time4. Initially, τ = 0 and its value is updated after each
action to the time of the next enabled guard, if any. If no more guards will ever
be enabled, τ is not updated and denotes the moment the last action occurred.
The variable τ may be used in the initialisation and both the guards and state-
ments of actions. To illustrate continuous action systems, we present an abstract
specification of the controller of a steam boiler system [1].

The steam boiler system comprises the boiler and associated hardware such
as water pumps and valves together with various sensors which report the state
of the boiler to the controller. As it produces steam, the boiler loses water which
can be replenished via a pump. It is the controller’s job to monitor the level of the
water in the boiler and activate or deactivate the pump as required. Whenever
the water level is at or above a high-level boundary H , the pump should be
deactivated to avoid the water level rising further. Conversely, whenever it is at
or below a low-level boundary L, the pump should be activated. When the water
level is between H and L, there are a number of strategies the controller could
adopt.

Let M be the maximum possible rate of change of the water level, and δ1
and δ2 be times such that 0 < δ1 < δ2 and L + δ2M < H − δ2M . The steam
boiler controller is specified in Fig. 1, where the global variable w represents the
boiler water level5 and the local variable next denotes the time that the next
action will occur. For brevity, we declare and use next as a discrete (non-stream)
variable; replacing it with a timed-stream variable (as required by continuous
action systems) is straightforward.

Initially, we assume the water level is within the bounds and will not go beyond
the bounds before the first control action. This situation would be set up in the
actual system before the controller is made operational. (As in Section 3, we
allow global variables to be initialised as a shorthand.)

Each of the actions is guarded by the fact that τ must be equal to the local
variable next . This variable is used to separate the occurrence of actions by a time
in the range δ1 . . . δ26. This separation is sufficient to guarantee the requirement
that the continuous action system does not allow Zeno behaviour , i.e., an infinite
number of actions occurring in a finite time.

Nondeterministic assignments (:∈) on timed streams are interpreted as future
updates . They cannot change the past behaviour of the variable (i.e., the be-
haviour before τ), but define its default future behaviour. Hence, the first action
changes w so that from time τ (to the occurrence of the next action if any),
the rate of change of w is between −M and 0. This corresponds to the pump
being deactivated. Similarly, the second action corresponds to the pump being

4 This variable is named now in [4].
5 We assume w is differentiable; this can be specified as in [8].
6 The separation is based on relative, rather than absolute, times to allow for clock

drift in an implementation.

A Stepwise Development Process for Reasoning 445

|(var next : Time •

w :∈
{

w ′ : Time → R | w ′.0 ∈ [L + δ2M ...H − δ2M] ∧
(∀ t : Time • dw′

dt .t ∈ [−M ...M])

}

;

next :∈ [δ1...δ2];
do G ∧ w .τ + δ2M ≥ H →

w :∈
{

w ′ : Time → R | w ′.τ = w .τ ∧
(∀ t : Time • dw′

dt .t ∈ [−M ...0])

}

; U

[] G ∧ w .τ − δ2M ≤ L →

w :∈
{

w ′ : Time → R | w ′.τ = w .τ ∧
(∀ t : Time • dw′

dt .t ∈ [0...M])

}

; U

[] G ∧ L + δ2M < w .τ < H − δ2M →

w :∈
{

w ′ : Time → R | w ′.τ = w .τ ∧
(∀ t : Time • dw′

dt .t ∈ [−M ...M])

}

; U

od
)|: 〈w : Time → R〉

where G � τ = next , U � next :∈ [τ + δ1...τ + δ2].

Fig. 1. A steam boiler specification

activated, it changes w so that from time τ , the rate of change of w is between
0 and M . The final action allows any rate of change of w between −M and M
from time τ .

4.1 Semantics

Back et al. [4] provide a trace semantics for continuous action systems via a
translation to action systems. However, as shown by Meinicke and Hayes [14],
this does not support an intuitive definition of refinement. Hence, in this paper
we adopt the alternative stream semantics developed in the latter paper. Under
this semantics, the meaning of a continuous action system is expressed in terms
of the timed streams of its local and global variables (other than τ).

For a continuous action system CA with state space ΣCA, we let streams .CA
denote the set of streams that may be produced by CA. Each stream is a map-
ping from the variables in dom.ΣCA − {τ} to a possible timed stream of that
variable. A stream s is aborting if it is a partial timed stream whose domain is a
right-open interval. An aborting stream is not defined at the time of abortion so
that refinements may modify this value. We use aborting.s to indicate whether
or not s aborts. A formal definition of the function streams can be found in [14]7.

Let tr .s denote the global behaviour of the stream s , i.e., where the domain
of s is restricted to global variables only.

Definition 3. (from [14]). The stream refinement relation �str between two con-
tinuous action systems CA and CC, is defined as

CA �str CC � ∀ sC : streams .CC • (∃ sA : streams .CA • sA "str sC),
7 The definition of streams.CA is given by behStreams.(actSys.CA) in [14].

446 L. Meinicke and G. Smith

where sA "str sC if, neither sA nor sC is aborting and tr .sA = tr .sC , or sA is
aborting and tr .sA is a prefix of tr .sC .

5 Combining Probabilistic and Continuous Action
Systems

In this section, we introduce our methodology for the combined use of probabilis-
tic and continuous action systems. This allows us to use reliability calculations
such as those in Section 3, in the development of continuous systems such as the
steam boiler system of Section 4. We illustrate and motivate our approach using
the steam boiler example.

We advocate a stepwise development approach, in which discrete, probabilistic
behaviour of the overall system is first specified, and developed using a number of
correctness preserving steps. During this phase the specification captures the re-
quired behaviour of the system and the environment at a very high level. System
reliability may be calculated via data refinement, using the approach discussed
in Section 3. Next the non-probabilistic part of the specification is extracted
and translated into a continuous action system in which timing constraints are
imposed, and continuous timed variables are introduced. Probabilistic results
calculated in the first phase may then be related to the continuous specification.
A process of refinement is then used to introduce further behavioural require-
ments to the non-probabilistic part of the specification, and develop it into an
implementable specification.

In order for this approach to be practical and sound, after the probabilis-
tic development phase, it must be possible to separate the specification into a
probabilistic and non-probabilistic component so that the non-probabilistic part
may be independently developed. Refinements of the non-probabilistic part of
the specification must preserve refinement of the combined probabilistic and
non-probabilistic specification. In the following sections we explain and verify
the soundness of our approach in detail.

– We explain how the probabilistic action system (2) may be decomposed
into a probabilistic and non-probabilistic specification, in which the non-
probabilistic specification takes the form of an action system. We verify that
action system trace refinements of the action system component, in combi-
nation with the probabilistic aspect of the specification, may be interpreted
as refinements of the the original probabilistic action system, (2).

– Also, we demonstrate how continuous behaviour may be introduced to an ac-
tion system, and how under certain conditions, refinement of the continuous
action system refines the behaviour of the original action system.

5.1 The Probabilistic Steam Boiler

A probabilistic specification of the steam boiler system may be used to introduce
reliability constraints. Consider a boiler with a faulty water sensor which may

A Stepwise Development Process for Reasoning 447

suffer from transient faults. If the sensor has an availability of 1− c, i.e., at any
instant the sensor has a probability of 1 − c of returning a correct water level
reading, and transient faults are detectable, then probabilistic action system (2)
may be used to capture a design specification of the system. The design specifi-
cation states that the system must be able to tolerate N consecutive transient
faults in the water sensor. The data refinement outlined in Section 3 may be used
to calculate the reliability of (2). At this point the specification is very abstract.
In later steps, the abstract variable N will be calculated from other parameters
which have not yet been introduced, and the abstract reliability calculation will
be related to the timed behaviour.

5.2 Extracting the Non-probabilistic Behaviour

In our case study, the probabilistic choices in the initial specification represent
the behaviour of hardware components in the system. After probabilistic calcula-
tions have been performed this behaviour does not need to be considered further
and we may focus on developing the non-probabilistic part of the specification.

We may seek to represent the non-probabilistic part of a probabilistic action
system as a standard action system with extra inputs that describe the behaviour
of probabilistic parts of the specification. The action system should describe how
the system should behave, given that the probabilistic part of the specification
behaves according to the extra inputs. A probability distribution may be used
to describe how the probabilistic inputs are chosen. For example, (2) could be
rewritten as the combination of the standard action system

|[var i : int • n, i := 0, 0;
do {i < N }; if f .n then i := i + 1 else i := 0 fi; n := n + 1 od

]|: 〈n : N; f : N → B〉,
(4)

and a probability measure μ(2) which describes the distribution of the ini-
tial value of global variable f . Variable f describes the outcome of a series
of independent, discrete probabilistic choices. Probability measure μ(2) should
be constructed so that it is defined on sample space N → B, and σ-field F ,
such that F is the least σ-field containing each set {vf : N → B | s 5 vf },
for each finite prefix s of type seq.B8. We should have that for each finite,
non-empty prefix s , μ(2) .{vf : N → B | s 5 vf } = Πi:dom.sd .(s .i), where
d = (λ b : B • if b then c else 1 − c)9.

This method of describing a probabilistic action system as a standard action
system with probabilistic inputs is reminiscent of some of the early sequential
program semantics for probabilistic programs in which inputs to the program are
probabilistic, but the program itself may not make stochastic moves [10]. Prob-
abilistic action systems are, however, more complicated than this early work

8 We write s % vf to denote that s is a prefix of vf .
9 For a summary of the relevant measure theory, and the construction of a similar

measure, see [9].

448 L. Meinicke and G. Smith

because they allow for the modeling of both probabilistic and nondeterminis-
tic choices. In fact, this approach may be problematic when it is applied to
probabilistic action systems in which both of these kinds of choice are present.
The reason for this is that probabilistic action systems are ignorant of the out-
come of a probabilistic choice until the choice statement has been executed. This
is important since knowledge of the outcome of a probabilistic choice may be
used to influence how nondeterministic choices are made. Consider the following
probabilistic action system A

|[var i : B • n := 0;
do n = 0 → (i := true ! i := false); n := n + 1
[] n = 1 → (y := true 1

2
⊕ y := false); z := i ; n := n + 1

od
]|: 〈n : N, z : B, y : B〉.

We have that the nondeterministic choice made in the first action must be made
without knowledge of the outcome of the probabilistic choice which is performed
in the second action. If the outcome of the choice were known beforehand, as in
the following probabilistic action system A′

|[var i , j : B • n := 0; (j := true 1
2
⊕ j := false);

do n = 0 → (i := true ! i := false); n := n + 1
[] n = 1 → y, z := j , i ; n := n + 1
od

]|: 〈n : N, z : B, y : B〉,

then the behaviour of the probabilistic action system is quite different. For ex-
ample, A′ may be trace refined by

|[var i , j : B • n := 0; (j := true 1
2
⊕ j := false);

do n = 0 → i := j ; n := n + 1 [] n = 1 → y, z := j , i ; n := n + 1 od
]|: 〈n : N, z : B, y : B〉,

whereas A may not. In order for us to model a probabilistic action system, such
as A, as an action system with probabilistic inputs, we must be able to constrain
the action system so that it retains ignorance of the probabilistic inputs until
appropriate times.

In the next section we formalize how an action system of a particular form,
in combination with a probabilistic input may be interpreted as a probabilistic
action system. We then verify that trace refinement of the action system com-
ponent guarantees refinement of the probabilistic action system interpretation.
This demonstrates that (4) together with μ(2) can be thought of as an alternative
representation of the probabilistic action system (2). And that refinements of (4),
in combination with the probabilistic input distribution, may be interpreted as
refinements of the overall system, (2).

Soundness. Assume we are given an action system A with a global variable f
of type N → B such that f is constant, and a global variable n of type N. If f

A Stepwise Development Process for Reasoning 449

describes the behaviour of probabilistic inputs, and for each action A of A and
intermediate state σ, we use the value of n at σ to indicate that only the first
σ.n positions of f should be visible when A is executed from σ, then we may
describe the different possible deterministic “global behaviours” of A from any
initial state σg of type {f } −� global .ΣA by the following set of functions10.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F : (N → B) → seq�.({f } −� global .ΣA) | ∀ vf : N → B •

(∃ t : traces .A •

t .1 = (σg ∪ {f �→ vf }) ∧ F .vf = (λ i : dom .t • {f } −� (t .i))) ∧
(∀ s 5 F .vf • size.s ≥ 2 ⇒

(∀ v ′
f : N → B •

[1..(penultimate.s).n] � vf = [1..(penultimate.s).n] � v ′
f

⇒ s 5 F .v ′
f))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Each function F in this set describes how A might deterministically behave from
σg depending on the different probabilistic inputs (described by f) that it may
receive. To be precise, each function F maps each possible input value of f , vf ,
to a trace of global variables (other than f) that may be produced by A from
global initial state (σg ∪{f �→ vf }). Each function F is constrained such that the
traces assigned to different probabilistic input values are chosen such that the
ignorance constraints placed by n are considered. For instance, consider some
trace prefix s , of minimum length two. The choice to produce s should only be
dependent on the first [0..(penultimate.s).n] positions of f . This means that, if
for some vf , s is a prefix of F .vf , then for all other values of f , v ′

f , that are
the same as vf up until the (penultimate.s).nth place, s must also be a prefix of
F .v ′

f .
Note that it is possible for n to be used to “incorrectly” specify constraints on

how the probabilistic inputs f may be used. That is, n may be used to declare
that from state σ, an action A must be performed independently of the positions
of f from σ.n+1 onwards, however A may make a choice that is explicitly depen-
dent on these forbidden values. In this case the set of deterministic behaviours
defined above may be empty, indicating that it is not implementable given the
constraints specified. We discuss this point more later on.

If each value f .i of the probabilistic input variable f is chosen according to
some discrete probability distribution di , then a probability measure μ may be
defined that describes f . The probability measure may be constructed so that
it is defined on sample space N → B, and σ-field F , such that F is the least
σ-field containing each set {vf : N → B | s 5 vf }, for each finite prefix s of type
seq.B. We should have that, for each finite prefix s , μ .{vf : N → B | s 5 vf } =
Πi:dom.sdi .(s .i).

If we are given a measure μ that satisfies the above description, then we may
describe how A in conjunction with μ may be interpreted as a probabilistic
action system with global state space {f } −� global .ΣA.

10 We use −� to represent domain subtraction, and � to denote domain restriction.

450 L. Meinicke and G. Smith

We start by specifying how μ in conjunction with a deterministic behaviour
F , that is possible from some initial state σg , may be used to define a trace tree,
trTree.(μ,F). Trace tree trTree.(μ,F) is defined such that for all finite trace
prefixes s

prefixExpt.(trTree.(μ,F)).s = μ .{vf : N → B | s 5 F .vf }.

That is, the expectation that trTree.(μ,F) will produce s is the probability in
μ that a value of f is chosen which constructs prefix s , given the resolution of
nondeterminism encoded by F . Note that by the definition of μ and F , each
of the sets {vf : N → B | s 5 F .vf } must be measurable, and so this tree
specification is well defined.

Let pbeh.A be the set of all deterministic behaviours F that may be produced
from any initial state σg in {f } −� global .Σ. We define the set of trace trees that
may be constructed from A given μ to be trTree.(A, μ), which is the convex
closure of the set

{t | ∃F : pbeh.A ∧ t = trTree.(μ,F)}.

The convex closure of the set is taken so that possible probabilistic refinements
of the nondeterministic behaviour of the action system are included.

Definition 4. Given an action system A, and probability measure μ, as defined
in the above text, we say that A is equivalent to probabilistic action system PA
by μ when the trace trees constructed from A using μ are equal to those from
PA.

A ∼=μ PA ⇔ trTree.(A, μ) = trTree.PA

It is straightforward to show that (4) ∼=μ
(2)

(2). Furthermore, as shown below,

if we refine (4) to an action system C, there is a refinement PC of (2) such that
C ∼=μ

(2)
PC. That is, under the interpretation given by μ(2), any refinement of

(4) refines the behaviour of (2) as desired. Of course when we refine the specifica-
tion we should be careful not to refine it into an unimplementable specification.
As mentioned earlier, this could be possible if we break the ignorance constraints
specified by n.

Lemma 1. Given action systems A and C containing global constant f and
variable n and probability measure μ over f , we have that

A �tr C ⇒ (∀ tC : trTree.(C, μ) • (∃ tA : trTree.(A, μ) • tA "⊕ tC)).

Proof. From the definition of convex closure over trace trees it is sufficient to
show that

(∀ tC : {t | ∃F : pbeh.C • t = trTree.(μ,F)} •

(∃ tA : {t | ∃F : pbeh.A • t = trTree.(μ,F)} • tA "⊕ tC)).

A Stepwise Development Process for Reasoning 451

Given A �tr C, for any FC from pbeh.C, there exists a FA from pbeh.A, such
that (∀ f : N → B • FA.f "tr FC .f). This implies that for any s , {f : N → B |
s 5 FA.f } ⊆ {f : N → B | s 5 FC .f }, and hence prefixExpt.(trTree.(μ,FA)).s ≤
prefixExpt.(trTree.(μ,FC)).s . �

Theorem 1. Given action systems A and C containing global constant f and
variable n, and probability measure μ over f , for all probabilistic action systems
PA

A ∼=μ PA ∧ A �tr C ⇒ (∃PC • PA �⊕ PC ∧ C ∼=μ PC).

Proof sketch. Given that A ∼=μ PA, it is always possible to construct a prob-
abilistic action system PC such that C ∼=μ PC.

Hence, for such a probabilistic action system PA, the theorem reduces to
showing that A ∼=μ PA ∧ C ∼=μ PC ∧ A �tr C ⇒ PA �⊕ PC.

A �tr C
⇒ (Lemma 1)

∀ tC : trTree.(C, μ) • (∃ tA : trTree.(A, μ) • tA "⊕ tC)
⇔ (Definition 4 and assumptions A ∼=μ PA and C ∼=μ PC)

∀ tC : trTree.PC • (∃ tA : trTree.PA • tA "⊕ tC)
⇔ (Definition 2)

PA �⊕ PC �

5.3 Introducing Time and Continuous Behaviour

The next step in our approach is to add time and continuous variables to the
action system (4). This is done by providing a continuous action system CA
which preserves the untimed, discrete behaviour of (4). The abstract reliability
calculation from the first development stage may be interpreted with respect to
the timed behaviour.

We begin by rewriting (4) as a continuous action system where actions are
separated by a finite, non-zero time. This separation is necessary for two reasons.
Firstly, it ensures non-Zeno behaviour. Secondly, it disallows potential timings
where actions occur simultaneously. This is necessary as the effect of only one
action occurring at a particular time (the last of the actions occurring at that
time in the trace) is observable under the continuous action system semantics
[14]. Hence to preserve the action system behaviour, we want to restrict our
continuous action system to one in which there are no simultaneous occurrences
of actions.

For example, with the steam boiler system of Section 4 in mind, we could
separate the actions of (4) by a time in the range δ1 . . δ2 where δ1 and δ2 are
times such that 0 < δ1 < δ2. (As in Section 4, we allow variables to be declared
and used as discrete (non-stream) variables as a shorthand.)

452 L. Meinicke and G. Smith

|(var i : int ; next : Time •

n, i := 0, 0;
next :∈ [δ1...δ2];
do τ = next →

{i < N };
next :∈ [τ + δ1...τ + δ2];
if f .n then i := i + 1 else i := 0 fi; n := n + 1

od
)|: 〈n : N; f : N → B〉

(5)

The addition of such timing information does not affect in any way the untimed
behaviour of the specified system.

From this continuous action system, we can determine that while the action
system has not aborted, the following invariant is maintained11:

(∀ t ≤ τ • 1 t
δ2

2 ≤ n.t ≤ 1 t
δ1

2).

So, given that the input function f behaves according to our original probabilistic
calculations, we may determine that the reliability of our system at any time t ,
R.t , is such that a� t

δ1
 ≤ R.t ≤ a� t

δ2
 .

To develop (5) further requires the addition of other variables; in particular,
continuous variables. For example, for the steam boiler system of Section 4, we
need to introduce the global variable w denoting the water level. This can be
done without affecting the existing behaviour by placing no constraints on w
apart from that it assumes a nondeterministic value from its type initially and
on each occurrence of an action.

|(var i : int ; next : Time •

n, i := 0, 0;
w :∈ Time → R;
next :∈ [δ1...δ2];
do τ = next →

{i < N };
w :∈ Time → R;
next :∈ [τ + δ1...τ + δ2];
if f .n then i := i + 1 else i := 0 fi; n := n + 1;

od
)|: 〈n : N; f : N → B; w : Time → R〉

(6)

Other variables (both global and local) related to the particular system we are
developing could be added in a similar fashion.

Finally, we would like to refine the behaviour of the added variables such as
w to specify the desired system. This would enable us to express the system
reliability in terms of the system’s parameters (rather than the constant N).

11 r! rounds down real number r to the nearest integer.

A Stepwise Development Process for Reasoning 453

In order for this to be sound, however, we require that such a refinement of (6)
refine the original behaviour of (4).

Soundness. First we formalise how the discretely changing state of a continuous
action system may be given an action system interpretation. This is done by
defining a mapping between streams and traces. We then prove that, under
certain conditions, refinement of a continuous action system preserves refinement
of the action system interpretation.

The state space of a continuous action system will, in general, include variables
that do not behave discretely (i.e., they do not behave as a step function with
finite changes of value within any finite interval). These variables are ignored
when defining the action system interpretation. We therefore define a function
resΣ which restricts a stream to the variables in a state space Σ.

resΣ .s � dom.Σ � s ,

where � is the domain restriction operator. We refer to the value of a stream s
at time t as s@t , where

s@t � (λ v : dom.s • s .v .t).

The trace corresponding to a stream s (which behaves discretely), trace.s , may be
constructively defined as follows. Informally, the i th value of the trace describes
the value of s after i discrete changes in its value. If s does not abort at time 0,
then trace.s .1 describes the value of s at time 0. If s does abort at time 0, then
trace.s is the empty trace. Each subsequent value denotes the value of s the next
time it changes. If there is no future time at which a change is made and the
stream does not abort, then the next and last element in trace.s is element &,
which denotes termination. If there is no future time that a change of state is
made, and s aborts, then the subsequent value is not defined (that is, the trace
aborts). Formally,

trace.s �
{ 〈〉, if 0 	∈ tdom.s
〈s@0〉 � gettr .s .0, if 0 ∈ tdom.s

where tdom.s is the time domain of the variables in s and function gettr .s takes
as a parameter a time at which s modified the variables, and returns the rest of
the trace produced from time t .

gettr .s .t �

⎧
⎨

⎩

〈s@(min .(D .t))〉 � gettr .s .(min .(D .t)), if D .t 	= {}
〈&〉, if D .t = {} and ¬aborting.s
〈〉, if D .t = {} and aborting.s

where D .t � {t ′ : tdom.s | t ′ > t ∧ s@t ′ 	= s@t}.

We then define traceΣ to be a function which maps a stream to a corresponding
trace over the state space Σ,

traceΣ .s � trace.(resΣ .s).

454 L. Meinicke and G. Smith

Definition 5. A continuous action system CA preserves the global behaviour
of an action system A with global state space Σ iff its set of streams maps via
traceΣ to the set of traces of A.

CA ∼=Σ A ⇔ {t | ∃ s : streams .CA • t = traceΣ.s} = traces .A

It can be readily shown that (5) ∼=Σ (4), and similarly that (6) ∼=Σ (4) where
Σ � {n �→ N, f �→ (N → B)}.

What we need to show is under what conditions on a refinement CC of (6),
there is a refinement C of (4) such that CC ∼=Σ C. This ensures that the
untimed, discrete behaviour of CC is a refinement of that of (4) as desired.

Lemma 2. For all streams sA and sC , if sA "str sC then, for any state space
Σ over state variables which behave discretely in sA and sC , traceΣ .sA "tr

traceΣ .sC .

Proof. There are two cases to consider: either (i) sA and sC are not aborting
and tr .sA = tr .sC , or (ii) sA is aborting and tr .sA is a prefix of tr .sC .

In case (i), since neither sA nor sC are aborting the timed traces traceΣ.sA
and traceΣ .sC are not aborting by the definition of trace. Furthermore, since the
global variables of sA and sC behave identically, the corresponding traces also
behave identically, i.e., traceΣ .sA = traceΣ .sC .

In case (ii), sA comprises partial timed streams whose domains are right-open
intervals. Hence, traceΣ .sA is an aborting timed trace by the definition of trace.
Furthermore, since the global variables of sC behave identically to those of sA up
to the time of abortion, the global variables of traceΣ.sC behave identically to those
traceΣ .sA up to when it aborts. Hence, traceΣ .sA is a prefix of traceΣ .sC . �

Theorem 2. For all continuous action systems CA and CC where global vari-
ables which behave discretely in CA also behave discretely in CC, and all action
systems A, with global state space Σ,

CA ∼=Σ A ∧ CA �str CC ⇒ (∃C • A �tr C ∧ CC ∼=Σ C).

Proof sketch. Given that CA ∼=Σ A and that global variables that behave
discretely in CA also behave discretely in CC, it is always possible to construct
an action system C such that CC ∼=Σ C.

Hence, for such an action system C, the theorem reduces to showing that
CA ∼=Σ A ∧ CC ∼=Σ C ∧ CA �str CC ⇒ A �tr C.

CA �str CC
⇔ (Definition 3)

∀ sC : streams .CC • (∃ sA : streams .CA • sA "str sC)
⇒ (Lemma 2)

∀ sC : streams .CC • (∃ sA : streams .CA • traceΣ .sA "tr traceΣ .sC)
⇔ (Definition 5 and assumptions CA ∼=Σ A and CC ∼=Σ C)

∀ tC : traces .C • (∃ tA : traces .A • tA "tr tC)
⇔ (Definition 1)

A �tr C �

A Stepwise Development Process for Reasoning 455

5.4 Refining the Real-Time Steam Boiler

We now refine our abstract continuous action system (6). This allows us to
proceed towards an implementation and also allows us to re-express our previous
reliability result in terms of the parameters of this implementation (instead of
the abstract variable N).

The following refinement of (6) constrains the water level to be maintained
in between the high (H) and low (L) level boundaries up until the time of abor-
tion12. Like the steam boiler modeled in Section 4, this is achieved by adjusting
the behaviour of the water level on each iteration, depending on a worst case
prediction of where the water level may reach before the time of the next action.

|(var i : int ; next : Time •

n, i := 0, 0;

w :∈
{

w ′ : Time → R | w ′.0 ∈ [L + δ2M ...H − δ2M] ∧
(∀ t : Time • dw ′

dt .t ∈ [−M ...M])

}

;

next :∈ [δ1...δ2];
do G ∧ w .τ + δ2M ≥ H →

{i < N };

w :∈
{

w ′ : Time → R | w ′.τ = w .τ ∧
(∀ t : Time • dw ′

dt .t ∈ [−M ...0])

}

; U

[] G ∧ w .τ − δ2M ≤ L →
{i < N };

w :∈
{

w ′ : Time → R | w ′.τ = w .τ ∧
(∀ t : Time • dw ′

dt .t ∈ [0...M])

}

; U

[] G ∧ L + δ2M < w .τ < H − δ2M →

w :∈
{

w ′ : Time → R | w ′.τ = w .τ ∧
(∀ t : Time • dw ′

dt .t ∈ [−M ...M])

}

; U

od
)|: 〈n : N; f : (N → B); w : Time → R〉

where

G � τ = next,
U � next :∈ [τ + δ1...τ + δ2];

if f .n then i := i + 1 else i := 0 fi; n := n + 1;
{(∀ t ≤ next • L ≤ w .t ≤ H)}.

This refinement step is dependent on the assumption H−L
2 > δ2M . This en-

sures that the water level cannot cross either boundary before the next action
occurs. If this were possible, the assertion in U would cause the system to abort
at a time which was not possible in (6).

In an implementation we will be unable to access the water level directly.
Instead when our system performs an action, it must use the value of a sensor
reading that was taken at some earlier time. We introduce a local variable g to
12 This may be ascertained from the assertion on the water level in U .

456 L. Meinicke and G. Smith

represent such a sensor reading. When the sensor provides a correct reading on
a given loop iteration (f .n is false), g is updated to be a reading within an error
err of the water level that is taken between the time of the current action, and
the next action. If the sensor does not provide a correct reading (f .n is true)
then g is unmodified from the previous reading. It is assumed that the initial
reading of the water level is correct. The direct reference to the water level in the
guards of the conditional statement is updated to reference the current reading
of the water level, g. This refinement may be proven using the coupling invariant

g ∈ w .τ ± (δ2M (i + 1) + err).

|(var i : int ; next : Time; g : R •

n, i := 0, 0;

w :∈
{

w ′ : Time | w ′.0 ∈ [L + δ2M ...H − δ2M] ∧
(∀ t : Time • dw ′

dt .t ∈ [−M ...M])

}

;

next :∈ [δ1...δ2];
g :∈ w(| [0..next] |) ± err ;
do G ∧ g + δ2M (i + 1) + err ≥ H →

{i < N };

w :∈
{

w ′ : Time → R | w ′.τ = w .τ ∧
(∀ t : Time • dw ′

dt .t ∈ [−M ...0])

}

; U

[] G ∧ g − δ2M (i + 1) − err ≤ L →
{i < N };

w :∈
{

w ′ : Time → R | w ′.τ = w .τ ∧
(∀ t : Time • dw ′

dt .t ∈ [0...M])

}

; U

[] G ∧ L + δ2M (i + 1) + err < g < H − δ2M (i + 1) − err →
{i < N };

w :∈
{

w ′ : Time → R | w ′.τ = w .τ ∧
(∀ t : Time • dw ′

dt .t ∈ [−M ...M])

}

; U

od
)|: 〈n : N; f : (N → B); w : Time → R〉

where

G � τ = next,
U � next :∈ [τ + δ1...τ + δ2];

if f .n then i := i + 1 else i := 0; g :∈ w(| [τ..next] |) ± err fi;
n := n + 1;
{(∀ t ≤ next • L ≤ w .t ≤ H)}.

This refinement step is only valid if N ≤ 1H−L−2err
2δ2M

− 3/22. This provides
us with a correspondence between the abstract reliability parameter N , and the
implementation. From this correspondence, and our earlier calculations we can
deduce that the reliability of our implementation, or any further refinements, at
any time t is at least a� t

δ1
 , where a is the greatest solution to the equation (3),

given that N = 1H−L−2err
2δ2M

− 3/22. While the system has not failed, the water
level is maintained within the appropriate limits.

A Stepwise Development Process for Reasoning 457

6 Conclusion

In this paper, we have demonstrated how the probabilistic and continuous ex-
tensions of actions systems may be used in the development and calculation
of reliability of continuous, real-time systems. This is achieved via behaviour-
preserving mappings between probabilistic actions systems and action systems,
and between action systems and continuous action systems. The first mapping
allows properties of a probabilistic action system, in particular reliability results,
to be carried over to an action system and any of its refinements. The second
mapping allows such properties to be further carried over to a continuous action
system and, under certain conditions, its refinements. While the second mapping
is general enough to use with any action system, the first mapping appears to be
more restrictive. It would be of interest to investigate the generality of this ap-
proach. If necessary, further methods for extracting the non-probabilistic part of
a probabilistic action system, so that it may be independently developed, could
be explored.

We consider the main benefit of our approach to be that it separates prob-
abilistic reasoning from the rest of the development process. We have demon-
strated our methodology by extending a probabilistic steam boiler case study [12]
in which an unreliable component functions correctly at any time with a given
probability, to include real-time considerations. It would also be of interest to
investigate how it may be applied to other case studies in which there is a more
complex interplay between probabilistic and real-time behaviour. It may not be
possible, or sensible, in all cases to perform probabilistic reasoning independently
of real-time behaviours.

Acknowledgements. This research was supported by Australian Research
Council (ARC) Discovery Grant DP0558408, Analysing and generating fault-
tolerant real-time systems. The authors are grateful to Ian Hayes, Kim Solin
and the anonymous referees for helpful suggestions.

References

1. Abrial, J.-R., Börger, E., Langmaack, H.: Formal Methods for Industrial Applica-
tions: Specifying and Programming the Steam Boiler Control. LNCS, vol. 1165.
Springer, Heidelberg (1996)

2. Back, R.J.R., Kurki-Suonio, R.: Decentralization of process nets with centralized
control. In: 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distributed Com-
puting, pp. 131–142. ACM Press, New York (1983)

3. Back, R.J.R., Kurki-Suonio, R.: Distributed cooperation with action systems. ACM
Trans. Program. Lang. Syst. 10(4), 513–554 (1988)

4. Back, R.J.R., Petre, L., Porres, I.: Generalizing action systems to hybrid systems.
In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 202–213. Springer, Hei-
delberg (2000)

5. Back, R.J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson, B.,
Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidel-
berg (1994)

458 L. Meinicke and G. Smith

6. Back, R.J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, Heidelberg (1998)

7. Broy, M.: Refinement of time. In: Rus, T., Bertran, M. (eds.) AMAST-ARTS 1997,
ARTS 1997, and AMAST-WS 1997. LNCS, vol. 1231, Springer, Heidelberg (1997)

8. Fidge, C.J., Hayes, I.J., Mahony, B.P.: Defining differentiation and integration in
Z. In: Staples, J., Hinchey, M.G., Liu, S. (eds.) International Conference on Formal
Engineering Methods (ICFEM ’98), pp. 64–73. IEEE Computer Society Press, Los
Alamitos (1998)

9. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD thesis, University
of Cambridge (2002)

10. Kozen, D.: Semantics of probabilistic programs. Journal of Computer and System
Sciences 22, 328–350 (1981)

11. Mahony, B.P., Hayes, I.J.: A case-study in timed refinement: A mine pump. IEEE
Transactions on Software Engineering 18(9), 817–826 (1992)

12. McIver, A., Morgan, C., Troubitsyna, E.: The probabilistic steam boiler: a case
study in probabilistic data refinement. In: Grundy, J., Schwenke, M., Vickers, T.
(eds.) International Refinement Workshop/Formal Methods Pacific ’98. Series in
Discrete Mathematics and Theoretical Computer Science, pp. 250–265. Springer,
Heidelberg (1998)

13. Meinicke, L.: Probabilistic action system trace semantics. Technical report, School
of Information Technology and Electrical Engineering, The University of Queens-
land, Australia (2007)

14. Meinicke, L., Hayes, I.J.: Continuous action system refinement. In: Uustalu, T.
(ed.) MPC 2006. LNCS, vol. 4014, pp. 316–337. Springer, Heidelberg (2006)

15. Scholefield, D., Zedan, H., Jifeng, H.: A specification-oriented semantics for the
refinement of real-time systems. Theoretical Computer Science 131, 219–241 (1994)

16. Sere, K., Troubitsyna, E.: Probabilities in action systems. In: 8th Nordic Workshop
on Programming Theory (1996)

17. Storey, N.: Safety-Critical Computer Systems. Addison-Wesley, Reading (1996)
18. Troubitsyna, E.: Reliability assessment through probabilistic refinement. Nordic

Journal of Computing 6(3), 320–342 (1999)
19. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information

Processing Letters 40, 269–271 (1991)

Decomposing Integrated Specifications for

Verification

Björn Metzler

Department of Computer Science
University of Paderborn

Germany
D-33098 Paderborn, Germany

bmetzler@upb.de

Abstract. Integrated formal specifications are intrinsically difficult to
(automatically) verify due to the combination of complex data and be-
haviour. In this paper, we present a method for decomposing specifica-
tions into several smaller parts which can be independently verified. Ver-
ification results can then be combined to make a global result according
to the original specification.

Instead of relying on an a priori given structure of the system such
as a parallel composition of components, we compute the decomposition
by ourselves using the technique of slicing. With less effort, significant
properties can be verified for the resulting specification parts and be ap-
plied to the full specification. We prove correctness of our method and
exemplify it according to a specification from the rail domain.

Keywords: Integrated Formal Specifications, Decomposition, Composi-
tional Verification, Program Slicing, Model Checking.

1 Introduction

Model checking [4] is a technique to automatically verify a program against
certain requirements. For a representation of the system and a requirement most
often specified in temporal logic, it aims at solving the question of whether the
property is valid in the model or not.

Higher complexity of a program leads to a bigger state space of the model –
the number of states actually grows exponentially with the size of the program
description. This issue is known as the state explosion problem and is the subject
of a lot of ongoing research. This especially applies to the context of integrated
formal methods, where we combine complex data aspects with the behaviour of
the system, the state space might become unmanageable and model checking
is no longer possible. Different techniques such as data abstraction [6], partial
order reduction [7] as well as symbolic [5] techniques have been developed to
master this challenge. The common idea is the reduction of the explored state
space.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 459–479, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

460 B. Metzler

Other approaches to tackle the state explosion problem investigate composi-
tional techniques. By using the intuitive composition of a system, the verification
task can be reduced and local properties can be shown for parts of the system.
In many cases, the given system is defined as the parallel composition of several
modules like for example in [13]. Compositional reasoning can be applied: in
case the components do not influence each other, we can immediately deduce
properties of the full system from local properties of its components. Otherwise,
the dependencies have to be taken into account and more complex techniques as
assume-guarantee reasoning [8] are utilized. An application of these approaches
assumes that the system specification is already given by a composition of several
components. This is, however, not always the case. In particular, due to their
complexity and necessity of modelling different aspects of a system, integrated
specifications do in general not have the required shape.

In this paper, we do not assume that a given system description is intuitively
composed of several components. Instead, we introduce a technique of how to
reasonably decompose an integrated specification based on the global properties
to be verified. Our approach does not require a certain shape of the specification
and in addition makes an independent verification of the resulting specification
parts possible. As an application in the context of high data complexity, this
may enable us to automatically verify parts of the specification by sourcing out
data-heavy behaviour to independent components.

Desired properties of a program will be described in the next-less part of the
temporal logic LTL [14]. Our program specifications are written in the integrated
formal method CSP-OZ [9], a combination of the formalisms CSP [12] for the
dynamic behaviour and Object-Z [19] for the static behaviour of a system. The
CSP part defines communication and an ordering of operations while the Object-
Z part uses state variables and predicates to model the data aspects.

Our decomposition approach is based on the analysis technique of specification
slicing [22]. In general, slicing removes parts from a specification which are irrel-
evant for a certain property under interest. Slicing has already been introduced
for CSP-OZ [2]. In contrast to these approaches using operation elimination,
our approach divides the set of state variables of the Object-Z part. We require
that any property of a slice also holds for the original specification. As a main
contribution, we are able to separate parts of the specification from each other
and can independently verify them even though an intuitive decomposition is
not given. The local verification results can subsequently be composed implying
the global property. Figure 1 illustrates the decomposition.

M |=
∧n

i=1 ϕi

V ar1

������������ V arn

������������

M1 |= ϕ1 . . . Mn |= ϕn

Fig. 1. General approach

Decomposing Integrated Specifications for Verification 461

The paper is organized as follows: Section 2 introduces CSP-OZ by means
of an example. We describe the operational semantics of our formalism and the
temporal logic LTL. In Section 3, we introduce our approach of decomposing a
specification. We present the reduction technique and illustrate the decomposi-
tion on our example. To show that the decomposition is reasonable, Section 4
explains how verification results for the decomposed specification can be applied
to the full specification. Again, we use our example to illustrate the verifica-
tion technique. Correctness of decomposition and verification technique will be
shown. The last section concludes and discusses related and future work.

2 A Specification in CSP-OZ

To describe and illustrate CSP-OZ and to motivate our approach, we start with
an example. A simplified version of a scenario in the domain of the rail cab
project “Neue Bahntechnik Paderborn”1 serves as the basis for the ongoing
example of this paper. In this scenario, a number of shuttles circuit on a given
route. The shuttles are coordinated by a control system.

Our general goal is to ensure safety for the whole scenario: by no means should
the shuttles collide. To achieve this, we specify a very simple solution in CSP-
OZ. Later, we describe the requirements in the temporal logic LTL and prove
them by applying our technique.

Fig. 2. Graphical representation of Shuttle specification

Figure 2 shows a graphical representation of the specifications protocol. The
whole system can be situated in two different modes: initially, its non-error
mode is executed starting with a communication of a shuttles current speed
and position (measure). Parameter i is used for the addressing the shuttles.
After the communication, each shuttle computes the distance to its neighbours,
compares it to the minimal allowed distance (evaluate) and sends the result
to the control system (sendfail). Next, the controller analyses the transmitted
1 http://www.nbp-www.upb.de

462 B. Metzler

values (checkerror). In case the distance between at least one pair of shuttles is
too small, the control system initiates a break manoeuvre leading to a continuous
execution of brake. Otherwise, the protocol restarts.

The system consists of two CSP-OZ class specifications for an arbitrary shuttle
component (Shuttle[i]) and the control system (Control). A total number of N
shuttles are composed in parallel without synchronization by using the CSP
operator � for interleaving: Shuttles = �i=1,...,NShuttle[i]

Shuttle[i]

method brake[i : {self}; y? : N], sendfail [i : {self}; y? : B × B]

method evaluate,measure[i : {self}; y1 : N; y2 : N × N × N]

main = measure.i?y1?y2 → evaluate → sendfail .i?y → (E � main)

E = brake.i?y → E

mypos, speed : N

nbpos : N × N

fail : B × B

speed ≤ MAXS

Init

mypos = i ∗ MAXD

nbpos.1 = (i − 1) ∗ MAXD

nbpos.2 = (i + 1) ∗ MAXD

fail = (false, false)

speed = 300

com measure

Δ(mypos,nbpos, speed)

s? : N

pos? : N × N × N

speed ′ = s?

mypos ′ ∈ [pos?.2 + / − ERROR]

nbpos ′.1 ∈ [pos?.1 + / − ERROR]

nbpos ′.2 ∈ [pos?.3 + / − ERROR]

com evaluate

Δ(fail)

| nbpos.1 − mypos |≤ MIND

⇒ fail ′.1 = true

| nbpos.2 − mypos |≤ MIND

⇒ fail ′.2 = true

com sendfail

f ! : B × B

f ! = fail

com brake

Δ(speed)

n? : [1..MAXB]

speed > 0 ⇒ speed ′ = speed − n?

speed ≤ 0 ⇒ speed ′ = speed

Fig. 3. Shuttle specification: Shuttles

For simplification, we will omit modulo computation. We compose Shuttles
with the Control component by means of synchronous parallel composition de-
scribed by the CSP operator ‖. The set S := {measure, sendfail, brake} is the
synchronization alphabet, a subset of the set of channels. The full system is de-
fined as System = Shuttles‖SControl. Figure 3 and Figure 4 show the CSP-OZ
specifications of an arbitrary shuttle i and the control system, respectively.

Decomposing Integrated Specifications for Verification 463

Every class specification has three parts: an interface (given by a number of
channels for communication with its environment), a CSP part and an Object-Z
part. The CSP part of a class identifies the dynamic aspects of the system. It
defines a protocol describing all possible orders on its operation schedule. The
protocol itself consists of a set of process equations. The Object-Z part describes
the data aspects of the class. It consists of the state space, its initial configuration
and a set of methods – one method for each channel of the class.

Control

method brake[i? : ShuttleRef ; y? : N], sendfail [i? : ShuttleRef ; y? : B × B]

method checkerror ,measure[i? : ShuttleRef ; y1 : N × N × N; y2 : N]

main = ‖|
i
measure.i?y1?y2 → ‖|

i
sendfail .i?y → Q

Q = checkerror → (B � main), B = ‖|
i
brake.i?y → B

pos : seq1 N

fail : seq1 B × B

err pos : Z

#pos = #Sh

Init

∀ i • fail(i) = (false, false)

err pos = −1

com sendfail

Δ(fail)

i? : ShuttleRef

f ? : B × B

fail ′.i? = f ?

com checkerror

Δ(err pos)

if (∃ j ∈ Sh • fail(j − 1).2 = true

∧ fail(j).1 = true)

then err pos ′ = j

else err pos ′ = −1

com measure

i ! : ShuttleRef

p! : N × N × N

s! : N

err pos = −1

p! = (pos.(i ! − 1), pos.i !, pos.(i ! + 1))

com brake

i ! : ShuttleRef

n! : [1..MAXB]

err pos! = −1

if (i ! ≥ err pos) then n! = MAXB

else n! = i !

Fig. 4. Shuttle specification: Control

The Object-Z part contains the class’ state space. The state space of a shuttle
component includes the variables mypos (the shuttles current position), speed
(the shuttles speed), nbpos (the positions of the shuttles predecessor and suc-
cessor) and fail (the error evaluation result). In addition, the Object-Z part
comprises the initial state schema Init and several com schemas describing the
guards and effects of the respective methods.

464 B. Metzler

Each schema has two parts: the upper part starts with a (possible empty)
list of variables which are modified in the second part. It may also contain an
optional list of input (described by ’?’) and output (described by ’!’) parameters
according to the parameters of the channels. The lower part may include a set of
predicates about the variables of the state space. We distinguish between primed
and unprimed variables where a primed variable defines the variables value after
execution of the method and an unprimed variable the value before. To determine
if the execution of a method is blocked, its precondition [23]

pre op = ∃State, outputs • op

is computed. In case an after state and output exists such that the precondition is
satisfied, the event is enabled and its effect (also referred to as its postcondition)
is computed. The effect of an event relates the current state with variable values
after execution of the event.

For instance, schema measure of Control is blocked unless err pos = −1
is satisfied. The methods effect sets the state variables to the communicated
values within a given tolerance. The communicated values have to satisfy the
class invariant specifying that a shuttle cannot exceed a certain speed limit
(speed ≤ MAXS). To model the discrepancy between the communicated and
the correct positions of the shuttles (the correct value may be effected by different
kinds of tolerated errors and inaccuracies), we use a constant (ERROR).

2.1 Semantics of CSP-OZ: Labelled Kripke Structures

To describe requirements of a CSP-OZ specification, we need to define its model
which is given by its operational semantics, labelled Kripke structures. In addition
to normal Kripke structures, transitions are labelled with events of the class.

Definition 1. (Labelled Kripke Structure) Let AP be a non-empty set of atomic
propositions and E an alphabet of events. An event-labelled Kripke structure
K = (S, S0,→, L) over AP and E consists of a set of states S, a set of initial
states S0 ⊆ S, a transition relation →⊆ S × E × S and a labelling function
L : S → 2AP .

To define the operational semantics for a CSP-OZ class, we introduce the neces-
sary notations. The Object-Z part of a class will in the following be denoted by
Z = (State, Init, (com m)m∈M), where State is the state schema of the class,
Init the initial state schema and M the set of all methods used in the Object-Z
part. We use the alphabet Events = {m.i.o | m ∈ M, i ∈ in(m), o ∈ out(m)}
of all CSP events, consisting of the channel name m and optional values from
the sets in(m) and out(m) of all input and output parameters of m. The CSP
part neither restricts nor uses values of parameters, i.e. it is data independent.
Communication is always one sided from the Object-Z part to the CSP part.
V denotes the set of all variables of the state space of Z. V ar(m) is the set of
variables the method m refers to or modifies.

The operational semantics of a class will be given in two steps: first, we define
the labelled Kripke structure for the Object-Z part and then the same for the

Decomposing Integrated Specifications for Verification 465

CSP part. Let APO be the set of all atomic propositions over the Object-Z state
space:

Definition 2. (Kripke structure semantics of the Object-Z part)
The Kripke structure semantics of the Object-Z part is defined as the labelled
Kripke structure KOZ = (State, Init,→OZ , L

OZ) with the labelling function
LOZ mapping each state onto the set of atomic propositions over the Object-Z
state space that are valid in this state, Init being the set of states that satisfy the
Object-Z part’s Init schema and the transition relation →OZ= {(z,m.i.o, z′) |
com m(z, i, o, z′)} relating pre (z) and post (z′) states according to the definition
of associated Object-Z methods.

Atomic propositions are given by predicates over unprimed variables and param-
eters such as speed > 0 or self = i? in our example. For the CSP part, we refer to
the operational semantics of CSP. In addition, we introduce a labelling function
for its Kripke structure: requirements may be dependent on the specifications
behaviour and therefore only hold at specific locations. In case we want to refer
to a certain location of the CSP part, we can use its label. Let PId be the set
of process identifiers used in the CSP part with PId ∩M = ∅:

Definition 3. (Kripke structure semantics of the CSP part)
The Kripke structure semantics of the CSP part is defined as the labelled Kripke
structure KCSP = (CSP, {main},→CSP , L

CSP) with CSP denoting the set of
all CSP terms, main being the only initial CSP term, →CSP being the transition
relation defined according to the operational semantics of CSP [17] and with the
labelling function

LCSP (P) =

⎧
⎪⎨

⎪⎩

{at P}, P ∈ PId
⋃

i L
CSP (Qi), P = ‖iQi

∅, otherwise

For example, a state P‖Q would be associated with the labelling set {at P, at Q},
while P‖(a→ Q) would be associated with {at P}.

We are now able to define the operational semantics of a CSP-OZ class by
means of parallel composition of the Kripke structures of both parts. Note that
we combine both labelling functions by unifying the labels:

Definition 4. (Kripke structure semantics of a CSP-OZ class)
The Kripke structure semantics of a CSP-OZ class C is the parallel composition
of the semantics of the Object-Z part and the CSP part: K = (StateC , InitC ,→
, LC) with StateC = State×CSP , InitC = Init×{main}, LC(z, P) = LOZ(z)∪
LCSP (P) and

→= {((z, P), ev, (z′, P ′)) | (ev 	= τ, P
ev→CSP P ′, z

ev→OZ z′) ∨
(ev = τ, P

τ→CSP P ′, z = z′)}

466 B. Metzler

2.2 Syntax and Semantics of Requirements: LTL-X

To model requirements for CSP-OZ classes, we use the next less part of the
temporal logic LTL [14], called LTL-X. The operator X (nexttime) has to be
eliminated since it precisely identifies the position of a state in which a certain
property holds. In our approach, we deal with a technique not capable of identi-
fying concrete states since the reduced and the full specification in general differ
in the number of steps they perform.

Any LTL-X formula is defined over a set of atomic propositions AP . In our
case, we will define AP to be the set of all atomic propositions of the CSP-OZ
class, i.e. APO combined with the labelling of the CSP-part:

AP = APO ∪ {at P1, . . . , at Pk} iff PId = {P1, . . . , Pk}.

Definition 5. (Syntax of LTL-X)
The set of LTL-X formulae over AP is defined as the smallest set of formulae
satisfying the following conditions:

– p ∈ AP is a formula,
– if ϕ1 and ϕ2 are formulae, so are ¬ϕ1 and ϕ1 ∨ ϕ2,
– if ϕ is a formula, so are �ϕ (always) and ♦ϕ (eventually),
– if ϕ1 and ϕ2 are formulae, so is ϕ1 U ϕ2 (until).

The other boolean connectives ∧, ⇒ and ⇐⇒ can be derived from ¬ and ∨.
LTL-X formulae are interpreted over paths of labelled Kripke structures. Since

we will deal with fairness conditions, we also introduce fair paths:

Definition 6. ([fair] path)
Let K = (StateC , InitC ,→, LC) be the Kripke structure of a CSP-OZ class
specification C. An infinite sequence π = s0 ev0 s1 ev1 . . . of states and events
of this class is called a path of C iff s0 ∈ InitC and (si, evi, si+1) ∈→. π is
fair wrt. Events′ ⊆ Events iff inf(π) ∩ Events′ 	= ∅ with

inf(π) = {ev ∈ Events|∃ infinitely many i ∈ N : evi = ev}.

π[i] will be the notation for the state si and π.i for event evi. πi describes the
suffix si evi si+1 evi+1 . . . of π. If we need to speak about the components of a
specific state, we will write si as (zi, Pi). The semantics of LTL-X is inductively
defined as follows:

Definition 7. (Semantics of LTL-X)
Let π be a path of a labelled Kripke structure K over AP and ϕ a LTL formula.
π � ϕ is inductively defined:

– π � p iff p ∈ LC(π[0]) with p ∈ AP ,
– π � ¬ϕ iff π � ϕ,
– π � ϕ1 ∨ ϕ2 iff π � ϕ1 or π � ϕ2,

Decomposing Integrated Specifications for Verification 467

– π � �ϕ iff ∀i • πi � ϕ,
– π � ♦ϕ iff ∃i • πi � ϕ,
– π � ϕ1 U ϕ2 iff ∃k • πi � ϕ2 and ∀j < i • πj � ϕ1.

A Kripke structure K satisfies ϕ (K � ϕ) iff π � ϕ holds for all paths π of K.
K fairly satisfies ϕ wrt. a set of events E (K �E ϕ) iff π � ϕ holds for all E-fair
paths π of K. Sometimes we will speak about fairness wrt. to a set of methods
M ′ ⊆M where M ′ is an abbreviation for the set Events′.

In our approach for decomposing a CSP-OZ class, we need to ensure that
properties are preserved. This necessitates the notion of simulation:

Definition 8. (Simulation)
Let K = (StateC , InitC ,→, LC) and K ′ = (StateC′ , InitC′,→′, LC′) be the
Kripke structures of two CSP-OZ class specifications C and C′ such that M ′ ⊆
M and V ′ ⊆ V . K ′ simulates K (K " K ′) if there is a relation H ⊆ State×
State′ such that the following conditions are satisfied:

1.) For all s ∈ InitC there exists s′ ∈ InitC′ such that (s, s′) ∈ H.
2.) For all (s1, s2) ∈ H with (s1, s2) = ((z1, P1), (z2, P2))

a) LOZ(z1) ∩AP ′
O = L′OZ(z2) and LCSP (P1) = L′CSP (P2)

b) ∀(s1, ev, s′1) ∈→:
– if ev ∈ Events′ then ∃s′2 ∈ StateC′ such that

(s2, ev, s′2) ∈→′ and (s′1, s
′
2) ∈ H or

– if ev /∈ Events′ then (s′1, s2) ∈ H.

If we talk about simulation in terms of CSP-OZ specifications, we will sometimes
denote a simulation by using the class identifiers instead of the Kripke structures.

The notion of stuttering equivalence [4] bridges the gap between LTL-X and
simulation. If a Kripke structure is simulated by a second one, their fair paths
are stuttering equivalent. Stuttering equivalent paths satisfy the same LTL-X
formulae. The following two statements describe this:

Lemma 1. Let C and C′ be CSP-OZ class specifications labelled over M and
M ′ with M ′ ⊆M and V ′ ⊆ V . Let C " C′. For every M ′-fair path π of C there
exists a path π′ of C′ such that π and π′ are stuttering equivalent wrt. AP ′.

Lemma 2. Let C and C′ be CSP-OZ class specifications labelled over M and M ′

with M ′ ⊆ M and V ′ ⊆ V . Let C " C′. If an M ′-fair path π of C is stuttering
equivalent to a path π′ of C′, they satisfy the same LTL-X formulae, i.e.

∀ϕ : LTL-X • π � ϕ ⇐⇒ π′ � ϕ

The proofs can be found in [21] and [4].

3 Decomposition

In this section, we describe and illustrate our decomposition technique. In the
first place, we divide the set of state variables of a class. This leads to a decom-
position on the level of predicates.

468 B. Metzler

Even though this paper deals with the decomposition of a specification, a
verification of a system starts with decomposing the system requirements. The
focus in this paper lies on the former and not the latter aspect. However, we
will give an example of how to intuitively decompose a requirement. A precise
analysis will be part of our future work.

Consider an amount of n verification properties ϕ1, . . . , ϕn written in LTL-
X. In general, we partition the set of state variables V of the class into n + 1
subsets based on their occurrence in the requirements: Vv is defined to be the set
of variables occurring in every requirement – it is therefore the set of commonly
used state variables in any part of the specification. We will refer to them as
the verification variables. Additionally, Vi denotes the set of the remaining state
variables Vi occurring in the requirement ϕi. The variable sets Vv ∪ Vi then
serve as the basis for the computation of the smaller specifications Ci. Figure 5
illustrates this approach.

C
Vv∪V1

����
��

��
� Vv∪Vn

����
��

��
�

C1 . . . Cn

Fig. 5. Decomposition: General approach

To define Ci, we use a certain reduction technique, a variant of program
slicing, called weak slicing [21]. We start with the quoted subset of state variables
and first operate on the Object-Z part of the class. For every method, slicing
leads to an elimination of predicates not related to the base variable set. More
precisely, preconditions are relaxed but never strengthened. Postconditions can
be eliminated in case they do not modify the respective variables, otherwise they
are kept. More variables may be added to our base set due to indirect influence
and to ensure correctness of the technique – we have to construct the closure of
our base set.

Our slicing technique over approximates the system description meaning that
the slices may have less behaviour than the original specification but not more,
i.e. the following condition is satisfied: If a property holds in the slice, it also
holds in the full specification (under certain fairness constraints).

As a consequence, we are able to do small proof steps by verifying properties
for specifications Ci. The property preservation condition yields that C satisfies
the conjunction of all properties. In addition, the verification effort is reduced.

3.1 Decomposing a CSP-OZ Specification: Weak Slicing

We will now explain the details of our decomposition approach for CSP-OZ
specifications including the following steps: first, we partition the set of state
variables of the class’ Object-Z part wrt. to a set of requirements. For any of the
variable sets we then define the (weak) slice of the specification: we recursively

Decomposing Integrated Specifications for Verification 469

define the closure of the variable sets (i.e. the base sets additionally including in-
directly dependent variables) and afterwards slice every method of the Object-Z
part wrt. the closure set. Subsequently, we eliminate methods without remaining
behaviour from any part of the class (using a projection function for the CSP
part).

The intuitive idea behind Vv is that these variables describe the link between
the slices of the specification. In some cases, this set can be empty. By V ar(ϕ)
we denote the set of state variables occurring in a requirement ϕ specified in
LTL-X.

Definition 9. (state variable partitioning of a CSP-OZ class)
Let C be a CSP-OZ class specification over the set of state variables V and
ϕ1, . . . , ϕn be LTL-X requirements for (part of) C. A state variable separa-
tion of C wrt. to ϕ1, . . . , ϕn is a partitioning of V into disjoint subsets

V = Vv �
⊎

i=1,...,n

Vi � Vr

where Vv =
⋂n

i=1 V ar(ϕi), Vi = V ar(ϕi) \ Vv and Vr containing the variables
not part of any requirement.

To include variables dependent on the base sets Vv ∪ Vi, we recursively define
the closure of a variable set. The closure may also add variables in Vr which are
not part of any base set. In the following, let post m be the postcondition of a
method m and mod(m) denote the set of modified variables within m:

Definition 10. (variable closure)
Let C be a CSP-OZ class specification and V be the set of its state variables.
For a set W ⊆ V we recursively define closure(W) ⊆ V as follows:

V0 = W

Vi+1 = Vi ∪
⋃

m∈M

close(m,Vi)

with close(m,X) = {V ar(p) | p ∈ post m ∧mod(p) ∩X 	= ∅}.

The definition basically says that we extend W with variables occurring in a not
further decomposable expression p within a methods postcondition and influenc-
ing an arbitrary variable under interest. Note, that we do not add any variables
to the base set according to guards: since we over approximate the specification,
guards can be weakened. Therefore, we eliminate guards in case they do not
solely refer to the variables under interest.

Next, we define the slice of an Object-Z method. According to the definition
of the variable closure, we eliminate predicates not related to these variables. To
achieve this, we refer to the syntax of Object-Z [19] for describing a method m of
the Object-Z part. We refrain from giving a precise definition for every possible
predicate of the Object-Z part but rather illustrate the general concept based
on boolean connectives:

470 B. Metzler

Definition 11. (method slice)
Let C be a CSP-OZ class specification, V be its set of state variables and W ⊆ V .
For a method m ∈ M with

m = [DeltaList Declaration | pre m post m]

and V ′ = closure(W) we define the method slice sl(m) of m as follows:

sl(m) = [DeltaList Declaration′ | n pre(pre m,V ′) n post(post m,V ′)]

with

n pre(p, V ′) =

{
p V ar(p) ⊆ V ′

true otherwise

n pre(pred1 ∨ pred2, V
′) =

{
pred1 ∨ pred2 V ar(pred1 ∨ pred2) ⊆ V ′

true otherwise
n pre(pred1 ∧ pred2, V

′) = n pre(pred1, V
′) ∧ n pre(pred2, V

′)

n post(p, V ′) =

{
p mod(p) ∩ V ′ 	= ∅
true otherwise

n post(pred1 ∨ pred2, V
′) = n post(pred1, V

′) ∨ n post(pred2, V
′)

n post(pred1 ∧ pred2, V
′) = n post(pred1, V

′) ∧ n post(pred2, V
′)

where pred1, pred2 describe predicates of the Object-Z state space and p an atomic
expression.

Let us take a closer look at this definition: the precondition of the sliced method
is inductively defined as the precondition of the original method restricted to
closure(W). Since guards of a method must not be strengthened, we have to
be careful in one specific case: we are not allowed to replace a disjunction of a
guard with one of its components. In this case, we have to eliminate the whole
precondition (as defined in the second case of n pre). The postcondition will be
retained in case we modify any variable under interest.

To illustrate the definition, consider a method m = [Δ(y) | x = true ∨ y′ =
true] with two boolean variables x and y and let V ′ = {y}. Since there is
no precondition for this method, we only use the second part of our definition
leading to sl(m) = [Δ(y) | true ∨ y′ = true], i.e. sl(m) = [Δ(y)]. In case we
replace ∨ by ∧, the precondition of the method now evaluates to x = true .
Since x is not a variable under interest, it is completely eliminated and solely
the postcondition y′ = true remains leading to sl(m) = [Δ(y) | y′ = true].

In the definition of the method slice, we used Declaration′ but did not refer
to input and output parameters yet. It is possible, that predicates dealing with
parameters are no longer present in its slice. In case a parameter is no longer
used in the lower part of a method, we completely remove it from the whole
method. This leads to a modification of the class interface and the CSP part.
For simplification, we will denote events of the specification and its slice equally
by keeping in mind that the slices methods may lack of some of its parameters.

Decomposing Integrated Specifications for Verification 471

It may sometimes be possible that every pre- and postcondition of a method
will be eliminated. For example, consider the method brake in our running ex-
ample: slicing wrt. to a set of variables not containing speed and err pos leads
to an empty method in both components. In this case, the method should be
eliminated from the CSP part as well. This motivates the introduction of the
projection [2] of the CSP part wrt. a set of (remaining) methods:

Definition 12. (CSP projection)
Let P be the right side of a process definition from the CSP part and M ′ ⊆ M .
The projection �P�M ′ of P wrt. to M ′ is defined inductively as follows:

a) �skip�M ′ = skip and �stop�M ′ = stop,
b) for any process identifier P ∈ PId �P�M ′ = P ,

c) �ev → P�M ′ =

{
�P�M ′ ev /∈ Events′

ev → �P�M ′ ev ∈ Events′
,

d) �P ◦Q�M ′ = �P�M ′ ◦ �Q�M ′ for any operator ◦ ∈ {; ,�,�,!}.
After defining the reduction of the Object-Z part (Definition 11) and CSP part
(Definition 12), we are now able to define the weak slice of a specification wrt.
to a set of state variables:

Definition 13. (weak slice)
Let C be a CSP-OZ class specification and let W ⊆ V . Let V ′ = closure(W)
based on Definition 10. The weak slice Cs of C is defined as the specification
consisting of

– methods M ′ = {sl(m)|m ∈ M ∧ sl(m) 	= [Δ()]},
– inside the state schema only variables from V ′,
– InitC restricted to V ′,
– the projections of the CSP process definitions in C based on M ′.

To show simulation of the full specification by its slice, we need to deal with
the operational semantics of CSP-OZ as defined in the last section. The next
lemma describes that any execution of a method in a class C is also possible in
its weak slice:

Lemma 3. Let C be a CSP-OZ class specification, Cs be its weak slice wrt. to
the variable set W ⊆ V and V ′ = closure(W). The transition relation of the
Kripke structure Ks = (States

C , Init
s
C ,→s, Ls

C) of Cs with

– States
C = πV ′ [State] × �[CSP]�M ′ ,

– InitsC = πV ′ [Init] × �main�M ′ ,
– Ls

C(z, P) = LOZ(z) ∪ LCSP (P)

is related to the transition relation of the full specification in the following way:

∀(z, P) ∈ StateC , ev ∈ Events′•
(z, P) ev−→ (z′, P ′) =⇒ (πV ′(z), �P�M ′) ev−→

s
(πV ′(z), �P ′�M ′)

472 B. Metzler

In case of ev = m.i.o /∈ Events′, the given event has been eliminated from the
specification and we obviously cannot show the property of Lemma 3. Otherwise,
equivalent before states are able to execute the same events leading to equivalent
after states. Due to lack of space, the proof will not be given here. Figure 6
illustrates the lemma.

z
ev ��

πV ′

���
�
� z′

πV ′

���
�
� P1

�.�M′

���
�
�

ev �� P ′
1

�.�M′

���
�
�

πV ′(z) ev
�� πV ′(z′) �P1�M ′

ev
�� �P ′

1�M ′

Fig. 6. Illustration of Lemma 3

3.2 Decomposition of the Example

We want to illustrate our approach on the example from section 2. The full
specification can be considered as two-piece: in the coordination mode, a re-
peated measuring and computing is performed. In case of a distance error, a
break manoeuvre is initiated by the control system. In the following, we use the
abbreviations S and C for Shuttle and Control.

Our main goal is to secure safetyness for the whole specification. A safety
property can intuitively be described as

Whenever the distance between two shuttles is too small, all shuttles will
eventually stop.2

In LTL-X, this can be specified as ϕ := �(
∧N

i=1(small dist(i) → ♦all stop))
where

small dist(i) := |S[i].mypos− S[i].nbpos.2| < MIND,

all stop :=
∧N

j=1 S[j].speed ≤ 0.

To verify the given requirement, we split it into two parts which can individually
be verified for the slices of the specification which we will determine in the
following:

Whenever the distance between two shuttles is too small, the control system is
notified by the shuttles. In consequence, all shuttles will eventually stop.

The notification about a possible error (communication of the fail vector) is the
link between both parts of the specification. This can be used for our main goal
ϕ: the formula is split into two implications with an inner part addressing the
communication. LTL-X formulae for these properties are:

ψ1 := �(
∧N

i=1(small dist(i)) → (C.at Q→ fail set(i)))
ψ2 := �(

∧N
i=1(C.at Q→ fail set(i)) → ♦all stop)

fail set(i) := C.fail (i).2 ∧ C.fail (i+ 1).1

2 For simplicity, we do not verify an assumption additionally stating that the shuttles
do not collide.

Decomposing Integrated Specifications for Verification 473

We define the partitioning of the state variables according to Definition 9 into
three sets Vv, Vd and Vr. The only state variable used in ψ1 and ψ2 is the variable
C.fail. As a first step, we get

Vv = {C.fail}, Vd = {S[i].mypos, S[i].nbpos}, Vr = {S[i].speed}

The closures of the base sets are defined next. Because of the dependency to
C.fail due to communication via method sendfail , closure(Vv ∪ Vd) additionally
contains S[i].fail . A similar argument leads to adding C.pos to closure(Vv ∪ Vd)
and C.err pos to closure(Vv ∪ Vr).

Shuttled [i]

method evaluate, sendfail [i : {self}; f ? : B × B]

method measure[i : {self}; y : N × N × N]

main = measure.i?y → evaluate → sendfail .i?y → (E � main), E = E

mypos : N

nbpos : N × N

fail : B × B

Init

mypos = i ∗ MAXD

nbpos = . . .

fail = (false, false)

com measure

Δ(mypos,nbpos)

pos? : N × N × N

mypos ′,nbpos ′ ∈ [...]

evaluate
∧

= Shuttle[i].evaluate

sendfail
∧

= Shuttle[i].sendfail

Controld

method sendfail [i? : ShuttleRef ; y? : B × B]

method measure[i? : ShuttleRef ; y : N × N × N]

main = ‖|imeasure.i?y → ‖|isendfail .i?y → Q

Q = (B � main), B = B

pos : seq1 N

fail : seq1 B × B

#pos = #Sh

com measure

i ! : ShuttleRef , p! : N × N × N

p! = (pos.(i ! − 1), pos.i !, pos.(i ! + 1))

Init

∀ i • fail(i) = (false, false) sendfail
∧

= Control .sendfail

Fig. 7. Specification: Data slice

474 B. Metzler

closure(Vv ∪ Vd) = {C.fail , S[i].fail , S[i].mypos, S[i].nbpos, C.pos}
closure(Vv ∪ Vr) = {C.fail , S[i].fail , S[i].speed, C.err pos}

The partitioning is reasonable since it separates the variables dealing with
positions and evaluation of the variable fail from the rest.

We will now decompose our shuttle specification into two parts: the part
Systemd basically evaluating if any two shuttles have at least the minimal dis-
tance and the part Systemr describing the error mode. The decomposition is
according to Definition 13 and based on the variable sets Vv ∪ Vd and Vv ∪ Vr .
The specifications are depicted in Figure 8 and Figure 7, respectively. Note, that
Controld and Shuttle[i]d have divergent [17] processes E and B: after elimina-
tion of method brake from brake→ B, the process equation B = brake→ B is
projected on B = B. This does, however, not pose a problem for us.

The whole decomposition can also be seen as an outsourcing of the data-heavy
behaviour from the rest of the specification as mentioned in the introduction:
Systemr can be replaced by any scenario mainly dealing with the result of the
distance evaluation without considering its details. An automatic verification
of properties is thus better practicable since it needs to consider fewer data
variables.

4 Verification

After introducing our technique of decomposing a specification, we will now
explain how to use it to verify requirements written in LTL-X. We show, that the
slice simulates the specification in terms of Kripke structures. Since simulation
preserves temporal logic formulae as stated in Section 2, we are able to prove
that properties of the slice also hold for the specification.

In case we talk about temporal logic properties, we sometimes have to require
fairness wrt. the operation set of the slice since Lemma 1 only holds under
fairness assumptions. We use the notations of Definition 6 and Definition 7. The
following theorem states the core result of this paper and is based on Lemma 3:

Theorem 1. Let C be a CSP-OZ class specification and Cs be its weak slice
wrt. some V ′ ⊆ V and M ′ ⊆M . Then C " Cs.

Proof: Let K = (StateC , InitC ,→, LC) and Ks = (States
C , Init

s
C ,→s, Ls

C) be
the Kripke structures of C and Cs. We define

H := {((z, P), (πV ′(z), �P�M ′)|z ∈ State, P ∈ CSP}
and show the simulation conditions of Definition 8.

1.) Let (z, main) ∈ InitC . Then (πV ′(z), �main�M ′) ∈ InitsC and
((z, main), (πV ′(z), �main�M ′)) ∈ H holds by definition.

2.) Let ((z1, P1), (z2, P2)) ∈ H . By definition of H we get P2 = �P1�M ′ and
z2 = πV ′(z1).
a) Since we project a state on the variable set V ′ according to the restricted

set of atomic propositions, z2 and the projection of z1 are equally labelled.

Decomposing Integrated Specifications for Verification 475

Shuttler [i]

method brake[i : {self}; n? : N],measure[i : {self}; y : N]

method evaluate, sendfail [i : {self}; f ? : B × B]

main = measure.i?y → sendfail .i?y → (E � main), E = brake.i?y → E

speed : N, fail : B × B

speed ≤ MAXS

Init

speed = 300

fail = (false, false)

com measure

Δ(speed), s? : N

speed ′ = s?

com sendfail

f ! : B × B

f ! = fail

brake
∧

= Shuttle[i].brake

com evaluate

Δ(fail)

Control r

method brake[i? : ShuttleRef ; n? : N], sendfail [i? : ShuttleRef ; y? : B × B]

method checkerror ,measure[i? : ShuttleRef ; y : N]

main = ‖|imeasure.i?y → ‖|isendfail .i?y → Q

Q = checkerror → (B � main), B = ‖|
i
brake.i?y → B

fail : seq1 B × B

err pos : Z

com measure

i ! : ShuttleRef , s! : N

err pos = −1

com sendfail

Δ(fail)

i? : ShuttleRef , f ? : B × B

fail ′.i? = f ?

Init
∧

= Control .Init

checkerror
∧

= Control .checkerror

brake
∧

= Control .brake

Fig. 8. Specification: Reduction slice

Moreover, the labelling of the CSP part is accordingly since we do not
eliminate any process identifiers.

b) If ((z1, P1), ev, (z′1, P
′
1)) ∈→, we have to distinguish two cases:

– ev ∈ Events′: let (z′2, P
′
2) := (πV ′(z′1), �P ′

1�M ′). ((z′1, P
′
1), (z

′
2, P

′
2)) ∈

H holds. ((πV ′(z1), �P1�M ′), ev, (πV ′(z′1), �P ′
1�M ′)) ∈→′ holds due to

Lemma 3 (cp. Figure 6).

476 B. Metzler

– ev /∈ Events′: we have to show that ((z′1, P
′
1), (z2, P2)) ∈ H holds,

i.e. πV ′(z′1) = πV ′(z1) and �P ′
1�M ′ = �P1�M ′ . Since ev /∈ Events′,

sl(m) = [Δ()] holds. According to Definition 11, no variable of V ′ is
modified within ev. We get z1.v = z′1.v for all v ∈ V ′, i.e. πV ′(z′1) =
πV ′(z1). For the CSP part, the only interesting case is P1 = ev → P ′

1.
But then we get �P ′

1�M ′ = �P1�M ′ due to ev /∈M ′. �

Next, we show that the conjunction of the verified requirements for a set of n
slices is satisfied for the source specification:

Theorem 2. Let C be a CSP-OZ class specification and Ci with i = {1, . . . , n}
be weak slices of C wrt. to Vi ⊆ V and Mi ⊆M . Let M∗ :=

⋂n
i=1 Mi. Then the

following holds for all LTL-X properties ϕi
3:

(
n∧

i=1

Ci �Mi ϕi) → (C �M∗

n∧

i=1

ϕi)

Proof: Let Cj �Mj ϕj with 1 ≤ j ≤ n. Assume there is a fair (wrt. to M∗)
path π ∈ paths(C) such that π � ϕj . Since C " Cj based on Theorem 1, we can
apply Lemma 1: in particular, π is fair wrt. Mj , so we can construct a stuttering
equivalent path π′ of π for Cj . π′ satisfies ϕj by assumption and π, π′ satisfy
the same LTL-X formulae (Lemma 2), i.e. π � ϕj holds. That is a contradiction
to our assumption. �

The next theorem shows that the fairness restriction is not necessary for every
class of requirements. For invariance properties (properties which have to hold
in every step of a computation), we can drop the fairness condition.

Theorem 3. Let C be a CSP-OZ class specification and C′ be its weak slice wrt.
to V ′ ⊆ V and M ′ ⊆M . Then the following holds for all properties p ∈ AP ′:

C′ �M ′ �p→ C � �p

The proof basically uses the idea that from a certain point on, an unfair path
wrt. V ′ does only execute methods outside of M ′. If this path would not satisfy
�p, it would either violate it before or after this point, where both cases lead to
a contradiction. We omit the complete proof due to lack of space.

4.1 Verification of the Example

We will now explain how to use our technique to verify the property ϕ (s. Section
3) for the shuttle specification. Figure 9 illustrates the application of our results.

In a first step, a verification of ψ1 for Systemd and ψ2 for Systemr (both
formulae according to Section 3) is necessary. In general, we have to decide if the
verification can be achieved automatically by a model checker or manually by for
example using deductive proof techniques. The detailed verification is not part
3 Obviously, ϕi may only use variables of Vi.

Decomposing Integrated Specifications for Verification 477

System |= ϕ
Vv∪Vd

����������� Vv∪Vr

		���������

Systemd |= ψ1 Systemr |= ψ2

Fig. 9. Verification of Shuttle specification

of this work. However, our separation of the data-heavy part from the rest of the
specification motivates a manual verification of ψ1 and an automatic verification
of ψ2. In general, this is one achievement of our approach - if a data-heavy part
can be separated from a larger specification, manual verification needs only be
performed for this specific part.

To apply our approach, we assume that Systemd �Md
ψ1 and Systemr �Mr

ψ2 have been shown where Mr = M \ {evaluate} and Md = M \ {checkerror,
brake}. Since ψ1 is an invariance property, we apply Theorem 2 and Theorem 3
yielding that System �Mr (ψ1∧ψ2). ϕ = (ψ1∧ψ2) holds because of �(ψ1∧ψ2) =
�ψ1 ∧ �ψ2. Since there are no unfair traces wrt. Mr in the whole specification
(the only event of M \Mr, evaluate, can not continuously be executed), we get
System � ϕ without any fairness requirement.

5 Conclusion

This paper has presented an approach to decompose and verify specifications
written in the integrated formal method CSP-OZ. The main focus was to divide
the state space of a specification and therefore simplify verification. We achieved
our goal by using the technique of weak slicing and showed how the slices enable
us to verify requirements for the specification with less effort. Moreover, we
applied our results to an example in the rail domain.

Related Work. Slicing was first introduced by Weiser [22]. In model checking
and specifically in the context of reducing the state space of a program, it was
amongst others applied in [11]. In object orientation, slicing has been applied to
Java programs with the goal to automatically remove irrelevant code.

Verification for IFMs undergoes intensive research. For CSP‖B, a coupling of
the B method with CSP, Treharne and Schneider explored compositional proof
techniques [18] by using the model checker FDR [16] for verification of CSP
processes. Mota and Sampaio analysed deadlock freedom [15] for specifications
written in CSP-Z again by using FDR for model checking purposes. Similar
approaches can be found for Circus [24], a combination of CSP and Z with a
refinement calculus.

The use of slicing for verification of Object-Z specifications has first been
examined in [3]. The approach uses slicing in a non-decompositional manner
by construction of one slice and has later been extended to CSP-OZ [2]. The
resulting specification has to ensure that a property is satisfied if and only if
it is satisfied in the full specification. This leads to slices much closer to the

478 B. Metzler

specification while wrong counterexamples (so-called false negatives) are not
possible. Weak slicing for a simple formalism aligned with CSP-OZ has been
introduced in [21] serving as the foundation of our approach.

We adopt some of the approaches, but instead of computing one specification
slice, we split the specification into several slices. In contrast to the former ap-
proach, slicing is applied in the context of decomposing the specification and the
requirement. Verification techniques such as assume guarantee reasoning [8] or
formal verification techniques for temporal logic [14] have already been explored
and will be part of further research.

Future Work. In a recent field of research for a complete decomposition and
verification technique for CSP-OZ, this paper is intended to provide the ba-
sic concept. There are many follow-up steps to be taken, with some of them
described next.

Our technique is based on a decomposition of the systems requirements. The
state variable sets of different slices should preferably be independent from each
other. Keeping that in mind, an elaboration of a reasonable method for sepa-
rating verification properties requires a more precise and less intuitive analysis
of the dependency structure of the Object-Z state space. In [2], the program
dependence graph for CSP-OZ specifications is used to determine the data and
control dependencies between methods of a class. We aim at a similar analysis
for our weak slicing technique.

Verification of CSP-OZ specifications is the main objective of the whole ap-
proach. For the case, that automatic techniques are adequate, model checkers
such as FDR [10] or SAL [20] can be used. If verification necessitates manual
proof strategies, decompositional techniques as assume-guarantee based reason-
ing [8], deductive approaches such as in [14] or invariant based techniques as
explained in [1] are applicative.

Some further steps include checking the feasibility of counterexamples as pre-
sented in [21], an analysis of our approach on behalf of object oriented concepts
of CSP-OZ, and furthermore we aim to expand it to real time extensions of
CSP-OZ.

References

1. Brückner, I., Metzler, B., Wehrheim, H.: Optimizing slicing of formal specifications
by deductive verification. Nordic Journal of Computing 13(1–2), 22–45 (2006)

2. Brückner, I., Wehrheim, H.: Slicing an Integrated Formal Method for Verification.
In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 360–374.
Springer, Heidelberg (2005)

3. Brückner, I., Wehrheim, H.: Slicing Object-Z Specifications for Verification. In: Tre-
harne, H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455,
pp. 414–433. Springer, Heidelberg (2005)

4. Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge (1999)
5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-

straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

Decomposing Integrated Specifications for Verification 479

6. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)

7. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. STTT 2(3), 279–287 (1999)

8. de Roever, W.P., Hanneman, U., Hooiman, J., Lakhneche, Y., Poel, M., Zwiers,
J., de Boer, F.: Concurrency Verification. Cambridge University Press, Cambridge,
UK (2001)

9. Fischer, C.: CSP-OZ: A Combination of Object-Z and CSP. In: Formal Methods
for Open Object-Based Distributed Systems (FMOODS’97), vol. 2, pp. 423–438.
Chapman & Hall, Sydney (1997)

10. Fischer, C., Wehrheim, H.: Model-checking CSP-OZ specifications with FDR. In:
IFM, pp. 315–334 (1999)

11. Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing Software for Model Construction.
Higher-Order and Symbolic Computation 13(4), 315–353 (2000)

12. Hoare, C.A.R.: Communicating Sequential Processes. CACM 21, 666–677 (1978)
13. Kupferman, O., Vardi, M.Y.: Modular model checking. In: de Roever, W.-P.,

Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 381–401.
Springer, Heidelberg (1998)

14. Manna, Z., Pnueli, A.: Temporal verification of reactive systems: safety. Springer,
Berlin Heidelberg (1995)

15. Mota, A., Sampaio, A.: Model-checking CSP-Z. In: Astesiano, E. (ed.) ETAPS
1998 and FASE 1998. LNCS, vol. 1382, pp. 205–220. Springer, Heidelberg (1998)

16. Roscoe, A.W.: Model-checking csp. pp. 353–378 (1994)
17. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood

Cliffs (1998)
18. Schneider, S., Treharne, H.: Verifying controlled components. IFM, pp. 87–107

(2004)
19. Smith, G. (ed.): The Object-Z Specification Language. Kluwer Academic Publish-

ers, Dordrecht (2000)
20. Smith, G., Wildman, L.: Model checking Z specifications using SAL. In: Treharne,

H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp.
85–103. Springer, Heidelberg (2005)

21. Wehrheim, H.: Incremental slicing. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 514–528. Springer, Heidelberg (2006)

22. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on
Software Engineering, pp. 439–449. IEEE Computer Society Press, Los Alamitos
(1981)

23. Woodcock, J., Davies, J.: Using Z – Specification, Refinement, and Proof. Prentice-
Hall, Englewood Cliffs (1996)

24. Woodcock, J.C.P., Cavalcanti, A.L.C.: The Semantics of Circus. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS,
vol. 2272, pp. 184–203. Springer, Heidelberg (2002)

Validating Z Specifications Using the

ProB Animator and Model Checker

Daniel Plagge and Michael Leuschel

Softwaretechnik und Programmiersprachen
Institut für Informatik, Universität Düsseldorf

Universitätsstr. 1, D-40225 Düsseldorf
{plagge,leuschel}@cs.uni-duesseldorf.de

Abstract. We present the architecture and implementation of the proz

tool to validate high-level Z specifications. The tool was integrated into
prob, by providing a translation of Z into B and by extending the kernel
of prob to accommodate some new syntax and data types. We describe
the challenge of going from the tool friendly formalism B to the more
specification-oriented formalism Z, and show how many Z specifications
can be systematically translated into B. We describe the extensions, such
as record types and free types, that had to be added to the kernel to
support a large subset of Z. As a side-effect, we provide a way to animate
and model check records in prob. By incorporating proz into prob, we
have inherited many of the recent extensions developed for B, such as the
integration with CSP or the animation of recursive functions. Finally, we
present a successful industrial application, which makes use of this fact,
and where proz was able to discover several errors in Z specifications
containing higher-order recursive functions.

1 Introduction

Both B [1] and Z [2,26] are formal mathematical specification notations, using
the same underlying set theory and predicate calculus. Both formalisms are used
in industry in a range of critical domains.

The Z notation places the emphasis on human-readability of specifications. Z
specifications are often documents where ambiguities in the description of the
system are avoided by supporting the prose with formal statements in Z. LATEX
packages such as fuzz [25] exists to support type setting and checking those
documents. The formal part of a specification mainly consists of schemas which
describe different aspects of a system using set theory and predicate logic. The
schema calculus—a distinct feature of Z—enables system engineers to specify
complex systems by combining those schemas.

B was derived from Z by Jean-Raymond Abrial (also the progenitor of Z)
with the aim of enabling tool support. In the process, some aspects of Z were
removed and replaced, while new features were added (notably the ASCII Ab-
stract Machine Notation). We will discuss some of the differences later in depth.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 480–500, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Validating Z Specifications Using the ProB Animator and Model Checker 481

In a nutshell, B is more aimed at refinement and code generation, while Z is a
more high-level formalism aimed for specification. This is, arguably, why B has
industrial strength tools, such as Atelier-B [27] and the B-toolkit [5]. Recently
the prob model checker [19] and refinement checker [20] have been added to B’s
list of tools. Similar tools are lacking for Z, even though there are recent efforts
to provide better tool support for Z [24].

In this paper we describe the challenge of developing a Z version of prob,
capable of animating and model checking realistic Z specifications. We believe an
animator and model checker is a very important ingredient for formal methods;
especially if we do not formally derive code from the specification (as is common
in Z [13,12]). This fact is also increasingly being realised by industrial users of
formal methods.

At the heart of our approach lies a translation of Z specifications into B, with
the aim of providing an integrated tool that is capable to validate both Z and
B specifications, as well as inheriting from recent refinements developed for B
(such as the integration with CSP [8]). One motivation for our work comes from
an industrial example, which we also describe in the paper.

2 Specifications in Z

First we give a brief introduction to the Z notation. We want to describe the
structure of Z specifications, especially how this differs from specifications in B
as supported by prob. The interested reader can find a tutorial introduction to
Z inside the Z reference manual [26]. A more comprehensive introduction with
many examples is [16].

2.1 A Brief Description of Z

Usually, a specification in Z consists of informal prose together with formal
statements. In a real-life applications, the prose part is at least as important as
the formal part, as a specification has to be read by humans as well as computers.

Usually, one describes state machines in Z, i.e., one defines possible states as
well as operations that can change the state. The Z syntax can be split into two:
a notation for discrete mathematics (set theory and predicate calculus) and a
notation for describing and combining schemas, called the schema calculus.

For illustration, we use the simple database of birthdays (Fig. 1) from [26]. The
first line in the example is a declaration [NAME ,DATE] which simply introduces
NAME and DATE as new basic types, without providing more information
about their attributes (like generics in some programming languages). We can
also see three boxes, each with a name on the upper border and a horizontal
line dividing it into two parts. These boxes define the so-called schemas. Above
the dividing line is the declaration part, where variables and their types are
introduced, and below a list of predicates can be stated.

Without additional description, the purpose of each schema in the example is
not directly apparent. We use the first schema BirthdayBook to define the state

482 D. Plagge and M. Leuschel

[NAME ,DATE]
BirthdayBook
known : �NAME
birthday : NAME � DATE

known = dom birthday

Init
BirthdayBook

known = �

AddBirthday
ΔBirthdayBook
name? : NAME
date? : DATE

name? /∈ known
birthday ′ = birthday ∪

{name?
→ date?}

Fig. 1. The birthday book example

space of our system. Init defines a valid initial state and the schema AddBirthday
is the description of an operation that inserts a new name and birthday into the
database.

We describe the schemas in more detail. In BirthdayBook we have two vari-
ables: known is a set of names and birthday is a partial function that maps names
to a date. The predicate states that known is the domain of the partial function,
i.e., the set of names that have an entry in the function. A possible state of our
system consists of values for these two variables which satisfy the predicate.

The declaration part of the Init schema contains a reference to the schema
BirthdayBook . This imports all BirthdayBook ’s variable declarations and pred-
icates into Init . The predicate says that known is empty. Together with the
predicate of BirthdayBook this implicitly states that the domain of birthday is
empty, resulting in an empty function.

The schema defining the operation AddBirthday contains two variables with
an appended question mark. By convention, variables with a trailing ? (resp. !)
describe inputs (resp. outputs) of operations, thus name? and date? are inputs
to the operation. The first line of the schema is ΔBirthdayBook . This includes
all declarations and predicates of BirthdayBook , as previously seen in Init . Ad-
ditionally the variable declarations are included with a prime appended to their
name, representing the state after the execution of the operation. The predi-
cates are also included a second time where all occurring variables have a prime
appended. To clarify this, we show the expanded schema:

AddBirthday
known, known ′ : �NAME
birthday, birthday ′ : NAME �DATE
name? : NAME
date? : DATE

known = dom birthday ∧ known ′ = dom birthday ′

name? /∈ known
birthday ′ = birthday ∪ {name? �→ date?}

Validating Z Specifications Using the ProB Animator and Model Checker 483

The schema thus defines the relation between the state before and after exe-
cuting the operation AddBirthday. Accordingly the unprimed variables refer to
the state before and the primed ones to the state after the execution. The effect
of AddBirthday is that the function birthday has been extended with a new en-
try. But, together with the predicates from BirthdayBook , it is (again implicitly)
stated that name? should be added to known.

Instead of the schema boxes there is also a shorter equivalent syntax. E.g.,
Init can also be defined with Init =̂ [BirthdayBook | known = �]. In addition
to inclusion, as seen in the example, the schema calculus of Z provides more
operators to combine schemas. E.g., the conjunction of two schemas R =̂ S1 ∧ S2
merges their declaration part in a way that the resulting schema R has the
variables of both schemas S1 and S2, and its predicate is the logical conjunction
of both original predicates. The schema calculus is a very important aspect of the
Z notation, because it makes Z suitable for describing large systems by handling
distinct parts of it and combining them.

2.2 Some Differences Between Z and B

proz is an extension of prob, a tool that animates specifications in B. To make
use of its core functionality, we need to translate a Z specification into prob’s
internal representation of a B machine. To illustrate the fundamental issues and
problems, we describe some of the major differences between Z and B using our
example.

Figure 2 shows the birthday book example as a B machine. Aside from the
ASCII notation, one difference is the use of keywords to divide the specification
into multiple sections. The VARIABLES section defines that known and birthday
are the variables making up the state. There is an explicit initialisation and in
the OPERATIONS section the operation AddBirthday is described. In a Z specifi-
cation, on the other hand, the purpose of each schema must be explained in the
surrounding prose.

If we look closer at the INITIALISATION section in the example, we see that
both known and birthday are set to �. This is unlike the Z schema Init in Fig. 2,
where only known = � is stated and the value of birthday is implicitly defined.

MACHINE BirthdayBook
SETS NAME;DATE
VARIABLES known,birthday
INVARIANT
known:POW(NAME) & birthday:NAME+->DATE & known=dom(birthday)
INITIALISATION known,birthday := {},{}
OPERATIONS
AddBirthday(name,date) = PRE name:NAME & date:DATE & name/:known THEN

birthday(name) := date || known := known \/ {name}
END

END

Fig. 2. The birthday book example in B

484 D. Plagge and M. Leuschel

Also in the definition of the operation AddBirthday both variables are changed
explicitly. Generally in B all changes to variables must be stated explicitly via
generalised substitutions. All other variables are not changed, whereas in Z every
variable can change, as long its values satisfy the predicates of the operation.

Another noteworthy difference is the declaration of an invariant in the B
machine. An invariant in B is a constraint that must hold in every state. To
prove that a machine is consistent it has to be proven that the initialisation is
valid and that no operation leads to an invalid state if applied to a valid state.
In Z the predicate of the state’s schema is also called invariant, but unlike B
the operations implicitly satisfy it by including the state’s schema. Errors in a
B specification can lead to a violation of the invariant. A similar error in Z leads
to an operation not being enabled, which in turn can lead to deadlocks.

2.3 Translating Z to B

The notation of substitutions often results in specifications that are easier to
animate than higher-level Z specifications. Hence, at the heart of proz is a
systematic translation of Z schemas into B machines.

Figure 3 contains such a B translation of the birthday book Z specification,
as computed by our tool (to make the specification more readable we use Z style
identifiers, i.e., ending with ′, ? or !, even though strictly speaking this is not
valid B syntax). As can bee seen, we have identified that the variables birthday
and known form part of the state, their types are declared in the invariant. The
initialisation part is a translation of the expanded Init schema. One operation
AddBirthday with two arguments date? and name? has been identified, a trans-
lation of the expanded AddBirthday schema can be found in the WHERE clause
of its ANY statement. There are also several references to a constant maxentries .
We added it and a constraint # known ≤ maxentries to demonstrate the han-
dling of axiomatic definitions (cf. Section 3.1).

The B machine from Figure 3 can be fed directly into prob, for animation
and model checking. However, Z has also two data types, free types and schema
types, that have no counterpart in B. This means that some aspects of Z cannot
be effectively translated into B machines, and require extensions of prob. In the
next section we present the overall architecture of our approach, as well as a
formal explanation of how to derive a B model from a Z specification.

3 Architecture and the proz Compiler

In the previous section we have examined the basic ingredients of Z specifications,
and have highlighted why Z specifications are inherently more difficult to animate
and model check than B specifications. In this and the next section we explain
how we have overcome those issues; in particular:

– How to analyse the various schemas of Z specification, identifying the state
of a Z specification, the state-changing operations and the basic user-defined
data types (cf. Section 3.1).

Validating Z Specifications Using the ProB Animator and Model Checker 485

MACHINE z_translation
SETS NAME;DATE
CONSTANTS maxentries
PROPERTIES

(maxentries:INTEGER) & (maxentries>=5)
VARIABLES birthday, known
INVARIANT

(birthday:POW(NAME*DATE)) & (known:POW(NAME))
INITIALISATION
ANY birthday’, known’

WHERE
(known’:POW(NAME)) & (birthday’:(NAME+->DATE))

& (known’=dom(birthday’)) & (card(known’)<=maxentries)
& (known’={})

THEN
birthday, known := birthday’, known’

END
OPERATIONS
AddBirthday(date?, name?) =

PRE (name?:NAME)
& (date?:DATE)
THEN

ANY birthday’, known’
WHERE

(known:POW(NAME)) & (birthday:(NAME+->DATE))
& (known=dom(birthday)) & (card(known)<=maxentries)
& (known’:POW(NAME)) & (birthday’:(NAME+->DATE))
& (known’=dom(birthday’)) & (card(known’)<=maxentries)
& (name?/:known) & (birthday’=(birthday\/{(name?,date?)}))

THEN
birthday, known := birthday’, known’

END
END

END

Fig. 3. The translated birthday book example

– How to deal with the fact that Z specifications do not specify all changes to
variables explicitly.

– How to deal with the new data types provided by Z.
– How to deal with new operators and constructs.

Overall Architecture. proz is an extension of prob that supports Z specifications
which can be parsed by the fuzz typechecker. Those specifications are given as
a LATEX file. When the user loads a specification into proz, the following steps
are performed (see also Figure 4):

1. The specification is typechecked with fuzz. fuzz writes the formal content
of the specification into a file which then is parsed by proz.

486 D. Plagge and M. Leuschel

2. The different components of the specification (definition of constants, state,
initialisation and operations) are identified.

3. All schemas are expanded and normalised, i.e., all schema inclusions are
resolved and the type declarations of variables are strictly separated from
constraints on their values.

4. proz then translates the specification to an internal representation of a B
machine (with some small extensions, which are discussed later in the paper).

5. After the translation process prob treats the specification the same way as
other B machines are treated (with some extensions having been added to
the prob kernel).

Most of the expressions in Z have a direct counterpart in B, for those the
translation in point 4 is just a conversion from one syntax into another. Some
cases where there is more logic need in the translation process or where we
extended the prob interpreter are presented in Section 3.3. The support of two
Z data types as discussed in the next section affects the translation process and
requires extensions to the kernel as well.

Fig. 4. Overview of proz Architecture

3.1 Identifying Components of the Specification

As we have seen in the previous sections, the purpose of the schemas in a specifi-
cation is not stated formally. But to interpret a given specification for animation
and model checking, we must identify which schemas describe the state space,
the initialisation and the operations. To be able to do so, we require that the
specification satisfies some rules:

– There must be a schema called Init for initialisation.
– Init includes exactly one other schema. The included schema will be taken

as the description of the state space.
– A schema with all variables of the state and their primed versions, that is

not included by any other schema, will be used as an operation.

Validating Z Specifications Using the ProB Animator and Model Checker 487

The rules can be applied to the birthday book example in Fig. 1: There is a
schema Init which includes BirthdayBook . Thus Init is the initialisation of the
state which consists of BirthdayBook ’s variables known and birthday. Expanding
AddBirthday shows that it has all variables of the state and also the primed
versions known ′ and birthday ′. It is not included by any other schema. Thus
proz would identify AddBirthday as an operation.

In the next two paragraphs we present two other components of a specification
that are used by proz and explain how they relate to existing features of prob.

Invariant. As seen in the comparison in Sect. 2.2, the B invariant has no direct
counterpart in Z. But it can be useful to search for states that violate a certain
property by model checking. To make this feature available for Z specifications,
proz looks for a schema named Invariant . If such an invariant is given, its
predicate is checked for every visited state in an animation or in model checking.
The predicate is then used analogously to the invariant in B.

Axiomatic definitions. In our short introduction to Z we did not describe how
global constants can be introduced in Z by axiomatic definitions. Like schemas,
axiomatic definitions consist also of a declaration and a predicate part, but their
declared variables can be used throughout the specification without a schema
inclusion. E.g., we can define a constant maxentries which value is at least 5
with the axiomatic definition

maxentries : �

maxentries ≥ 5

We interpret axiomatic definitions analogously to how prob interprets the sec-
tions CONSTANTS and PROPERTIES in a B machine: The very first step of an
animation or model checking—before the initialisation of the state variables—
consists in finding values for the constants which satisfy the predicates of the
axiomatic definitions. After this step the predicates of the axiomatic definitions
can be ignored. To illustrate how the axiomatic definitions are handled, we added
the definition above to the birthday book example and appended the predicate
known ≤ maxentries to the schema BirthdayBook before translating the spec-
ification to the result in Figure 3.

3.2 Translating Initialisation and Operations from Z to B

The initialisation schema Init consists of the declaration of all state variables
and a predicate I . We annotate Tv as the type of variable v .

Init
x1 : Tx1 ; . . . ; xn : Txn

I

488 D. Plagge and M. Leuschel

In B, the initialisation is a generalised substitution to all variables of the ab-
stract machine. We can state “choose any values that satisfy I ” with an ANY
statement:

ANY x ′
1, . . . , x

′
n

WHERE x ′
1 ∈ Tx1 ∧ . . . ∧ x ′

n ∈ Txn ∧
I ′

THEN x1, . . . , xn := x ′
1, . . . , x

′
n

END

Beside the predicate I , the WHERE clause of the ANY contains the type dec-
laration of the variables. The types Tv and the predicate I are translated from
Z to B syntax. Most of the types, predicates and expressions in Z have a direct
counterpart in B and can be translated directly. In section 3.3 we show how we
extended the B interpreter to support other constructs.

An operation schema Op declares in addition to the state variables x1, . . . , xn

their primed counterparts x ′
1, . . . , x

′
n and variables for input i1?, . . . , ik? and out-

put o1!, . . . , ol !. The predicate P describes the effect of the operation.

Op
x1 : Tx1 ; . . . ; xn : Txn

x ′
1 : Tx1 ; . . . ; x ′

n : Txn

i1? : Ti1 ; . . . ; ik? : Tik
o1! : To1 ; . . . ; ol ! : Tol

P

proz translates such a schema to a B operation of the form

o∗
1 !, . . . , o∗

l ! ← Op(i1?, . . . , ik?) =
PRE i1 ∈ Ti1 ∧ . . . ∧ ik ∈ Tik THEN

ANY x ′
1, . . . , x ′

n , o1!, . . . , ol !
WHERE x ′

1 ∈ Tx1 ∧ . . . ∧ x ′
n ∈ Txn ∧ o1! ∈ To1 ∧ . . . ∧ ol ! ∈ Tol ∧

P
THEN x1, . . . , xn , o∗

1 !, . . . , o∗
l ! := x ′

1, . . . , x ′
n , o1!, . . . , ol !

END
END

END

Like in the initialisation the central part of the operation is an ANY statement
with the predicate P , but additionally we have to consider the possible result
values. The surrounding PRE statement is just for declaring the types of the
operation’s arguments.

Often operations change only a subset of the state variables. proz checks if
terms like x = x ′ occur in the predicate P . If such a term is found, we know
that x does not change and so we can remove the substitution x := x ′. Also we
can replace all occurrences of x ′ by x in P . Then x ′ is not used anymore in the

Validating Z Specifications Using the ProB Animator and Model Checker 489

statement and can be removed. If parts of the state or the complete state are
not modified by an operation, the expression θS = θS ′ is often used, where S is
a schema containing all variables that should not change. ΞS is an abbreviation
for including ΔS and stating θS = θS ′. Those expressions are transformed into
s1 = s ′1 ∧ . . . ∧ sn = s ′m with s1, . . . , sm as the variables of S. This way the
simplification of the ANY statement is also working with θ-expressions.

3.3 New Constructs and Operators

Some constructs of Z’s mathematical language do not have a direct counterpart
in B, and below we show how we have treated those.

Translation of Comprehension Sets. A comprehension set has the form {Decl |
Pred } and specifies a set with a declaration of variables and a predicate. E.g.,
the expression { i : � | i ≥ 5 } is the set of all numbers greater or equal to 5. This
kind of comprehension sets is also supported by B, but Z has an extended syntax
of the form {Decl | Pred • Expr }. E.g., the set { i : � | i ≥ 5 • i ∗ i } is the set of
all square numbers greater or equal to 25. We translate such comprehension sets
as follows. Let T be the type of Expr , then we express {Decl | Pred • Expr } by
{ v : T | (∃Decl | v = Expr ∧ Pred) } and translate this into B.

Extensions to the B Interpreter. The following expressions are not easily trans-
latable to B (or would entail a considerable efficiency penalty), and hence ex-
tensions were made to the prob interpreter to support an extended B syntax:

– We added an if-expression to the standard B syntax. While B contains a
substitution IF − THEN − ELSE, it can not be used as an expression that
yields a value. The if expression of Z resembles to the ternary ?: operator
known in C or Java.

– The let in Z can be used as an expression or as a predicate. Both can not
be stated directly in B, which again only has the LET as a substitution.

– The operations � (extraction) and � (filter) on sequences are defined with
the function squash. We added the squash function to the interpreter.

– We added the definite description quantifier μ.

4 New Types

To deal with the Z specifications we have seen so far, it was sufficient to translate
Z to B, possibly with some some syntactic extensions. There are, however, two
important features of Z which cannot be effectively dealt with in that way: Z’s
schema and free types. Supporting those features in an effective manner requires
a fundamental addition to the core datatypes of the prob kernel.

Overview of the prob-kernel. The prob kernel is responsible for storing and
finding values for the values of the variables in a specification. In order to avoid
naive enumeration of possible values, the prob kernel is written in Prolog works

490 D. Plagge and M. Leuschel

in multiple phases (controlled by Prolog’s when co-routining mechanism). In the
first phase, only deterministic propagations are performed (e.g., the predicate
x = 1 will be evaluated but the predicates x ∈ IN will suspend until they
either become deterministic or until the second phase starts). In the second
phase, a restricted class of non-deterministic enumerations will be performed.
For example, the predicate x ∈ {a, b} will suspend during the first phase but
will lead to two solutions x = a and x = b during the second phase. In the final
phase, all variables, parameters and constants that are still undetermined (or
partially determined) are enumerated.

New Data types. Adding a new basic data type to the kernel requires the exten-
sion of four Prolog predicates: equal object to check two objects for equality,
not equal object to check two objects for disequality, one predicate to type
check an object and one predicate to enumerate all possible values of an object
given its type. So far the kernel supported basic user-defined types (defined in B’s
SET clause), integers, pairs and sets (relations are represented as sets of pairs).
Below, we present two new data types, schema types and free types, which are
needed for Z.

4.1 Schema Types

In Z each schema defines a new data type, a schema type which resembles record
types known from other languages. Basically, a record data value rec(f) consists
of a list f = [n1/v1, . . . ,nk/vk] of field names ni along with values vi for each
field. We require that all field names are sorted alphabetically. Two record values
are identical iff they have the exact same field names and all field values are
identical. In the kernel this gives rise to two new inference rules:

x1 = y1 . . . xk = yk n1 < n2 < . . . < nk

rec([n1/x1, . . . ,nk/xk]) = rec([n1/y1, . . . ,nk/yk])
xi 	= y 0 ≤ i ≤ k n1 < n2 < . . . < nk

rec([n1/x1, . . . ,ni/xi , . . . ,nk/xk]) 	= rec([n1/x1, . . . ,ni/y, . . . ,nk/xk])

The type of a record contains the name of the fields and the types of each field.
This gives rise to two new inference rules for type inference and enumeration,
where we use the k-ary type constructor Record for records with k -fields:

x1 : τ1 . . . xk : τk n1 < n2 < . . . < nk

rec([n1/x1, . . . ,nk/xk]) : Record(n1/τ1, . . . ,nk/τk)
x1 ∈ enum(τ1) . . . xk ∈ enum(τk) n1 < n2 < . . . < nk

rec([n1/x1, . . . ,nk/xk]) ∈ enum(Record(n1/τ1, . . . ,nk/τk))

Classical B does not have a record type, but a record type extension and
syntax has been introduced by the tool Atelier-B [27].1 In extending the kernel,
prob now also supports those records in B.
1 See also [11] for a theoretical foundation of records.

Validating Z Specifications Using the ProB Animator and Model Checker 491

Note that in Z, possible instances of a schema type (the bindings) can be
further constrained by the predicates of the schema. E.g. the schema

ExampleRecord =̂ [x , y : � | x < y]

can be used as a record with the constraint x < y. The kernel does not support
this directly, instead an unconstrained record [x , y : �] can be used. We show
how the constraints can be preserved in the translation process by normalisation.

proz normalises all schemas of a specification, i.e. it strictly separates type
information and additional predicates on the instances. E.g. the normalised form
of the schema [x : {1, 2, 3}] is [x : � | x ∈ {1, 2, 3}]. Given a normalised schema
A =̂ [Decl | Pred], we define A∗ =̂ [Decl] as the schema with just the type
information and without any additional constraints. If A is used as a type for
a variable v , in the normalisation process it is split into the type A∗ and the
additional constraint v ∈ {Decl | Pred • θA}. Because the type A∗ does not
have further constraints, it’s supported by the kernel. The constraint had been
made explicit by the normalisation and can be translated to B. The used θ-
operator creates an instance of type A. We can translate it directly to a record
constructor.

4.2 Free Types

Another feature of the Z notation is the definition of free types. E.g.,

T ::= empty | value�{1, 2, 3}	

defines a new data type T with a constant value empty and a constructor func-
tion value which maps values from {1, 2, 3} to T . Contrary to schema types, free
types can also be recursive, as in the following example, defining a binary tree
with integers:

BinTree ::= empty | leaf ��	 | node�BinTree × �× BinTree	

In Z, free types are only syntactic sugar and can also be expressed with ax-
iomatic definitions and basic types. But for the purpose of animating the speci-
fication it is essential for efficiency to implement this type directly.

There is no counterpart for free types in B, so we extended the prob core.
The representation of data values and the inference rules for equality and typing
are similar to record types; one just needs to also store the constructor used
(e.g., in the case of T above we need to know whether we are in the case empty
or in the case value). Two free type data values are thus identical iff they have
the same constructor and if the values for that constructor are identical.

Free type definitions can be made recursive, so the implementation of enumer-
ation must prevent the generation of infinitely many values. We solved this by
introducing a maximum recursion depth when enumerating free types. The max-
imum is adjustable by the user. The introduction of a maximum recursion depth
has the effect that the model checker might not find all possible solutions (simi-
larly to integer variables whose enumeration is restricted to MININT..MAXINT).

492 D. Plagge and M. Leuschel

The prob interpreter is extended by a constructor FreeConstructor for cre-
ating instance values of free types. The arguments are the free type, the case
(empty or value in the T example) and the tuple containing the arguments
to the constructor. Also there is the inverse of the constructor FreeDestructor ,
which takes a free type instance and returns the type, the case and the tuple of
arguments. Finally, we have a predicate FreeCase that takes the identifier of a
case and a free type instance as arguments and evaluates to true if the free type
value has the given case.

The kernel itself does not support constraints on the values of a constructor.
In the T example above the type of the constructor value is � but the domain
constrained to {1, 2, 3}. Like with the schema types, the constraints have to be
handled separately in the translation. This is done by normalisation as follows.

Given a free type F of the form

F ::= c1 | . . . | cn | d1�S1	 | . . . | dm�Sm	

we define the type F ∗ which has just the type information of F without other
constraints, where Ti is the underlying type of Si (e.g. Si = {1, 2, 3} ⇒ Ti = �):

F ∗ ::= c1 | . . . | cn | d∗
1�T1	 | . . . | d∗

m�Tm	

Then we convert F and the constructors di , 1 ≤ i ≤ m to

F == { x : F ∗ |
x ∈ ran d∗

1 ⇒ d∗
1
∼(x) ∈ S1 ∧ . . . ∧ x ∈ ran d∗

m ⇒ d∗
m

∼(x) ∈ Sm }
di == (λ x : Ti | x ∈ Si • d∗

i (x))

The schema normalisation transforms a variable v of type F to a variable of
type F ∗ and adds the constraint v ∈ F .

The transformed example would be

T ∗ ::= empty | value∗��	
T == { x : T ∗ | x ∈ ran value∗ ⇒ value∗∼(x) ∈ {1, 2, 3} }
value == (λ x : � | x ∈ {1, 2, 3} • value∗(x))

Finally, expressions of the form x ∈ ran d∗
i are translated to the predicate

FreeCase(F , d∗
i , x) and constructor calls of the form d∗

i (x) are translated to
FreeConstructor(F ∗, d∗

i , x) (resp. the inverse d∗
i
∼(y) is translated to the ex-

pression FreeDestructor(F ∗, d∗
i , y)). The result can then be dealt with by the

extended prob interpreter and kernel.

5 Case study

The case study was inspired by a real industrial example. The specifications
are very high level and, using the guidelines from [13], were not destined to be

Validating Z Specifications Using the ProB Animator and Model Checker 493

refined into code. These Z specifications thus2 provide a particular challenge for
our tool. Below we present two sub-components of the system, the challenges in
animating and validating them, as well as an indication on the errors located by
our tool.

5.1 Route Calculation

The route calculation component is a key component of the overall system, con-
taining several intricate algorithmic aspects. It is important to ascertain the
correctness of the algorithms (e.g., before proceeding with an implementation).

This system component calculates routes through a given geometry. The
geometry (mainly places and roads) is stored in the system state. The main
part of the specification consists of the definition of a function that takes a
route as input. The input route is a sequence that starts and ends with a
place and between both is a list of places or roads. The result of the func-
tion is the expansion of the route, i.e. the sequence of all places that lie between
the first and the last place. E.g., in the given geometry in figure 5 the expan-
sion of 〈Bicester ,A34,M 4,Swindon〉 is 〈Bicester ,Oxford ,NewburyRoundabout ,
Swindon〉. For sake of simplicity we ignore below the connections which are not
roads. The expansion function is constructed by combining several other func-
tions, which do not work directly on the input route. Instead a record is created
that contains the original route, information about which part has already been

Fig. 5. An example geometry

2 Some of the features of B, such as generalised union, are rarely used in formal refine-
ments as the existing B provers do not support them very well. It is our experience
that formal B specifications that are refined to code are easier to animate than more
liberal specifications.

494 D. Plagge and M. Leuschel

processed, the result so far, and a set of errors. An error could be “no connection
found”, for example. A recursive function (Fig. 6) expands every single element
in the route until the complete route is expanded or an error is found. In total the
specification consists of 8 function definitions which are combined to calculate
the result. Most of these functions are defined by comprehension sets.

Due to the complexity of the defined functions, it was not feasible to enumerate
them (i.e., to store all possible inputs and outputs). Fortunately, prob [22] has
the ability to compile these kind of definitions into symbolic closures, which are
evaluated and expanded on demand. For example, given a set comprehension
S = {x | x ∈ IN ⇒ P} and the condition y ∈ S the Kernel will “only” check
that P holds for x = y and not compute the entire set S . A similar situation
arises for lambda abstractions. Take for example, f = λ x .(x ∈ IN | E). In that
case, to evaluate f (y) the Kernel “only” evaluates E with y substituted for x
and not the entire function f .3 The kernel, even supports recursive function
definitions, such as the one presented in Fig. 6.

Storing comprehensions sets and λ-expressions symbolically was an essential
feature to allow the animation of the specification. By integrating proz into
prob we inherit this feature, which allows us to validate this specification.

ExpandElems
ExpandElemexpandElems : Expansion � Expansion

expandElems = {ΔExpansion |
θExpansion ′ = if error �= � ∨ currentElem /∈ dom proposedRoute

then θExpansion
else expandElems(expandElem(θExpansion)) •

θExpansion
→ θExpansion ′ }

Fig. 6. Example: The recursive definition of the function expandElems

To make an animation possible, the system was initialised with test data that
describes a map with six cities. Running the animation the user can simply
click on the AddElement operations to construct an input and sees immediately
the result. Figure 7 shows a screenshot of the animator after entering the route
“Newbury → A34 → Bicester”. In the middle the list of enabled operations can
be seen where the Expand operation contains the solution (which is truncated
in the screenshot).

The animation of the specification quickly exhibited one error in the spec-
ification. For each road a sequence of places to which it connects is stored in
the geometry. When a route contains a road, the entry and exit points are
calculated and the section between both is appended to the result. But under
certain circumstances the section was appended in the wrong direction so that

3 Some expressions, however, will require the computation of the entire function (e.g.,
dom(f) ⊆ SetA). In those circumstances the kernel converts the symbolic form into
explicit form.

Validating Z Specifications Using the ProB Animator and Model Checker 495

Fig. 7. Animation of the route calculation

the route “Newbury → A34 → Bicester” was calculated to “Newbury → Bicester
→ Oxford → Newbury → Bicester” instead of the much simpler correct solution
“Newbury → Oxford → Bicester”.

Figure 8 shows the function containing the error. The result of the expression
(in the third let expression)

(if entry > exit then exit . . entry else entry . . exit) � roadPlaces(r)

are all places on the road r that are between entry and exit . If roadPlaces(r) is
the sequence 〈a, b, c, d , e〉, entry is 4 and exit is 2, than the result is 〈b, c, d〉.
Although the case entry > exit is covered explicitly in the specification, it has
been forgotten to reverse the resulting sequence to 〈d , c, b〉.

For this application we did not yet use the model checking facilities of proz,
because we have no further properties about the result of the algorithm (and
hence no way to automatically check the correctness of the result). But the
animator alone gives the user a powerful tool to get more insight in the behaviour
of a specification, as the quick detection of errors showed.

5.2 Network Protocol

A second important component of the overall system implements access control
to a shared resource, employing a simple network protocol. A number of work-
stations are connected via a network and share are critical resource. Whenever
a workstation wants to access the resource it has to send a request to the other
workstations. The protocol should assure that only one workstation can be in
the critical section at the same time.

The specification distinguishes between the state and behaviour of the work-
stations and the the state and behaviour of the underlying middleware.

The specification of the middleware is the description of an existing system. Its
state space consists of a sent and received buffer for each workstation. Messages
can be added to a sent buffer, transferred between workstations and removed
from a received buffer to deliver it to the workstation.

496 D. Plagge and M. Leuschel

ExpandRoad
FindConnections
expandRoad : Expansion � Expansion

expandRoad = {r : ElementName; ExpansionOp |
r ∈ RoadName ∧
(proposedRoute(currentElem)).type = roadElementType ∧
(proposedRoute(currentElem)).name = r ∧
(let entries == findConnections(r , proposedRoute(currentElem − 1));

exits == findConnections(r , proposedRoute(currentElem + 1)) •
((entries = � ∨ exits = �)

∧ error ′ = {noConnection} ∧ expandedRoute ′ = 〈〉) ∨
(let entry == min(entries); exit == min(exits) •

(let placesToAdd == (if entry > exit then exit . . entry
else entry . . exit) � roadPlaces(r) � place •

expandedRoute ′ = if last expandedRoute = head placesToAdd
then expandedRoute � tail placesToAdd

else expandedRoute � placesToAdd ∧
error ′ = �))) •

θExpansion
→ θExpansion ′}

Fig. 8. The definition of the function expandRoad containing an error

The specification of the workstation defines their current states (idle, waiting ,
editing or failed) and their operations. They can send requests to the other
workstations, read their responses, read other requests and send responses.

The components from both parts of the definitions are combined by using
the schema calculus. Especially the pipe operator (>>) was used to connect
operations, where the result of one operation serves as the input for another
operation. E.g. when a workstation sends a request, the operation describing
the workstation behaviour outputs a message that is taken by a middleware
operation as input:

RequestOK =̂ RequestWorkstationOK >> AcceptMsgMiddleware

A screenshot of the animator is shown in Fig. 9. On the left side the current
state is displayed. It can be seen that workstation 1 is waiting for a response of
workstation 2, workstation 2 is in editing mode and workstation 3 is idle. Also
a message is still in the sent buffer of workstation 1.

Free types are used in the specification for distinguishing the different modes
of a workstation. wsIdle and wsEditing are constants of the free type, whereas
wsWaiting is a constructor, e.g. wsWaiting({1, 3}) refers to the state “waiting
for workstations 1 and 3”.

First we used the model checker to find deadlocks in the protocol. It found a
deadlock that was caused by an error in the specification. It was possible that a
workstation could ignore a rejected request. The same error caused a situation
where more than one workstation was in the critical section.

Validating Z Specifications Using the ProB Animator and Model Checker 497

Fig. 9. Animation of the network protocol

We added an Invariant schema to the specification to check automatically if
more than one workstation is in the editing mode (wsState is a function defined
in the schema Workstations that maps each workstation to its mode, and the
operator
 is used to restrict it to all entries which map to wsEditing):

Invariant =̂ [Workstations | #(wsState
 {wsEditing}) ≤ 1]

The model checker was able to find states where the invariant was violated.
Another error was found: Every response to a request was treated as if it was a
grant, even rejections.

The model checker was not able to do an exhaustive search of the state space
because the message buffers in the model are not limited.

6 Discussion, Related and Future Work

Limitations Z is a very large and extensive formal method, with many features
and extension. While we provide a tool that can animate a considerable subset
of Z, some of Z’s features are obviously not yet supported:

– Bags (multisets) are not supported.
– Some expressions like disjoint and partition are not yet implemented.
– Generic definitions cannot be used in a specification yet. We plan to support

them by determining with wich types a generic definition is used, and then
creating for each such type a separate axiomatic definition.

Related and Future Work. On the theoretical side, there are several works dis-
cussing the relationship and translations between Z and B [9,10] or weakest
precondition semantics [4].

On the practical side, several animators for Z exist, such as [29], which presents
an animator for Z implemented in Mercury, as well as the Possum animation
tool [14]. Another animator for Z is ZANS [17]. It has been developed in C++
and unlike prob only supports deterministic operations (called explicit in [17]).
The more recent Jaza tool by Mark Utting [28] looks very promising. There has
also been a recent push [24] to provide more tool support for Z. However, to

498 D. Plagge and M. Leuschel

our knowledge, no existing Z animator can deal with the recursive higher-order
functions present in our case study.

The most closely related work on the B side is [6,3,18], which uses a special
purpose constraint solver over sets (CLPS) to animate B and Z specifications us-
ing the so-called BZ-Testing-Tools. However, the focus of these tools is test-case
generation and not verification, and the subset of B that is supported is compar-
atively smaller (e.g., no set comprehensions or lambda abstractions, constants
and properties nor multiple machines are supported).

Another very popular tool for validating specifications and models is Alloy
[15], which makes use SAT solvers (rather than constraint solving). However,
the specification language of Alloy is first-order and thus cannot be applied “out
of the box” to our motivating industrial example.

Conclusion. In this paper we presented proz, a tool for animating and model
checking Z specifications. We pursued an approach to translate Z specifications
to B, reusing the existing prob toolset as much as possible. Some extensions to
the prob core were required (e.g., for free types and schema types), after which
we have obtained an integrated tool that is now capable to animate and vali-
date Z and B specifications. In principle our tool could now validate combined
B/Z specifications,4 and as a side effect we have added support for B specifica-
tions with records. By integrating proz with prob our tool has also inherited
from the recent developments and improvements originally devised for B, such
as visualisation of large state spaces [23], integration with CSP [8], symmetry
reduction [21], and symbolic validation of recursive functions [22].

Our tool was successfully applied to examples which were based on industrial
specifications and also revealed several errors. Especially proz’s ability to store
comprehensions sets symbolically was essential to make the animations of those
specifications possible.

Acknowledgements. We would like to thank Anthony Hall for his very helpful
contributions and feedback on the paper.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R., Schuman, S.A., Meyer, B.: Specification language. In: McKeag, R.M.,

Macnaghten, A.M. (eds.) On the Construction of Programs: An Advanced Course,
pp. 343–410. Cambridge University Press, Cambridge (1980)

3. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F., Ut-
ting, M., Vacelet, N.: BZ-testing-tools: A tool-set for test generation from Z and
B using constraint logic programming. In: Proceedings of FATES’02, Formal Ap-
proaches to Testing of Software, pp. 105–120, August 2002, Technical Report, IN-
RIA (2002)

4. Ana Cavalcanti, J.W.: A weakest precondition semantics for z. The. Computer
Journal 41(1), 1–15 (1998)

4 It is not clear to us whether this has any practical benefit.

Validating Z Specifications Using the ProB Animator and Model Checker 499

5. U.B-Core (UK) Limited, Oxon. B-Toolkit, On-line manual (1999) Available at
http://www.b-core.com/ONLINEDOC/Contents.html

6. Bouquet, F., Legeard, B., Peureux, F.: CLPS-B - a constraint solver for B. In:
Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280,
pp. 188–204. Springer, Heidelberg (2002)

7. Bowen, J.P.: Formal Specification and Documentation using Z. International
Thomson Computer Press (1996)

8. Butler, M., Leuschel, M.: Combining CSP and B for specification and property
verification. In: Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

9. Diller, A., Docherty, R.: Z and abstract machine notation: A comparison. In: User,
Z. (ed.) Z User Workshop, pp. 250–263 (1994)

10. Dunne, S.: Understanding object-z operations as generalised substitutions. In:
Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 328–
342. Springer, Heidelberg (2004)

11. Evans, N., Butler, M.: A proposal for records in event-b. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 221–235. Springer, Heidelberg
(2006)

12. Hall, A.: Correctness by construction: Integrating formality into a commercial de-
velopment process. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 224–233. Springer, Heidelberg (2002)

13. Hall, J.A.: Seven myths of formal methods. IEEE Software 7(5), 11–19 (1990)
14. Hazel, D., Strooper, P., Traynor, O.: Requirements engineering and verification

using specification animation. Automated Software Engineering 00, 302 (1998)
15. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on

Software Engineering and Methodology (TOSEM) 11, 256–290 (2002)
16. Jacky, J.: The Way of Z: Practical Programming with Formal Methods. Cambridge

University Press, Cambridge (1997)
17. Jia, X.: An approach to animating Z specifications. Available at http://venus.cs.

depaul.edu/fm/zans.html
18. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing from Z and B.

In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 21–40.
Springer, Heidelberg (2002)

19. Leuschel, M., Butler, M.: Pro B: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

20. Leuschel, M., Butler, M.: Automatic refinement checking for B. In: Lau, K.-K.,
Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 345–359. Springer, Heidelberg
(2005)

21. Leuschel, M., Butler, M., Spermann, C., Turner, E.: Symmetry reduction for B
by permutation flooding. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS,
vol. 4355, pp. 79–93. Springer, Heidelberg (2006)

22. Leuschel, M., Cansell, D., Butler, M.: Validating and animating higher-order recur-
sive functions in B. Submitted; preliminary version presented at Dagstuhl Seminar
06191 Rigorous Methods for Software Construction and Analysis (2006)

23. Leuschel, M., Turner, E.: Visualizing larger states spaces in P ro B. In: Treharne,
H., King, S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp.
6–23. Springer, Heidelberg (2005)

24. Malik, P., Utting, M.: CZT: A framework for Z tools. In: Treharne, H., King, S.,
Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 65–84. Springer,
Heidelberg (2005)

http://www.b-core.com/ONLINEDOC/Contents.html
http://venus.cs.depaul.edu/fm/zans.html
http://venus.cs.depaul.edu/fm/zans.html

500 D. Plagge and M. Leuschel

25. Spivey, J.M.: The Fuzz Manual. http://spivey.oriel.ox.ac.uk/mike/fuzz
26. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall International

Series in Computer Science, vol. 2. Prentice-Hall, Englewood Cliffs (1992)
27. Steria, F.: Aix-en-Provence. Atelier B, User and Reference Manuals (1996) Avail-

able at http://www.atelierb.societe.com/index uk.html
28. Utting, M.: Data structures for Z testing tools. In FM-TOOLS 2000 conference,

July 2000, in TR 2000-07, Information Faculty, University of Ulm (2000)
29. Winikoff, M., Dart, P., Kazmierczak, E.: Rapid prototyping using formal specifi-

cations. In: Proceedings of the 21st Australasian Computer Science Conference,
Perth, Australia, February 1998, pp. 279–294 (1998)

http://spivey.oriel.ox.ac.uk/mike/fuzz

Verification of Multi-agent Negotiations Using the Alloy
Analyzer

Rodion Podorozhny1, Sarfraz Khurshid2, Dewayne Perry2, and Xiaoqin Zhang3

1 Texas State University, San Marcos, TX 78666
rp31@txstate.edu

2 The University of Texas, Austin, TX 78712
{khurshid,perry}@ece.utexas.edu

3 The University of Massachusetts, North Dartmouth, MA 02747
x2zhang@umassd.edu

Abstract. Multi-agent systems provide an increasingly popular solution in prob-
lem domains that require management of uncertainty and a high degree of adapt-
ability. Robustness is a key design criterion in building multi-agent systems. We
present a novel approach for the design of robust multi-agent systems. Our ap-
proach constructs a model of the design of a multi-agent system in Alloy, a declar-
ative language based on relations, and checks the properties of the model using
the Alloy Analyzer, a fully automatic analysis tool for Alloy models. While sev-
eral prior techniques exist for checking properties of multi-agent systems, the
novelty of our work is that we can check properties of coordination and inter-
action, as well as properties of complex data structures that the agents may in-
ternally be manipulating or even sharing. This is the first application of Alloy to
checking properties of multi-agent systems. Such unified analysis has not been
possible before. We also introduce the use of a formal method as an integral part
of testing and validation.

1 Introduction

Multi-agent systems provide an increasingly popular solution in problem domains that
require management of uncertainty and high degree of adaptability. Robustness is a key
design criterion in building multi-agent systems.

A common definition of a multi-agent system (MAS) [26] stipulates that an agent is
an autonomous, interacting and intelligent (i.e. optimizing its actions) entity. Any MAS
is a distributed system but not every distributed system can be categorized as a MAS by
the above mentioned definition.

Management of uncertainty via adaptability and an ability to provide a satisficing so-
lution to otherwise intractable problems are distinguishing features of multi-agent sys-
tems compared to centralized or other distributed systems. An agent knows of a great
variety of methods to solve their local tasks, and it can tailor a method of achieving a
goal according to resource availability for data processing, information exchanges and
sources of information. Agents, due to their interactions, are capable of influencing the
choices of methods both by themselves and by other agents due to recognition of vari-
ous kinds of relationships between their subtasks that can be generalized as redundancy,

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 501–517, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

502 R. Podorozhny et al.

facilitation and enabling [19]. Agents can decide the degree to which an environment
state, their own state, and their partial knowledge about states of other agents influence
the amount of their contribution to the solution of a task imposed on the whole MAS.
Unlike components of other distributed systems, an agent can refuse a request or can
choose not to answer. At the same time, other agents are prepared to deal with a possi-
bility that their requests will be refused or not answered. This freedom of choice, in a
way, defines an agent’s autonomy and distinguishes it from a component in a conven-
tional distributed system. Thus, due to the above mentioned capabilities, agents are able
to adapt their solution methods to the dynamics of the environment [17].

Some MAS have explicit specifications of interaction protocols between the agents.
There has been a plethora of work on verification of MAS systems. Such approaches as
model-checking ([27], [21], [16], [3]), Petri-nets and situation-calculus [8] have been
applied to MAS verification. The vast majority of recent work on MAS verification are
various applications of model checking that take into account peculiarities of properties
that are desired to be verified in a MAS. The peculiarities of such properties usually are
a consequence of bounded rationality in agents. Thus the set of operators (modalities)
for property specifications is often extended to include such operators as agent beliefs,
desires, intentions. Once such additional operators are introduced, usually a method is
suggested to map a property specification that uses these MAS-specific operators into a
formalism understood by off-the-shelf model-checkers, e.g. into the propositional LTL.

Examples of properties might be: ”every request for a quote is answered within 4
time steps” [3], ”for all paths in each state if agent Train1 is in the tunnel then agent
Train1 knows that agent Train2 is not in the tunnel” [16], ”when sender is about to
send an acknowledgment then it knows that the receiver knows the value of the bit that
was most recently sent” [21] and ”some agent Ai eventually comes to believe that Aj

intends that Ai believes variable a has the value 10” [27].
As we can see from these examples most properties are some sort of reachabil-

ity properties on a state transition model of a MAS. The use of model checking for
these properties is understandable since it is essentially an efficient brute-force global
state transition graph reachability analysis. ConGolog [8] uses situation calculus which
is also most suited for the specification and analysis of event sequences, not data
structures.

One lightweight formal method that is particularly suitable for checking properties
of data structures is Alloy.

Most of the prior applications of the Alloy Analyzer have abstracted away from
properties of multi-threaded systems. We explore the use of Alloy in designing, testing
and validating a class of distributed systems known as the multi-agent systems (MAS).
In particular we focus on exploring the suitability of the Alloy Analyzer to checking
structurally rich properties of MAS.

In case of a model checking approach one needs to generate a number of particular
instances of data structures either by hand or by writing a dedicated generator. For
complex data structures the size of such an enumeration can be prohibitively large.
Moreover, writing a generator correctly can itself be error-prone [22]. In contrast, the
Alloy approach allows verification of rich structural properties, such as acyclicity of a

Verification of Multi-agent Negotiations Using the Alloy Analyzer 503

binary tree, via capturing them in a simple first-order logic formula based on intuitive
path expressions.

We explore an application of Alloy with its relational logic specification language to
multi-agent systems specifically focusing on properties of data structures in addition to
event sequences. We expect to be able to check properties of the following format: ”if
agent A receives a data structure that satisfies property φ then eventually agent A will
enter state σa if it believes that agent B is in state σb”, ”if agent A is in state σa and its
task structure τ1 satisfies property φ1 then on reception of data structure m (from agent
B) agent A will modify τ1 with some part of m such that τ1 will preserve property φ1”
and so on.

We also propose the use of a formal method for checking actual behavior of a system
as exhibited by its execution traces against a behavior of its model. This is done in
addition to the usual application of a formal method for verification of the system’s
model. Thus we integrate a formal method into testing and validation activities of a
software design and analysis process.

We make the following contributions:

– Checking multi-agent systems. We present an approach to check a utility-based
reasoning multi-agent system using a lightweight formal method;

– Alloy application. We present a novel application of the Alloy tool-set in checking
rich properties that represent structural constraints in a multi-threaded scenario; and

– Adequacy checking. Our approach allows checking the adequacy of a given test
suite against a relational specification.

2 Brief Overview of Alloy

As software systems steadily grow in complexity and size, designing such systems man-
ually becomes more and more error-prone. The last few years have seen a new gener-
ation of design tools that allow formulating designs formally, as well as checking their
correctness to detect crucial flaws that, if not corrected, could lead to massive failures.

The Alloy tool-set provides a software design framework that enables the modeling
of crucial design properties as well as checking them. Alloy [13] is a first-order, declar-
ative language based on relations. The Alloy Analyzer [15] provides a fully automatic
analysis for checking properties of Alloy models.

The Alloy language provides a convenient notation based on path expressions and
quantifiers, which allow a succinct and intuitive formulation of a range of useful prop-
erties, including rich structural properties of software. The Alloy Analyzer performs
a bounded exhaustive analysis using propositional satisfiability (SAT) solvers. Given
an Alloy formula and a scope, i.e., a bound on the universe of discourse, the analyzer
translates the Alloy formula into a boolean formula in conjunctive normal form (CNF),
and solves it using an off-the-shelf SAT solver.

The Alloy tool-set has been used successfully to check designs of various applications,
such as Microsoft’s Common Object Modeling interface for interprocess communica-
tion [5], the Intentional Naming System for resource discovery in mobile networks [1],
and avionics systems [7], as well as designs of cancer therapy machines [14].

504 R. Podorozhny et al.

The Alloy language provides a convenient notation based on path expressions and
quantifiers, which allow a succinct and intuitive formulation of a range of useful prop-
erties, including rich structural properties of software. Much of Alloy’s utility, however,
comes from its fully automatic analyzer, which performs a bounded exhaustive analysis
using propositional satisfiability (SAT) solvers. Given an Alloy formula and a scope,
i.e., a bound on the universe of discourse, the analyzer translates the Alloy formula into
a boolean formula in conjunctive normal form (CNF), and solves it using an off-the-
shelf SAT solver.

We present an example to introduce the basics of Alloy.
Let us review the following Alloy code for a DAG definition:

module models/examples/tutorial/dagDefSmall

sig DAG {
root: Node,
nodes: set Node,
edges: Node -> Node

}
sig Node {}

The keyword module names a model. A sig declaration introduces a set of (indivis-
ible) atoms; the signatures DAG and Node respectively declare a set of DAG atoms and
a set of node atoms. The fields of a signature declare relations. The field root defines
a relationship of type DAG x Node indicating that only one node can correspond to a
DAG by this relationship. The absence of any keyword makes size a total function:
each list must have a size. The field nodes has the same type as nodes but maps a
DAG onto a set of nodes defining a partial function. Alloy provides the keyword set to
declare an arbitrary relation. The field edges maps a DAG onto a relationship, i.e. on a
set of tuples Node x Node, thus defining edges.

The following fact constrains a graph to be a DAG:

fact DAGDef {
nodes = root.*edges
all m: Node | m !in m.ˆedges

}

The operator ‘*’ denotes reflexive transitive closure. The expression root.*edges

represents the set of all nodes reachable from the root following zero or more traversals
along the edge field. A universally quantified (all) formula stipulates that no atom m
of signature Node can appear in traversals originating for that atom m. The operator ˆ
denotes transitive closure.

Here are some other common operators not illustrated by this example. Logical im-
plication is denoted by ‘=>’; ‘<=>’ represents bi-implication. The operator ‘-’ denotes
set difference, while ‘#’ denotes set cardinality and ‘+’ - set union.

To instruct the analyzer to generate a DAG with 6 nodes, we formulate an empty
predicate and write a run command:

pred generate() {}

run generate for 6 but 1 DAG

Verification of Multi-agent Negotiations Using the Alloy Analyzer 505

The scope of 6 forces an upper bound of 6 nodes. The but keyword specifies a separate
bound for a signature whose name follows the keyword. Thus we restrict a generated
example to 1 DAG.

3 Subject System Details

As the subject of our analysis we have chosen a cooperative multi-agent system with
explicit communication and with a utility-based proactive planning/scheduling.

A multi-agent system is cooperative if it can be assumed that agents strive to collec-
tively contribute to reaching some common goal. In such a cooperative MAS, agents
are willing to sacrifice their local optimality of actions if they are convinced (e.g. via
a negotiation) that such a sacrifice will help increase the global optimality of the com-
bined actions in the whole MAS. For simplicity we also assume there are no malicious
agents in the chosen MAS.

3.1 Property Examples Derived from Requirements

We can describe several properties informally at this stage, before we fix the assump-
tions of the MAS design further.

Some of the informal properties that are likely to be useful for such a negotiation:

1. negotiation must terminate;
2. the utility of the agreed upon combination of schedules must eventually increase

throughout the course of negotiation even though occasional decreases are allowed;
i.e. the negotiation must eventually converge on some choice of schedules that pro-
vides a local optimum of the combined utility (here local is used in the sense of
restrictions on action set and time deadline, not in the sense of local to a single
agent);

3. if agent B (the one who is requested to do an additional task) agrees to accomplish
the task at a certain point in negotiation then it cannot renege on that agreement in
the course of subsequent negotiation (somewhat related to the need to converge);
and,

4. the beliefs of one agent about an abstraction of partial state of another agent ob-
tained as a result of negotiation should not contradict the actual state of that other
agent.

3.2 Experiment Design

The experiment design is illustrated as derivation relationships between the software
process artifacts in Fig. 1. The system requirements are used to derive a test suite and
specify the intended behavior as properties. The subject MAS system is run on the test
suite thus producing traces. The Alloy model of the system includes the representation
of traces. This model is then verified against the formally specified properties and the
properties that check correspondence of the traces to the results of the verification.
Thus we check if the model satisfies the properties and if a sample of actual behavior
highlighted by the test suite does not contradict the ideal behavior of the model.

506 R. Podorozhny et al.

MAS

MAS model in Alloy

Test cases

Execution Traces

Requirements

Intended behavior
formalized as properties

MAS model analysis results

Correspondence of execution traces

To MAS model analysis results

Legend:

Analysis
Results

“derived from”

Fig. 1. Experiment design

3.3 Choice of the Analyzed System

Next we will provide greater detail about the design of the chosen MAS. This detail will
let us illustrate the task allocation problem introduced generally above and to formalize
a property. The chosen system has been developed in the MAS laboratory headed by
Prof. Victor Lesser at the University of Massachusetts, Amherst. This MAS is a mature
utility-based reasoning multi agent system that has been extensively used and validated.
It has been used as a testbed for a great number of experiments and technology transfer
demonstrations in the area of MAS ([23], [24], [11], [12], [18], [9], [10]). This MAS is
not restricted to a particular problem domain. It applies the utility-based reasoning to
abstract tasks with generalized relationships. Thus we expect that the results obtained
from its analysis can be useful for other utility-based systems. In this system an agent is
combined of several components that include a problem solver and a negotiation com-
ponent, among others. The problem solver provides a schedule based on a current set
of task structures assigned for execution. The negotiation component drives the exe-
cution of negotiation protocols, it is aware of protocol specifications and keeps track
of current states of negotiation instances undertaken by its agent. The task structures
are specified in the TÆMS language [6]. The schedules are provided by the Design-
To-Criteria (DTC) scheduler ([25]) developed by Dr. Tom Wagner which is invoked as
part of the agent’s problem solver component operation. The DTC takes as input a task
structure in TÆMS and a utility function specification and provides as output a set of
schedules ranked by their utilities.

Verification of Multi-agent Negotiations Using the Alloy Analyzer 507

Agent A’s current task Agent B’s current task

TCR

Task1 Task2

M1 M2 M4 M5M3

sum

sum exactly one

TCE

Task1 Task2

B1 B2 B3 B4

exactly one

sumsum

enables

q:10 q:10q:10 q:10 q:10 q:15q:70 q:40q:10
c:10 c:10c:10 c:10 c:10 c:5c:? c:10c:10
d:9 d:9d:5 d:10 d:7 d:5d:? d:9d:9

deadline:11 deadline:21 deadline:47deadline:50

Fig. 2. Pre-negotiation task structures

In this system a simplified description of an agent’s cycle is as follows:

1. Local scheduling: in response to an event requesting a certain task to be performed,
obtain a number of high ranked schedules by utility;

2. Negotiation: conduct negotiation(s) within a predefined limit of time; and,
3. Execution: start execution of the schedule chosen as a result of negotiation(s).

The actual cycle of agent’s operation is more complex as an agent can react to various
kinds of events that it can receive at any of the mentioned cycle stages.

3.4 Relation Between Protocol FSMs, Task Structures, Offers and Visitations

Next we describe the task allocation problem in terms of this design. More details about
the cooperative negotiation example can be found in [28]. The negotiation protocol
of an agent starting the negotiation (agent A), the contractor, is given in Fig. 4. The
negotiation protocol of an agent responding to the request (agent B), the contractee, is
given in Fig. 5.

Let us assume that agent A needs a certain non-local task (this means that an agent
is not capable of doing that task even though it appears in one of its task structures) to
be performed by some other agent. The negotiation’s goal is to increase the combined
utility of actions of both agents by choosing a particular way to perform the non-local
task at a particular time.

In the description that follows we mention the concepts of a protocol FSM, task
structures, offers and execution paths encoded in visitations. These concepts are related
to one another in the following way.

508 R. Podorozhny et al.

TCE

Task1 Task2

B1 B2 B3 B4

exactly one

sum sum

enables

New_TCE

M4

M41 M42 M43

exactly_one

sum
TCR

Task1 Task2

M1 M2 M4 M5M3

sum

sum exactly one

enables
q:x q:3xq:x

c:10
d:7

c:6 c:20
d:12 d:3

q:10 q:10 q:10 q:70 q:10
c:10 c:10 c:10 c:? c:10

q:10 q:10d:5 q:15d:10 q:40d:7 d:? d:9
c:10 c:10 c:5 c:10deadline:50 d:9 d:9 d:5 d:9

deadline:11 deadline:21 deadline:47

Fig. 3. Post-negotiation task structures

The design of the particular MAS we are analyzing contains a module called an agent
[23]. This module itself is an aggregate of several submodules. One of these submodules
is the “Negotiation” submodule and it is responsible for encapsulating knowledge about
various protocols known to an agent. These protocols are encoded as FSMs with states
corresponding to abstractions of the states of an agent in negotiation and transitions
attributed with trigger conditions and actions. A sequence of visitations corresponds to
a path from a start node of such a protocol FSM to one of the final nodes.

A task structure of an agent captures its knowledge about multiple ways in which a
certain task can be accomplished. The root of a task structure corresponds to a task that
an agent is capable of accomplishing. The leaves of a task structure correspond to atomic
actions in which both the set and partial order can vary to reflect the way to accomplish
an assigned task in a “utility-increasing” (but not guaranteed to be optimal) way. As an
agent progresses through a negotiation protocol according to an FSM, the agent’s task
structure changes to reflect the agent’s changing knowledge about other agent’s state
throughout that negotiation. Thus there are certain properties imposed on a task structure
that must hold while an agent is in certain states of a negotiation protocol FSM.

A collection of task structures determines an agent’s functionality analogously to a
set of function signatures that define an interface of a module. The roots of task struc-
tures serve a similar purpose to function signatures at the agent level of abstraction
of describing a software system. An outside event corresponding to a request to ac-
complish a certain task triggers an agent’s reasoning about whether it can accomplish
that task considering an agent’s knowledge about the way to accomplish that task, that
agent’s state, the environment state and partial states of some other agents in the same
MAS. The result of that reasoning is the current schedule that “interweaves” instances
of atomic actions from various tasks currently assigned to that agent in a time-oriented
partial order. That current schedule can be changed dynamically, as it is being executed,
in response to agents’ changing opinion about the most reasonable schedule for a certain
moment in time.

Verification of Multi-agent Negotiations Using the Alloy Analyzer 509

always

buildProposal
sndMsgProposal

Wait

EvalCounterProposal

Accepted

NewProposal

rcvMsgCounterProposal

evalCounterProposal

badCounterProposal

Accept&GetNext

Accept&HaveEnough
sndMsgFinish

always

generateNewProposal
sndMsgProposal

rcvMsgAccept&
HaveEnough

sndMsgFinish

rcvMsgAccept&
GetNext

Start

FixMU badMU

goodMU

generateNewProposal
sndMsgProposal

Rejected

rcvMsgReject

Fig. 4. Contractor’s FSM

CounterProposalPossible

buildCounterProposal
sndMsgCounterProposal

Start

EvalProposal

Accepted

rcvMsgProposal

evalProposal

Accept

sndMsgAccept

ProposalImpossible

rcvMsgFinish

rcvMsgProposal

evalProposal

Feasible

Rejected

sndMsgReject

Fig. 5. Contractee’s FSM

We do not consider execution of schedules, but focus only on the negotiation phase
in which schedules always cover future time intervals.

An offer is a data structure generated by actions associated with FSM transitions. An
offer encapsulates the parameters of a particular schedule formed on the basis of the
agents’ task structures, such as quality achieved, start time and finish time. The agents
negotiate over these parameters.

Another submodule of an agent is “Communication”. The “Negotiation” submod-
ule relies on “Communication” in a fashion similar to how a networking application

510 R. Podorozhny et al.

relies on TCP/IP protocols. The design intentionally separated the concern of ensur-
ing reliable communication and naming mechanisms from the concern of ensuring that
a certain “utility-increasing” protocol is followed during a negotiation between a pair
of agents. Thus the issues of identifying agents to communicate with for a particular
purpose were separated from the “negotiation” submodule by the authors of the MAS
system we analyze. This was done to simplify their own analysis, to separate concerns.
Our Alloy specification reflects that separation.

In a way, the task structure specifies all possible behaviors of an agent responsible
for achieving the goal embodied by a task structure’s root. During the stages of Local
scheduling and Negotiation the task structure can be modified, thus modifying specifi-
cation of a set of behaviors of an agent during an Execution stage. The behavior of an
agent during the stages of Local scheduling and Negotiation is static, i.e. it is not mod-
ified during run-time. A schedule agreed upon as a result of Negotiation is a selected
behavior (execution path) from a set of behaviors that was modified at run-time (repre-
sented by a task structure; to be performed in the Execution stage). Thus a property we
describe below checks certain well-formedness of a behavior specification modified at
run-time and correctness of an implementation responsible for the modification.

3.5 Details of the Task Allocation Problem in the Chosen Design

Let us go over a possible scenario of agents’ interactions in regard to a task allocation
problem for the sake of illustration. This kind of interaction between agents is quite
common in any utility-based reasoning MAS. In Fig. 2 we see two task structures.
Suppose one task structure, with the root TCR, was assigned to agent A, the other,
TCE, was assigned to agent B. Before the negotiation the striped methods (M4 and its
children) are not part of the TCE structure. This assignment can be due to requests sent
from the environment (e.g. a human or other automated system). TCE and TCR turned
out to be non-leaf nodes with elaborations. Upon receiving task assignments agent A
sent TCR structure to its local scheduler, agent B did the same for TCE.

Let us suppose agent A receives the following schedules from its scheduler:

– M1, M2, M3, M4 - highest utility
– M1, M2, M3, M5 - lower utility, feasible

Agent B receives the following schedule: B3, B4 that has the highest utility.
Next, agent A identifies M4 in its best schedule as non-local. It sends a request to

agent B to do it. The fact that agent A knows that B can do M4 is hardwired for the
example without loss of generality for the negotiation analysis results. The request ini-
tiates an instance of negotiation. Agent A plays the role of a Contractor, agent B - that
of a Contractee. Agent B must see whether it can do M4 by the deadline agent A needs
it, while accomplishing its current task TCE within the constraints. This is done by
modifying the ”currently reasoned about” structure and submitting it to the scheduler
that will report if such a schedule is possible and, if yes, then with what utility.

The TCE structure must be modified preserving its well-formedness constraints (e.g.
functional decomposition remains a tree); and forcing an M4 into a schedule by choos-
ing appropriate quality of M4 that reflects the combined utility of both schedules (cho-
sen by A and by B). Fig. 3 shows agent B’s task structure updated with an M4. The

Verification of Multi-agent Negotiations Using the Alloy Analyzer 511

quality attribute of M4 must be such that the scheduler of agent B must produce feasible
(though not necessarily high ranking) schedules that contain M4 and still accomplish
the original TCE task.

Even if the agent B’s local scheduler returns an acceptable schedule (which has M4 in
it and the original TCE is accomplished with the constraints on time and quality), agent
A can request to make a tighter fit. Therefore if its scheduler found a feasible schedule
that includes M4, agent B (Contractee) is supposed to transition to state ”Feasible”
(Fig. 5) and wait for agent A to send another proposal with a “tighter” deadline on M4’s
execution or a “finish” message. This means that agent B must have modified its task
structure to include M4. On the contrary, if there is not a single feasible schedule that
can include M4 then agent B is supposed to transition to state “Rejected”. If agent B
reaches state “Rejected” then its post task structure TCE’ is unchanged from the pre
TCE.

With this description in mind we can rephrase this property in terms of the TÆMS
structures and negotiation protocol specifications in Figures 4 and 5 as:

After agent B reaches state ”Feasible” at least once its task structure must contain a
subtree corresponding to task M4 and M4 must appear in a feasible schedule returned
to agent A.

In this example the Contractee’s FSM has been simplified for the sake of this illus-
tration. For additional details about this example please refer to [28].

4 Alloy Specification for the Negotiation Model

Our approach implies modeling particular paths traversed in the agents’ negotiation
finite state machines (FSMs) in response to certain testcases. Thus we check an abstrac-
tion of an execution path in a particular implementation. Both FSMs contain cycles.
If a cycle diameter can be modeled with the scope that can be processed by the Al-
loy analyzer then we can iteratively check a certain property on an execution path that
corresponds to multiple iterations of a cycle.

The negotiation protocols and task structures described in section 3 had to be sim-
plified to have a tractable scope for the Alloy analyzer. The simplifications include:

1. ignoring attributes of task structures nodes (quality, duration, cost);
2. ignoring attributes of offers (mutual utility gain, cost, earliest start time);
3. ignoring attributes of schedules (start time and finish time of actions); and,
4. simplifying task structures by removing intermediate nodes (e.g. no Task 1, Task 2)

and reducing the number of leaf nodes (e.g. only B1 and B3 left in agent B’s task
structure).

The actual models used for analysis also contain only those atoms that are necessary
for verifying a property at hand. Thus transitions that were not traversed by a modeled
execution path and associated states were removed.

This amount of simplification was necessary to make the analysis feasible. Earlier
we constructed a more detailed Alloy specification of the analyzed system. The Alloy
analyzer was not able to cope with such a specification. We had to reduce its size grad-
ually while still keeping the analysis useful. We expect that the next generation of the
Alloy analyzer, Kodkod [20], would be able to deal with a larger specification.

512 R. Podorozhny et al.

The resultant Alloy model of the MAS for the purpose of verifying our assertions
consists of 3 modules. One module, negProtocol12 1abridgeDataProp, models
the FSMs, visitations of transitions through the FSMs (paths specified by transitions)
and assertions. Two more modules model the data structures manipulated by the agents
- their task structures and schedules. Let us briefly go over the Alloy models in these
modules.

The negProtocol12 1abridgeDataProp defines signatures for State,
Transition, Visitation and Offer. Thus an FSM is modeled by constraining
atoms of State and Transition signatures via the “fact” construct. A Transition

signature contains fields for source and destination states, a set of visitations of that
transition by a path and a set of transitions outgoing from the destination state of
the transition. The treeDefSmall module models a task structure of an agent. The
schedDefSmall module models a schedule data structure of an agent. It imports the
treeDefSmall so that schedule items can reference the nodes of task structures. The
consistency of the model has been successfully checked with an empty stub predicate.
The analyzer found a solution.

abstract sig State {}

abstract sig Transition {
source, dest: State,
visit: set Visitation,
nextTrans: set Transition

}

fact Injection { all t, t’: Transition | t.source =
t’.source && t.dest =
t’.dest => t = t’ }

abstract sig Visitation {
trans: lone Transition,
nextVisit: lone Visitation,
offer: lone Offer

}
fact VisTransConsistent {

all visitation: Visitation | visitation in
visitation.trans.visit

}

5 Alloy Specification for the Properties

The paths of execution of the two negotiation protocols are represented by atoms of
the Visitation signature. Thus it is via these atoms that we express a property that
can be informally phrased as “If agent A is led to believe by a certain sequence of
communications that agent B reaches a certain state then agent B should have indeed
reached that state, having been subjected to the same changes of observed environment
as agent A”. This informal statement pinpoints such a feature of agents in a MAS as
bounded rationality. The property checks for consistency between a certain abstrac-
tion of other agent’s state (agent B) that a certain agent (A) obtains via communication.
In the case of the particular system we used the communication is explicit. By modeling

Verification of Multi-agent Negotiations Using the Alloy Analyzer 513

module models/examples/tutorial/treeDefSmall

abstract sig Tree {
root: Node,
nodes: set Node,
edges: Node -> Node

}

{
nodes = root.*edges
all m: Node | m !in m.ˆedges

}

abstract sig Node {}

one sig TCR, M3, M4, M5, TCE, B1, B3, New_TCE extends Node{}

one sig AgentB_preTaskStrucTCE extends Tree {} fact
AgentB_preTaskStrucTCEDef {

AgentB_preTaskStrucTCE.root = TCE
AgentB_preTaskStrucTCE.nodes = TCE + B3
AgentB_preTaskStrucTCE.edges = TCE->B3

}

one sig AgentB_postTaskStrucTCE extends Tree {} fact
AgentB_postTaskStrucTCEDef {

AgentB_postTaskStrucTCE.root = New_TCE
AgentB_postTaskStrucTCE.nodes = New_TCE + TCE + B1 + M4
AgentB_postTaskStrucTCE.edges = New_TCE->TCE +
New_TCE->M4 + TCE->B1

}

the environment sensed by agents we could allow for checking such properties based
on implicit communication.

More specifically, in view of the simplifications we made, a property of this kind can
be informally restated as “if agent A reaches state EvalCounterProposal then agent
B should have reached state Wait2 and beginning since that state, agent B’s current
schedule data structure should have contained an instance of atomic action M4”. Below
we can see how this property is formally expressed in the Alloy’s relational algebra.
The assertion has been successfully checked. No counterexamples were found for the
path containing visitations that corresponded to the expected states and data structure
conditions. Conversely, once an inconsistency between agent A’s belief and agent B’s
state and data structures has been introduced into visitations, the analyzer pinpointed a
possible counterexample.

We have also translated an Alloy specification of this property into a dynamic asser-
tion in Java using a systematic translation approach [2]. Thus we were able to dynami-
cally check the conformance of an implementation to the Alloy specification. We also
showed the utility of the Alloy Analyzer by making sure that an assertion in the Alloy
specification is right and then mechanically translating that assertion into a dynamic
assertion in Java implementation.

module models/examples/tutorial/schedDefSmall open
models/examples/tutorial/treeDefSmall

abstract sig SchedItem {
activity: Node

}

514 R. Podorozhny et al.

one sig SchedItemM3 extends SchedItem{} fact SchedItemM3Def {
SchedItemM3.activity = M3

}

one sig SchedItemM4 extends SchedItem{} fact SchedItemM4Def {
SchedItemM4.activity = M4

}

one sig SchedItemM5 extends SchedItem{} fact SchedItemM5Def {
SchedItemM5.activity = M5

}

one sig SchedItemB1 extends SchedItem{} fact SchedItemB1Def {
SchedItemB1.activity = B1

}

one sig SchedItemB3 extends SchedItem{} fact SchedItemB3Def {
SchedItemB3.activity = B3

}

abstract sig Sched {
items: set SchedItem,
precedenceRel: SchedItem -> SchedItem

}

one sig AgentAschedWithNL extends Sched {} fact
AgentAschedWithNLDef {

AgentAschedWithNL.items = SchedItemM3 + SchedItemM4
AgentAschedWithNL.precedenceRel =

SchedItemM3->SchedItemM4
}

one sig AgentAschedWithOutNL extends Sched {} fact
AgentAschedWithOutNLDef {

AgentAschedWithOutNL.items = SchedItemM3 + SchedItemM5
AgentAschedWithOutNL.precedenceRel =

SchedItemM3->SchedItemM5
}

one sig AgentBschedWithNL extends Sched {} fact
AgentBschedWithOutNLDef {

AgentBschedWithOutNL.items = SchedItemB1 + SchedItemM4
AgentBschedWithOutNL.precedenceRel =

SchedItemB1->SchedItemM4
}

one sig AgentBschedWithOutNL extends Sched {} fact
AgentBschedWithNLDef {

AgentBschedWithNL.items = SchedItemB3
}

assert AgentAbeliefCompliesWithAgentBState {
(some visitation: Visitation |
visitation.trans.dest = EvalCounterProposal) =>
(some visitation’: Visitation |

visitation’.trans.dest = Wait2 &&
M4 in visitation’.offer.agentBTaskTree.nodes)

}

6 Specification Difficulties

The main difficulty is keeping the Alloy model under a tractable scope while checking
useful properties. In the case of the design of this particular MAS the protocols are
specified via FSMs with loops. Thus we can check properties only within the scope

Verification of Multi-agent Negotiations Using the Alloy Analyzer 515

of the FSM’s diameter. Other difficulties are due to highly dynamic, hard to predict
behavior of sensing agents. One has to classify the dynamics of the environment sensed
by the agents and check the properties within each such situation. For instance, in the
example used in this paper we can classify the situations based on combinations of
“best” schedules of the 2 agents with regard to including the non local task (M4) into
their schedules. Some of the possible combinations (for all cases agent A has M4 in its
best schedule):

– agent B does not have M4 in its best schedule; the local utility of agent B’s schedule
outweighs the combined utility if agent B is forced to do M4;

– agent B does not have M4 in its best schedule; the local utility of agent B’s schedule
is below the combined utility if agent B is forced to do M4;

– agent B has M4 in its best schedule too, but not within the timeframe agent A needs
M4 to be finished

– agent B has M4 in its best schedule too, it is within the timeframe agent A needs
M4 to be finished

It should be possible to provide an Alloy model so that these combinations would not
have to be specified explicitly. Instead, the Alloy analyzer itself would check over all
the alternatives it sees in the model. A straightforward approach of modeling the at-
tributes of the nodes in the agents’ task structures results in too large a scope for the
Alloy to handle. Perhaps the attribute values should be abstracted as features of the task
structures, not as numerical values.

7 Conclusions and Future Work

We have created and validated a model for verifying data structure rich properties of a
cooperative multi-agent system using a manually created execution path. To our knowl-
edge, our work is the first application of the Alloy analyzer for checking properties of
a multi-agent system. Moreover, this example illustrates how the use of Alloy’s for-
mal reasoning capability can be integrated into the testing and validation activities of
software development.

Another step might be checking a property on all interior paths of a loop in an FSM.
One more interesting property would involve checking if an elaboration of the non-
local task is “interwoven” in one of the many alternative ways into the task structure of
an agent. We expect that checking such a more complicated and a more realistic case
might highlight Alloy’s advantage due to the declarative nature of its relational algebra.
It would also be interesting to see whether CSP-based models and tools (FDR) or B
CSP models would be useful for checking properties of negotiation in MAS systems
with explicit communication.

Acknowledgments

We would like to express our deep gratitude to Prof. Victor Lesser (UMass, Amherst) for
his help with the negotiation protocol example implemented in the multi-agent system
simulator and helpful comments.

516 R. Podorozhny et al.

References

1. Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., Lilley, J.: The design and implementation
of an intentional naming system. In: 17th ACM Symposium on Operating Systems Principles
(SOSP), Kiawah Island, December 1999, ACM Press, New York (1999)

2. Al-Naffouri, B.: An algorithm for automatic generation of run-time checks from alloy spec-
ification. Advanced Undergraduate Project Report, Massachusetts Institute of Technology
(2002)

3. Alechina, N., Logan, B.: Verifying bounds on deliberation time in multi-agent systems. In:
EUMAS, pp. 25–34 (2005)

4. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verification
for systems with dynamic structural adaptation. In: Proceedings of the 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, May 20-28, 2006, pp. 72–81.
ACM Press, New York (2006)

5. Box, D.: Essential COM. Addison-Wesley, Reading (1998)
6. Decker, K.: TAEMS: A Framework for Environment Centered Analysis & Design of Coordi-

nation Mechanisms. In: O’Hare, G., Jennings, N. (eds.) Foundations of Distributed Artificial
Intelligence, January 1996, Ch. 16, pp. 429–448. Wiley Inter-Science, Chichester (1996)

7. Dennis, G.: TSAFE: Building a trusted computing base for air traffic control software. Mas-
ter’s thesis, Massachusetts Institute of Technology (2003)

8. Gans, G., Jarke, M., Lakemeyer, G., Vits, T.: SNet: A modeling and simulation environment
for agent networks based on i* and ConGolog. In: Bussler, C.J., McIlraith, S.A., Orlowska,
M.E., Pernici, B., Yang, J. (eds.) CAiSE 2002 and WES 2002. LNCS, vol. 2512, pp. 328–
343. Springer, Heidelberg (2002)

9. Horling, B., Lesser, V.: Using Diagnosis to Learn Contextual Coordination Rules. Proceed-
ings of the AAAI-99 Workshop on Reasoning in Context for AI Applications, July 1999, pp.
70–74 (1999)

10. Horling, B., Lesser, V., Vincent, R., Bazzan, A., Xuan, P.: Diagnosis as an Integral Part of
Multi-Agent Adaptability. Proceedings of DARPA Information Survivability Conference and
Exposition, January 2000, pp. 211–219 (2000)

11. Horling, B., Mailler, R., Lesser, V.: Farm: A Scalable Environment for Multi-Agent Develop-
ment and Evaluation. In: Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar, P.S.C.
(eds.) Software Engineering for Multi-Agent Systems II. LNCS, vol. 2940, pp. 171–177.
Springer, Heidelberg (2004)

12. Horling, B., Vincent, R., Mailler, R., Shen, J., Becker, R., Rawlins, K., Lesser, V.: Distributed
Sensor Network for Real Time Tracking. Proceedings of the 5th International Conference on
Autonomous Agents, June 2001, pp. 417–424 (2001)

13. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press, Cambridge
(2006)

14. Jackson, D., Jackson, M.: Separating Concerns in Requirements Analysis: An Example. In:
chapter Rigorous development of complex fault tolerant systems, Springer, Heidelberg (To
appear)

15. Jackson, D., Schechter, I., Shlyakhter, I.: ALCOA: The Alloy constraint analyzer. In: 22nd
International Conference on Software Engineering (ICSE), Limerick, Ireland (June 2000)

16. Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via unbounded
model checking. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) Adaptive Agents and Multi-
Agent Systems II. LNCS (LNAI), vol. 3394, pp. 638–645. Springer, Heidelberg (2004)

17. Lesser, V.: Reflections on the Nature of Multi-Agent Coordination and Its Implications for
an Agent Architecture. Autonomous Agents and Multi-Agent Systems 1, 89–111 (1998)

Verification of Multi-agent Negotiations Using the Alloy Analyzer 517

18. Lesser, V., Atighetchi, M., Benyo, B., Horling, B., Raja, A., Vincent, R., Wagner, T., Ping, X.,
Zhang, S.X.: The Intelligent Home Testbed. Proceedings of the Autonomy Control Software
Workshop (Autonomous Agent Workshop) (January 1999)

19. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D., Podor-
ozhny, R., Prasad, M.N., Raja, A., Vincent, R., Xuan, P., Zhang, X.: Evolution of the
GPGP/TAEMS Domain-Independent Coordination Framework. Autonomous Agents and
Multi-Agent Systems 9(1), 87–143 (2004)

20. Torlak, E.: http://web.mit.edu/∼emina/www/kodkod.html
21. van der Hoek, W., Wooldridge, M.: Model checking knowledge and time. In: Bošnački, D.,

Leue, S. (eds.) Model Checking Software. LNCS, vol. 2318, pp. 95–111. Springer, Heidel-
berg (2004)

22. Vaziri, M.: Finding Bugs Using a Constraint Solver. PhD thesis, Computer Science and Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology (2004)

23. Vincent, R., Horling, B., Lesser, V.: Agent Infrastructure to Build and Evaluate Multi-Agent
Systems: The Java Agent Framework and Multi-Agent System Simulator. In: Wagner, T.A.,
Rana, O.F. (eds.) Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent
Systems. LNCS (LNAI), vol. 1887, pp. 102–127. Springer, Heidelberg (2001)

24. Wagner, T., Horling, B.: The Struggle for Reuse and Domain Independence: Research with
TAEMS, DTC and JAF. In: Proceedings of the 2nd Workshop on Infrastructure for Agents,
MAS, and Scalable MAS (Agents 2001) (June 2001)

25. Wagner, T., Lesser, V.: Design-to-Criteria Scheduling: Real-Time Agent Control. In: Pro-
ceedings of AAAI 2000 Spring Symposium on Real-Time Autonomous Systems, pp. 89–96
(March 2000)

26. Weiss, G. (ed.): Multiagent systems: a modern approach to distributed artificial intelligence.
MIT Press, Cambridge (1999)

27. Wooldridge, M., Fisher, M., Huget, M.-P., Parsons, S.: Model checking multi-agent systems
with mable. In: Falcone, R., Barber, S., Korba, L., Singh, M.P. (eds.) AAMAS 2002. LNCS
(LNAI), vol. 2631, pp. 952–959. Springer, Heidelberg (2003)

28. Zhang, X., Podorozhny, R.M., Lesser, V.: Cooperative, MultiStep Negotiation Over a Multi-
Dimensional Utility Function. In: Proceedings of the IASTED International Conference on
Artificial Intelligence and Soft Computing (ASC 2000), pp. 136–142 (2000)

http://web.mit.edu/~emina/www/kodkod.html

Integrated Static Analysis for

Linux Device Driver Verification

Hendrik Post and Wolfgang Küchlin

University of Tübingen, Germany
{post,kuechlin}@informatik.uni-tuebingen.de
http://www-sr.informatik.uni-tuebingen.de

Abstract. We port verification techniques for device drivers from the
Windows domain to Linux, combining several tools and techniques into
one integrated tool-chain. Building on ideas from Microsoft’s Static
Driver Verifier (SDV) project, we extend their specification language
and combine its implementation with the public domain bounded model
checker CBMC as a new verification back-end. We extract several API
conformance rules from Linux documentation and formulate them in
the extended language SLICx. Thus SDV-style verification of temporal
safety specifications is brought into the public domain. In addition, we
show that SLICx, together with CBMC, can be used to simulate preemp-
tion in multi-threaded code, and to find race conditions and to prove the
absence of deadlocks and memory leaks.

1 Introduction

Correctness and API conformance are especially important for the development
of device drivers. Errors in driver code may easily lead to inconsistent data,
security leaks and system downtime. For Windows XP it is claimed that errors in
device drivers cause 85% of system crashes [1]. Microsoft’s Static Driver Verifier
(SDV) [2] has been reported to be successful in automatic, high-precision bug-
finding in this domain, but its application is currently limited to Windows.

Our work aims at carrying the work of the SDV project over into the pub-
lic domain, extending and adapting it in the process. Our verification target
are Linux device drivers, our verification back-end is the source code bounded
model checker CBMC, and our tool-chain is implemented as a plug-in to the
Eclipse integrated program development environment. The combination of spec-
ifications and driver code follows the well-known paradigm of Aspect Oriented
Programming (AOP). SLICx rules embody the aspect correctness. SLICx rules
are translated into C code snipplets that are injected into the device driver source
code automatically. The modified sources are then checked at compile time by
the CBMC [3] model checker for the existence of execution paths to certain error
states.

Although the implementation of device drivers is crucial for the correctness
of operating systems, it is a task that is commonly not performed by operating

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 518–537, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integrated Static Analysis for Linux Device Driver Verification 519

system developers but by third party device manufacturers. With Linux, this
task is even distributed further among a large community of volunteers. As these
people are not in direct contact with the developers of the operating system
kernel itself, it is desirable to thoroughly check device drivers before adding
them to an operating system distribution. Note that Linux is increasingly used
in enterprise critical, high-availability environments such as IBM mainframes, or
in safety critical real-time settings.

In this work we describe the integration and adaptation of verification solu-
tions to make automatic Linux Device Driver verification possible. Our approach
builds on, and extends, SDV which implements API conformance checks for
drivers adhering to the Windows Driver Model (WDM). SLIC [4], the specifica-
tion language of SDV, allows to specify temporal safety properties. The temporal
safety properties are encoded as an automaton that is associated with a driver’s
source code during the verification process. SLIC rules, which are attached to
appropriate points (join points in AOP parlance) in the source code, trigger
transitions in the automaton, and SDV’s model checker SLAM [5] verifies tem-
poral properties such as the reachability of error states. The developers of SDV
report large numbers of errors discovered with their tool [2].

The question we deal with in this work is whether any concept similar to
SDV may be implemented in the public domain with reasonable effort such
that it works on Linux device drivers. To accomplish this, API rules for Linux
must be found and formulated, a SLIC processor and AOP-style code weaver—
capable of handling Linux sources and SLIC rules simultaneously—must be im-
plemented, and a suitable model checker must be selected. Our decision was
to choose CBMC [3] as model checker and to build and integrate the remaining
tools based on the Eclipse IDE. More details concerning our integrated tool-chain
called Avinux are reported in [6].

First, we created and implemented a new language SLICx that is an extension
of SDV’s specification language SLIC. Essentially, SLIC statements can only
manipulate an associated safety automaton, while SLICx rules may contain full
C expressions including calls to other Linux functions. Thus they come much
closer to supporting the full AOP paradigm: the driver state can be manipulated
including ways that reflect the preemption of the driver by interrupt handlers.

Next we extracted API conformance rules from the Linux documentation and
implemented them in SLICx, which gives us similar functionality for Linux as
SDV provides for Windows.

The second part of our contribution is the formulation of checks that sig-
nificantly extend those reported for SDV. Memory safety analysis is enabled
by CBMC directly. We extend these built-in checks by a new rule that covers
memory leaks. We can prove the absence of deadlocks by checking whether all
lock acquisitions follow a common acquisition order (not necessarily known in
advance). This check is also implemented as a SLICx rule. We complement this
complete rule with a sound rule that forbids recursive locking.

Another new rule enforces the absence of race conditions. This rule is imple-
mented by exploiting a synergy between SLICx and CBMC: using an AOP-style

520 H. Post and W. Küchlin

SLICx code manipulation rule, unprotected access to a shared memory location
is reduced to a memory safety violation which CBMC can detect. The preemp-
tion of a device driver by an interrupt handler function is simulated sequentially
by inserting a call to the handler at appropriate points in the driver’s source,
again using the AOP-style code transformation power of our SLICx implemen-
tation. This rule adds support for (some) multithreaded programs, though SLIC
itself covers only sequential programs.

The organization of the paper is as follows. In Section 2 the general setting
of software verification solutions is reviewed. Having clarified the dependencies
between different verification entities, we describe the adaptation of SDV for
Linux in Section 3. Our specification language SLICx is compared with SLIC
in Section 3.1. The verification backend CBMC is reviewed in Section 3.2. The
adaptation part ends with a discussion of the problems creating operating sys-
tem models for Linux and the presentation of an SDV-style API rule example.
Section 4 presents features beyond the capabilities of SDV. Section 5 discusses
our experiences applying our solution to real drivers. We conclude with a brief
overview of related works in Section 6. Examples for processed drivers and for
formulated SLICx rules are provided on our project website1.

2 On Programs, Specifications, Hazards and Specification
Implementations

A typical verification process involves 5 components:

– A program to be verified (e.g. a device driver).
– A hazard we want to avoid (e.g. API misuse, race conditions, memory leaks).
– A specification that (semi-)formalizes how the problem can be avoided (e.g.

API documentation).
– An implementation of a specification that can be checked by the engine (e.g.

rules in SLIC or SLICx, pre- or postconditions).
– An engine that tells us if the program models the specification implementa-

tion (e.g. model checker, theorem prover).

Both, specification and its implementation, may suffer from imprecision issues
that may be classified as soundness and completeness issues:

1. Is the specification, respectively its implementation,complete such that each
hazard is surely covered—i.e. do false negatives occur?

2. Are specification and its implementation sound with respect to the hazard—
i.e. no false positives are reported?

One example of a typical hazard is dereferences of NULL pointers. A specifica-
tion that forbids such accesses globally would be sound and complete. A partial
specification requiring that a dynamically allocated object should not be used
after it has been passed to free() is sound, but incomplete with respect to the
1 http://www-sr.informatik.uni-tuebingen.de/∼post/avinux

Integrated Static Analysis for Linux Device Driver Verification 521

hazard. A specification that forbids any memory accesses would be unsound, but
complete.

We consider API rules as (partial) specifications. Although API misuse can
also be considered to be a hazard itself.

Different verification settings exist:

– The absence of hazards should be enforced.
– API conformance should be enforced—i.e. API misuse is an hazard.
– API usage analysis is necessary to detect hazards.
– API usage analysis is sufficient to detect hazards.
– API usage analysis complements the detection of hazards.

The first two points represent the conservative interpretation of the verification
task. Our experience in doing verification on Linux device drivers has led to solu-
tions that fall into the latter categories. Therefore we concentrate on formulating
and applying API rules rather than providing direct solutions.

3 Adapting SDV

We use the same basic verification architecture as in SDV: A driver is instru-
mented with a specification implementation in the rule (specification) language
SLIC and with an operating system model. The resulting annotated driver con-
tains a main function provided by the operating system model. Finally, the
verification engine analyzes the code starting with main (Figure 1).

It is tempting to think that SDV is applicable to Linux Device Driver source
code as well as Windows drivers since both are C programs. However, we found
the following problems that prohibit the direct application:

– The SLIC compiler (annotation tool) is not available and, if it were available,
it might not support the unofficial Linux C dialect.

– No formal rules exist for Linux. We found only sparse API documentation.
– Are Linux APIs similar to WDM APIs? Or are they too broad or complex

to be specified in SLIC?
– In contrast to WDM specifying a tight driver framework for Windows, Linux

does not enforce a common driver structure. Hence, how can an operating
system model be obtained?

We treat the first problems by

– Replacing the verification backend from SDV by the bounded source code
model checker CBMC [3] for C (Subsection 3.2).

– Reimplementing the specification language SLIC and its annotation compo-
nent (Subsection 3.1).

– Discovering and implementing rules for Linux.

The problem of creating an environment model automatically is not yet solved,
but discussed in Subsection 3.3. In the remaining part of this section our SLIC
dialect SLICx is presented. Additionally we review the features of the verification
backend CBMC. We omit SDV-style API rules for Linux as we will later present
advanced rules in Section 4.

522 H. Post and W. Küchlin

Fig. 1. The verification architecture resembles the architecture found in SDV,
BLAST [7] and other tools. A driver is instrumented by a specification implemen-
tation and an operating system model. In our project, the resulting C code is then
checked by CBMC.

3.1 Extending SLIC to SLICx

SLIC [4] is an interface specification language for sequential C programs. In
SLIC, temporal safety properties are encoded as an event-driven automaton
where events are limited to the events {call, entry, exit, return} of a C
function.

The state of the automaton is encoded as a state component. The state
and the transfer (transition) functions can be translated into C code. This code
provides a specification aspect that is injected into the original driver. Errors are
reported in SLIC by a call to a reserved statement abort. The star (∗) expression
denotes a non-deterministic choice implemented in most static analysis tools.
Transfer functions in SLIC may only read the driver’s state, the parameters
of the corresponding C function (numbered from $1 to $n) and the function’s
return value. Write operations are only permitted on state variables and only
once per variable.

A notable way of expressing universal quantification with SLIC is the univer-
sal quantification trick. If a specification involves universal quantification over a
potentially infinite set of dynamically allocated objects, the SLIC state monitors
one non-deterministically chosen object. In this manner, the model checker may
independently check for all single objects if calls on them violate the specifica-
tion. The trick is extensively used in SLIC. To the best of our knowledge this
mechanism has been introduced in the Bandera project [8]. An example for the
application of our dialect SLICx and the universal quantification trick is given
in Figure 2.

The setting in which we are operating is that we do not have access either
to the SLIC annotation component or to a version of the Static Driver Verifier
that supports custom SLIC rules. Therefore we were forced to reimplement a
compiler that translates and injects SLIC specifications. Thus, we were free to
create a language SLICx which extends SLIC such that it reflects our needs better
than the original version. SLICx features the following extensions: function call
expressions, write operations to all memory locations, loops and multiple writes
to the same memory location.

Integrated Static Analysis for Linux Device Driver Verification 523

One key idea in SLIC was that all transfer functions, manipulating the safety
automaton, are necessarily terminating. Termination in SLIC is ensured by code
restrictions. We have removed these code restrictions to make rule code even
more C-like. Transfer functions violating the termination bound are handled by
unwinding assertions. SLICx moves closer toward the Aspect Oriented Program-
ming paradigm that was already hidden in SLIC. Having broken the restrictions
of SLIC, SLICx rule code may now allocate new variables and manipulate the
original driver’s source on a larger scale. The extensions are necessary for the
functional extensions of SDV in Section 4. A grammar of SLICx is given in
Table 1.

3.2 Verification Engine CBMC

SDV’s verification engine SLAM is not available for custom modifications and
custom rules, thus we chose CBMC which supports many low-level C operations
found in Linux device drivers.

CBMC [3] is a bounded model checker intended to be used for the analysis
of C programs and Verilog descriptions. When running in C analysis mode,
it translates ANSI-C programs into propositional logic. Loops and recursions
are handled by code unwinding. CBMC supports pointer arithmetic, integer
operators, type casts, side effects, function calls, calls through function pointers,
non-determinism, assumptions, assertions, arrays, structs, named unions and
dynamic memory. CBMC itself is capable of finding double-free and use-after-
free errors besides bounds and pointer validity checking.

1:int main(void)
2:{
3: buffer_t *b1

= malloc(10);
// ...
5:}

state{
void *which_buffer

= NULL;
int allocated

= 0;
}
malloc.exit{
if(*) {

which_buffer
= $return;
allocated = 1;

}
}

void *which_buffer=NULL;
int allocated=0;
void *__malloc(int s) {

...
ret = malloc(s);
if(nondet_bool()) {
which_buffer = ret;
allocated = 1;

}...
}

...
3: buffer_t *b1

= __malloc(10);

Fig. 2. The excerpt illustrates the universal quantification trick implemented in SLICx.
The left column lists the original driver code. The middle column contains the SLICx
rule, while the last column contains the annotated driver. The original function call in
line 3 is replaced by a call to a wrapper function malloc. In this wrapper function—
after calling the original function—one buffer is randomly chosen to be monitored. Its
state is stored in the flag allocated. nondet bool is CBMC’s implementation of ∗.

524 H. Post and W. Küchlin

Table 1. An EBNF like grammar for SLICx. The comment column summarizes dif-
ferences to SLIC.

Syntax Comment

S ::=
(extDecl)∗

[state]
transFun∗

state ::= state { fieldDecl+ }
fieldDecl ::= fieldType id = expr ;

| enum { id (, id)+ } id = id ;

fieldType ::= int * | int | void *
Reduced set of possible
types for state fields.

transFun ::= pattern stmt
pattern ::= id . event
event ::= call | return | entry | exit

stmt ::= id = expr ; Parallel assignments re-
moved.

| if (choose) stmt [else stmt]
| abort string;
| reset;
| halt;

| cStmt
We allow all possible C
statements instead of a re-
duced set.

choose ::= *
| expr

expr ::= cExpr
All C expressions are ac-
cepted.

id ::= C identifier
| $ int
| $ return
| $ C identifier

3.3 An Operating System Model for Linux

Drivers sometimes cannot be analyzed without using an artificial operating sys-
tem model that invokes a driver’s service routines and simulates callbacks to the
core. Moreover such a model usually implements a life cycle for a device driver.
One abstract example is shown in Figure 3. For the Windows Driver Framework
such a generic model has been developed [2]. For Linux, generic use-cases cannot
be created that easily because Linux is lacking a common driver framework and
architecture. Hence, empirical results for Linux Device Drivers can be obtained
only by investing additional manual effort.

3.4 Example: RCU-API Checking

The RCU algorithm was implemented for the Linux kernel to gain speed-ups for
shared complex data types like lists. The main idea is to avoid synchronization

Integrated Static Analysis for Linux Device Driver Verification 525

Fig. 3. An abstract life cycle of a Linux Device Driver module. The module init and
module exit macros mark the functions that are called first and last. Using prepro-
cessor macros, we transform them into uniformly named functions that may be called
from our main function.

operations whenever possible. Disregarding the internal implementations of the
algorithm, we extracted a partial black box specification from the kernel docu-
mentation: If a list element is deleted from an RCU list by a call to list del rcu,
this element may not be deallocated prior to a call to synchronize rcu or
call rcu. Here we must annotate calls to the above functions as well as calls to
kfree() in order to track the memory-state of the list.

With SLICx, CBMC, and a new rulebase, we have a similar system as SDV.
Section 4 gives our results that concern extensions to SDV’s capabilities. Im-
plementation aspects of our integrated tool-chain are summarized in [6]. Other
examples can be obtained through our website.

4 Beyond SDV

The following extended features are also covered by our integrated solution, but
not by CBMC or SDV:

1. Proving the absence of memory leaks.
2. Sequential simulation of preemption.
3. Absence of deadlocks.
4. Race condition detection.

The above features are not new by themselves, but we find it notable that they
can be integrated into the above adaptation of SDV directly. We list our im-
plementations below and classify them as sound, respectively complete, with
respect to the described hazards.Some SLICx rule implementations are available
for download from our website.

The specifications of the rules were extracted from the kernel documentations
included in vanilla distributions [9] and from [10]. As the APIs of the Linux

526 H. Post and W. Küchlin

kernel may change with each subversion, the rules might be subject to change.
Our kernel reference version is 2.6.18.

4.1 Memory

Memory Safety with CBMC. Memory safety—i.e. the avoidance of invalid
accesses to memory areas—is already implemented in CBMC. However, CBMC
only supports generic memory-related specifications that must be true for all
programs written in C:

– Dereferences of NULL pointers.
– Dereferences of pointers to deallocated objects.
– Dereferences of pointers to objects that were not initialized within the scope

of analysis.
– Accesses beyond an object’s bounds within memory—e.g. after the last ele-

ment of an array.
– Calls to function pointers with an offset.

Memory Leaks (ML). Dynamic objects are allocated by means of kmalloc()
and some minor variations of it. A module must deallocate this memory by
kfree() if it is no longer in use. A situation where deallocation is necessary is
described by the following two conditions:

– Module initialization has failed or the module is unloaded
– and the memory is at that time not used by other modules or the kernel.

As most modules are unloadable and design principles impose that memory
is only deallocated in the module where it is allocated this scenario covers most
Linux drivers. The description is sound but not complete. For example memory
leaks may also occur in modules that cannot be unloaded and are successfully
initialized.

We call this rule ‘Memory Leak’ (ML). Figure 3 shows a possible life cycle
that must be implemented as part of the operating system model. Specifications
that refer to the life cycle of a driver can also be found as part of the SDV
rulebase. Our contribution is to adapt this idea to cover memory leaks.

The universal quantification trick is used to monitor one non-deterministically
chosen2 object. We track the objects allocation status. In Linux initialization
and unload functions are marked by module init respectively by module exit.
If one of these functions ends the allocation status is checked. This check may
lead to false-positives if memory is allocated and deallocated in two different
modules. Linux coding rules disencourage these cases so one may expect not to
find false positives. False negatives result from the fact that module unloading
is not necessary for the occurrence of memory leaks.
2 The object is chosen at allocation time, hence its state is allocated.

Integrated Static Analysis for Linux Device Driver Verification 527

4.2 Preemption Simulation (PS)

Many problems in operating system software arise from parallel executions. In
order to extend our rules to cover these concurrent traces, we simulate concur-
rent execution by non-deterministic executions of interrupts and other functions.
The sequential simulation idea in operating systems was introduced by the tool
KISS [11]. KISS simulates slightly more parallel szenarios, but it is unknown
if the presented techniques are applicable for the complex parallelism found in
Linux. Other tools like TCBMC [12] cover even more traces but have only be
applied to small examples.

The complete and correct modeling of all possible concurrent executions
within a Linux device driver requires a large and detailled operating system
model. It is unknown if a device driver running on such a vast environment can
be verified. If it can be done the question arises whether the manual annotation
overhead is feasible for the large set of drivers a Linux kernel contains.

Following the spirit of SDV we establish a fully automatic, feasible analysis
of concurrency. Therefore we pose the following design constraints:

– No manual annotation per driver should be necessary.
– One concurrency model must be applicable for all drivers.
– The model checker does not need to support parallelism.

Because of our design goals and the complexity of full thread parallelism we
reduce the task to partially simulate preemption. Our solution is incomplete but
sound as we carefully model API semantics.

To simulate preemption by interrupts, we annotate function calls with a non-
deterministic call to the interrupt handler. The call to the handler is guarded by
a check whether the interrupt is enabled and registered.

In general this mechanism is applicable to all entry functions in modules
that may be called concurrently in uni- and multi-processor environments. We
have implemented this mechanism for the small class of USB input devices such
that concurrent calls to drivers may preempt running ones. These functions are
guarded by flags that indicate that the callback function has been registered.
Tests show that CBMC is capable of handling our sort of parallelism for the
USB drivers, though we did not expose new errors during the tests.

A common error in device driver initialization is that interrupts and callback
functions may be called as soon as they are registered [10]. With our technique
we have detected artificially introduced errors in USB inout drivers.

The sequential simulation of concurrency is implemented as a SLICx rule. It
provides a concurrent setting for the following checks for race conditions and
deadlocks.

4.3 Sound Locking (AL)

The commonly cited locking rule ‘Alternating Locking’ (AL) refers to the re-
quirement that for each lock instance, lock and unlock operations must be
performed in an alternating manner. If a lock object is requested twice without

528 H. Post and W. Küchlin

unlocking a deadlock occurs. This specification is sound, but clearly incomplete
with respect to deadlocks. This rule can be implemented in a similar way as in
the original SLIC language [4]. We extended the rule to cover all different locking
and unlocking operations.

4.4 Complete Locking (LO)

The sound rule AL is complemented by a second rule that is complete with
respect to deadlocks 3. The 4 Coffman conditions [13] describe necessary re-
quirements that must be true in order to produce a deadlock.

Three of the Coffman conditions are true due to the Linux locking imple-
mentation. Therefore the only option to avoid deadlocks is to enforce that the
fourth condition is not true: deadlocks can only occur if there is a circular wait
for locks. To prevent this, we require that locks are requested in a strict locking
order. We present a SLICx rule that monitors this requirement and is therefore
complete with respect to deadlocks (in the locking API).

The rule is named ‘Lock order’ (LO) and is implemented via a non-
deterministically chosen pair of lock objects similar to the universal quantifi-
cation trick. For each watched lock a status flag is introduced that monitors the
locked / unlocked state of this lock. Moreover, a flag is introduced that stores
the order of acquisitions for the chosen pair of locks. If it never happens that any
pair of locks is acquired in more than one order, we may assume that a circular
wait is not induced by the locks. Fig. 4 shows an excerpt from our locking rule.

If the lock order were specified in the API, each thread could be checked
separately. Of course, preemption simulation must be added to both rules.

Linux kernel handbooks [10, p. 122] encourage developers to maintain a strict
looking order. Our experiences show that for lock sets defined in a module a
strict locking order is kept. It is unknown if this requirement holds for lock sets
that are used in different modules.

4.5 Race Conditions (UA)

A race condition may occur if two threads of control access a shared memory
location and at least one of them writes a new value into it. Instead of finding
race conditions directly, we propose a conservative rule that is complete but
unsound with respect to races. The difference to other race checking tools is
that we implement race checking with the standard means provided by CBMC
and SLICx while each tool does not offer a notion of parallelism or race-checking
by itself. The rule is called ‘Unprotected Access’ (UA).

Our solution covers the following common setting: A dynamically allocated
struct shall be protected from accesses without prior acquisitions of a lock that
protects it. We reverse this requirement: an unlock operation prohibits all further
accesses to this struct and its members up to the next lock operation. Memory
accesses cannot be directly annotated with either SLIC or SLICx. CBMC also

3 Completeness refers to the spinlock part of the API.

Integrated Static Analysis for Linux Device Driver Verification 529

spin_lock.exit{
// case 1: parameter is the first
// monitored lock
if(which_first_lock!=NULL &&

($1 == which_first_lock)){
if (first_lock_locked==0){
if (second_lock_locked==1) {

if (!order_set) {
first_before_second = 0;
order_set = 1;

} else
if (first_before_second) {
abort "Lock order viol.";
}

}
first_lock_locked = 1;

} else {
abort "Double acquire!";

}
// case 2: parameter is the second
// monitored lock
...

}

irq_return_t interrupt_handler() {
spin_lock(lock2);
spin_lock(lock1);
...
spin_unlock(lock1);
spin_unlock(lock2);

}

void device_read() {
spin_lock(lock1);
if (nondet_bool())

interrupt_handler();
spin_lock(lock2);
if (nondet_bool())

interrupt_handler();
// ...
spin_unlock(lock2);
if (nondet_bool())

interrupt_handler();
spin_unlock(lock1);
if (nondet_bool())

interrupt_handler();
}

Fig. 4. (l) Excerpt from the specification implementation of the locking restriction
(LO). The which lock pointers track the pair of locks that is currently monitored.
order set tracks if one lock order has been determined on the current trace. (r) This
example shows a common locking situation between an interrupt handler and a driver
service function. Both functions operate on a pair of locks, but the interrupt handler
uses a different locking order. Using partial simulation of the preemption, this deadlock
is discovered by our toolchain.

offers no way to insert additional checks for each memory access. We therefore
exploit the built-in memory checks from CBMC.

Consider the code excerpt in Figure 5. The struct driver is protected by
the spinlock lock. Possible driver code is presented on the left. Line 4 contains
an unprotected access that may lead to data races if the code is reentrant. The
application of the rule (right) inserts the unnumbered lines into the driver’s code
where

– which lock refers to the lock that is monitored.
– $1 refers to the first parameter of the lock / unlock functions. We use a

shortcut and replace it on the left side by &lock as it is the only lock instance
that occurs in the example.

– while(1); terminates the execution due to the bounded model checking.

In order to make CBMC report the access in line 4, we non-deterministically
call free on driver. CBMC‘s memory checking ensures that all memory accesses

530 H. Post and W. Küchlin

// annotation omitted
1: spin_lock(&lock);
2: driver->request_nr++;
3: spin_unlock(&lock);
// nondet_bool() implements *

if (which_lock==&lock) {
if (nondet_bool()) {

object_destroyed = 1;
free(driver);

}
}

// invalid access:
4: driver->request_nr++;
5: spin_lock(&lock);
if (which_lock==&lock) {

if (object_destroyed) while(1);
}

6: driver->request_nr++;
7: spin_unlock(&lock);
// annotation omitted

spin_lock.entry {
if (which_lock==$1) {

if (object_destroyed==1)
// Terminate trace
while(1);

}
}

spin_unlock.exit {
if(which_lock==$1) {

if(*) {
object_destroyed = 1;
kfree(which_object);

}
}

}

Fig. 5. (l) A code example for race condition dectection. The code in unnumbered lines
on the left side is inserted by the SLICx rule on the right side (r).

occurring after free will be reported (line 4). Additionally we want to prohibit
false positives that arise when the previously deallocated struct is locked—i.e.
protected—again in line 5. This restoration of the object’s state is achieved by
a termination of the current execution if driver had been deallocated before.
An additional complication is that reallocations of driver could occur between
line 3 and 4. This problem can be solved by annotating allocation functions.

We summarize that our rule detects races under the described common cir-
cumstances. The rule implementation is sound and complete, but the specifica-
tion is not sound, but complete.

The relationship between locks and protected structs can be heuristically in-
ferred from Linux conventions as locks are commonly embedded in the structs
they protect.

In order to cover accesses prior to any locking operation, we modify memory
allocation functions like kmalloc such that they may non-deterministically set
the pointer to NULL. If such a pointer reaches a lock operation the trace is also
terminated.

4.6 Additional Techniques

Specification by implementation. Some pre- and postconditions of functions
cannot be encoded in either SLICx or with CBMC’s checks. One example is
the memcpy(target buffer,source buffer,length) function that copies bytes

Integrated Static Analysis for Linux Device Driver Verification 531

from a source buffer to a target buffer. One precondition for memcpy is that the
buffer sizes are greater than length. However, the size of the buffers cannot be
inferred for dynamically allocated arrays or objects passed using pointer casts.
Our solution to the problem is that we annotate calls to memcpy with its C
implementation. The implementation iterates over all bytes by pointer arithmetic
and hence CBMC will detect invalid accesses if the loop unwinding bound is large
enough. A better solution would be to provide access to the buffer sizes stored
in CBMC’s internal model. Since the source code of CBMC has been recently
released, we will be able to patch CBMC such that SLICx rules may access
object sizes by new keywords.

Runtime Testing. As the SLICx rules are directly inserted into Linux kernel
sources, runtime testing can be achieved easily. The rules are meant for static
analysis but rely only on one aspect that is not available for runtime-testing:
non–determinism. However the API of CBMC for non-determinism could be
implemented by random generators. Though it is an arbitrary selection of test
cases it should work without any further modifications. We have used SLICx to
patch a recent Linux kernel (2.6.20.4). The patch implements a check that the
second parameter of the function kmem cache free is not NULL. Instead of using
assert we have used the kernel macro BUG ON for runtime testing. Running the
kernel did not lead to any bug reports.

5 Empirical Results

We performed the following small case studies: Testing rules on artificial drivers,
rediscovering errors from a case study [14] and finding double-free errors in
Linux drivers. For artificially created drivers our specification worked without
any manual intervention besides writing the driver. Before presenting results on
real drivers, we briefly review problems performing modular analysis.

5.1 Modularity Issues

One might expect that checking of API properties is trivial if the verification
backend is powerful and efficient enough. Our experiences show that modular
analysis faces serious problems when checking function call specifications. More-
over, it is hardly possible to check memory violations as all external data objects
are passed by, potentially invalid, references. A detailed analysis of the problems
with modular device driver analysis is given in [15]. It is inherently difficult to
do automatic modular analysis on device drivers.

Basically, three solutions to the unknown environment problem exist. The
first solution is to include large parts of the Linux kernel. The resulting model
will be too large for bit-level precision model checking, but light-weight code
checking may still be successfully applied. One example for this strategy can be
found in [16]. We found that for CBMC the performance bottleneck lies in the
model generation. One possible reason is that code unwinding increases the size
of the code by an exponential factor.

532 H. Post and W. Küchlin

Another approach is to construct a generic environment for device drivers as
done in SDV. For Linux the architecture and interfaces for device drivers are
less uniform than in the Windows Device Driver Framework. No common Linux
driver model is implemented that supports a generic operating system model as
implemented in SDV4.

For the data environment aspect some tools exist (e.g. [17]), but many C
extensions of the Linux kernel code seem to prevent a direct application [15].
We are currently working on automatic environment construction specialized on
Linux device drivers. An early prototype enabled us to check some device drivers
for known memory violations.

5.2 Results on Real Drivers

If the verification process is not fully automated as it is in SDV, it is time
consuming to find unknown bugs within the large set of Linux source files. A de-
tailed study of this problem is given by Mühlberg and Lüttgen [14] who critically
evaluated the applicability of BLAST [7] on Linux Device Drivers. The authors
managed to reproduce some known errors with considerable manual effort. We
took some of their examples and tried our solution to rediscover the same bugs.
Our verification process works as follows:

1. Configuration of the Linux kernel such that the relevant modules are built.
2. Manual implemention of a SLICx interface rule to be checked in SLICx.
3. Automatic annotation of all drivers with the above rule.
4. Automatic annotation of subsystems or other source files that are involved.
5. Compilation of the Linux kernel using additional header files and the code

preprocessing tool CIL [18].
6. Manually selecting relevant source code files that are automatically merged

with CIL.
7. Code simplification with a custom automatic script [19].
8. Manual creation of a main function simulating the operating system’s use of

the driver.
9. Automatic data environment creation for main.

10. Running CBMC on main.

After annotating, preprocessing, merging and enriching the driver, the verifi-
cation is performed by CBMC. Our tool-chain rediscovered most bugs mostly
without manual intervention. Compared to the results given in [14] the manual
effort seems to be significantly reduced. Besides rediscovering known errors we
have launched a first check for double-free errors. Due to an incomplete envi-
ronment and some minor CBMC bugs, our tool reported 95 issues. For this case
study we can only report one real error. More results and details on performed
case studies can be obtained through our project website.
4 A generic device driver model exists in Linux, but many drivers do not use it yet.

Moreover the model is subject to extensions and modifications for different subsys-
tems.

Integrated Static Analysis for Linux Device Driver Verification 533

int main(void)
{

SLIC_driver_init();
struct scsi_cmnd cmd;
struct scsi_device scsidev ;
struct Scsi_Host host;
spinlock_t host_lock;

// ...
// API preconditon

__SLIC_spin_lock_init(&host_lock);
__SLIC_spin_lock(&host_lock);

// continued on right side...

// Introduce aliasing
host.host_lock = &host_lock;
scsidev.host = &host;
cmd.device = &scsidev;
cmd.sc_request = &sc_req;

// Call the erronous function
ata_scsi_queuecmd(&cmd,

... scsi_finish_command);
SLIC_driver_exit();
return (0);

}

Fig. 6. A manually constructed operating system model tuned to one error hidden in a
SCSI subsystem component. If memory safety checks are enabled, the data environment
has to be initialized as well.

6 Related Work

The contribution of this work is the integration of several verification aspects into
one tool chain. SDV is clearly a predecessor of our approach. SDV has a domain
that is focussed on a fixed set of some 60 API conformance rules for Windows
Driver Model drivers. A second set of 40 rules for the Kernel-Mode Driver Frame-
work has also been developed. SDV’s backend, SLAM, is a model checker that is
integrated into a Counter Example Guided Abstraction Refinement (CEGAR)
loop. SDV itself cannot analyze memory safety, concurrent programs with shared
memory, bit-level and integer operations [2]. We use an extended specification
language together with a novel and extended rule base for Linux. We employ a
verification engine that has a built-in support for checking memory safety and
bit-level operations. We extend the work by rules that can only be implemented
by using SLICx in combination with CBMC. This paper concentrates on the
specification, specification application and integration aspects and therefore we
do not discuss the numerous verification techniques and their implementations
in greater detail.

Verification Engines. As a back-end we chose the bounded model checker
CBMC [3]. Other C source code model checkers are BLAST [7] and MAGIC [20].
A case study on Linux sources using a heuristic checker is given in [16]. Other ap-
proaches include MOPS [21] and abstract interpretation [22]. We omit examples
for runtime analysis tools and tools based on theorem proving techniques.

We chose to use CBMC as it supports a wide range of C features, a fact that is
crucial when automatic processing of rough device driver code must be achieved.
Some new tools for analyzing C source code are: F-Soft [23], Cascade [24] and
the work in [25] which extends the analysis of C programs to recursive calls and
message passing synchronization. We plan to test if these tools are embeddable
in our tool-chain as well.

534 H. Post and W. Küchlin

Separation logic [26] provides a promising approach to improve reasoning
about low-level programs. To the best of our knowledge it has not been tested
on large real-world systems written in C.

API Specification Languages for C. The specification language strongly
resembles the Aspect Oriented Programming paradigm. With SLICx, we do not
formally restrict the code in transfer functions: we allow function calls, recursion
and memory allocation. Several other verification tools feature an integrated
specification language (for example BLAST [7]).

Operating System Interface Specification Implementations. To the best
of our knowledge the SDV project has the only other available specification im-
plementation for systems software APIs used by device drivers. SDV’s specifica-
tions target the Windows Driver Model framework and are hence not immedi-
ately applicable to Linux drivers.

A specification implementation for the Linux Standards Base [27] is developed
in the Olver Project [28]. The project targets interfaces between the Linux ker-
nel and user level software. The project includes formal specifications of more
than one thousand functions imposed by the Linux Standard Base meant for
automatic model based implementation testing.

Several specifications of user space APIs are analyzed with model checking
technology in [29].

Practical Results on Linux Device Driver Verification. There have been
several works on bug finding or verification of Linux device drivers: BLAST is a
source code level model checker for C. Though BLAST does implement powerful
techniques, its practical applicability has been criticized in [14].

CBMC’s manual explicitly uses a Linux device driver as an example for veri-
fication, but the presented code is a high-level abstraction. Besides, CBMC does
not offer specifications other than memory safety checking, division by zero and
assertions.

D. Engler et al. published several papers presenting results from Linux ker-
nels (e.g. [16], [30]). The presented techniques are effective and efficient, but do
not guarantee soundness or completeness and could therefore be classified as
heuristic approaches.

SATURN [31] is a SAT-based checking tool that has reported several bugs in
the Linux kernel.

7 Summary

We have ported the SDV approach to Linux. We successfully extended the spec-
ification language and implemented a compiler for SLICx. CBMC is integrated
in our approach such that SLICx features are transformed into C code that uses
CBMC’s specification and modeling directives. We extracted several API-rules
and implemented them in SLICx. Our specifications may be used for checking
Linux device drivers as long as the problems of modular verification can be

Integrated Static Analysis for Linux Device Driver Verification 535

solved. A general limitation of our approach is fact the we employ a bounded
model checker. Hence our contributions are only sound and complete disregard-
ing limitations in the analysis backend CBMC.

SLICx and CBMC allow us to formulate several new rules that significantly
extend the application area of SDV. Rules are presented for sound and complete
deadlock detection. Race conditions are covered by a complete rule. From a
practitioner’s point of view, the sound detection of memory leaks is also a notable
contribution. On a large domain on unloadable device driver the rule can be
considered complete.

The simulation of multithreaded executions is achieved with SLICx allowing
to preemption at a higher precision—fewer false positives—automatically.

We have gained new insights into the dependence between hazards, API–
specifications and rules that implement these specifications.

The solutions have been proven to be effective on small, artificially created
driver models. For some examples we were able to even apply the techniques
to rediscover known bugs in real Linux drivers. Due to problems concerning
environment model we could only present some new errors. We believe that
providing Linux operating system models will lead to a solution that resembles
or even extends the success of SDV for the Linux domain.

Acknowledgement. We would like to thank Carsten Sinz, Friedrich Meiss-
ner and Matthias Sauter for helpful discussions and comments on this topic.
Friedrich Meissner and Matthias Sauter have substantially contributed on the
implementation part of this work. Friedrich Meissner has implemented the SLICx
compiler as a part of his master thesis [32]. Besides helpful discussions, Reinhard
Bündgen contributed by organizing an early internship at IBM.

References

1. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity
operating systems. In: 19th ACM Symp. on Operating Systems Principles, Proc.,
pp. 207–222. ACM Press, New York (2003)

2. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
ACM SIGOPS Oper. Syst. Rev. 40(4), 73–85 (2006)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

4. Ball, T., Rajamani, S.K.: SLIC: A specification language for interface checking.
Technical report, Microsoft Research (2001)

5. Various: The SLAM Project (2006) http://research.microsoft.com/slam/
6. Post, H., Sinz, C., Küchlin, W.: Avinux: Towards automatic verification of Linux

device drivers (2007) Available at
http://www-sr.informatik.uni-tuebingen.de/∼post/avinux

7. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
blast. In: Ball, T., Rajamani, S.K. (eds.) Model Checking Software. LNCS,
vol. 2648, pp. 235–239. Springer, Heidelberg (2003)

http://research.microsoft.com/slam/
http://www-sr.informatik.uni-tuebingen.de/~post/avinux

536 H. Post and W. Küchlin

8. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Robby,
Z.H.: Bandera: extracting finite-state models from Java source code. In: Software
Engineering, 22nd Intl. Conf., Proc., pp. 439–448. ACM Press, New York (2000)

9. Various: Linux kernel releases (Available online under http://www.kernel.org)
10. Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux Device Drivers, 3rd edn. O’Reilly

Media, Inc. (2005)
11. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: ACM SIGPLAN Conf.

on Programming Language Design and Implementation, Proc., vol. 39, pp. 14–24.
ACM Press, New York (2004)

12. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs.
pp. 82–97

13. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Comput.
Surv. 3(2), 67–78 (1971)

14. Mühlberg, J.T., Lüttgen, G.: Blasting Linux Code. In: Brim, L., Haverkort, B.,
Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346,
pp. 211–226. Springer, Heidelberg (2007)

15. Post, H., Küchlin, W.: Automatic data environment construction for static device
drivers analysis. In: Conf. on Specification and verification of component-based
systems, Proc., pp. 89–92. ACM Press, New York (2006)

16. Yang, J., Twohey, P., Engler, D., Musuvathi, M.: Using model checking to find
serious file system errors. ACM Trans. Comput. Syst. 24(4), 393–423 (2006)

17. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for c. In:
Wermelinger, M., Gall, H. (eds.) ESEC/SIGSOFT FSE, pp. 263–272. ACM Press,
New York (2005)

18. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: Cil: Intermediate language
and tools for analysis and transformation of c programs. In: Horspool, R.N. (ed.)
CC 2002 and ETAPS 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg
(2002)

19. Sauter, M.: Automatisierung und Integration regelbasierter Verifikation für Linux
Gerätetreiber. Master’s Thesis (To appear, 2007)

20. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. In: Software Engineering. 25th Intl. Conf., Proc, pp. 385–395.
IEEE Computer Society, Washington, DC (2003)

21. Chen, H., Wagner, D.: MOPS: an infrastructure for examining security properties
of software. In: Atluri, V. (ed.) ACM Intl. Conf. on Computer and Communications
Security, Proc., pp. 235–244. ACM, New York (2002)

22. Cousot, P.: Abstract interpretation. ACM Comput. Surv. 28(2), 324–328 (1996)
23. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:

Software verification platform. [33], pp. 301–306
24. Sethi, N., Barrett, C.: Cascade: C assertion checker and deductive engine. In: Ball,

T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 166–169. Springer, Heidel-
berg (2006)

25. Chaki, S., Clarke, E.M., Kidd, N., Reps, T.W., Touili, T.: Verifying concurrent
message-passing C programs with recursive calls. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 334–349. Springer,
Heidelberg (2006)

26. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society, Los Alamitos (2002)

27. Various: Linux standard base project (Available online under
http://www.linuxbase.org)

http://www.kernel.org
http://www.linuxbase.org

Integrated Static Analysis for Linux Device Driver Verification 537

28. Various: The OLVER project (Available under http://linuxtesting.org)
29. Chen, H., Dean, D., Wagner, D.: Model checking one million lines of C code. In:

NDSS, The Internet Society (2004)
30. Engler, D., Ashcraft, K.: RacerX: effective, static detection of race conditions and

deadlocks. In: 19th ACM Symp. on Operating Systems Principles, Proc., pp. 237–
252. ACM Press, New York (2003)

31. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: 32nd
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, Proc.,
pp. 351–363. ACM Press, New York (2005)

32. Meissner, F.: Regelbasierte Spezifikation von Linux Kernel-Schnittstellen mit SLIC.
Master’s Thesis (To appear, 2007)

33. Etessami, K., Rajamani, S.K. (eds.): CAV 2005. LNCS, vol. 3576, pp. 6–10.
Springer, Heidelberg (2005)

http://linuxtesting.org

Integrating Verification, Testing, and Learning

for Cryptographic Protocols�

M. Oostdijk1,4, V. Rusu2, J. Tretmans1,3, R.G. de Vries1,
and T.A.C. Willemse1,4

1 Radboud University, Nijmegen, NL
2 Irisa/Inria Rennes, FR

3 Embedded Systems Institute, Eindhoven, NL
4 Eindhoven University of Technology, NL

5 Riscure, Delft, NL

Abstract. The verification of cryptographic protocol specifications is
an active research topic and has received much attention from the for-
mal verification community. By contrast, the black-box testing of actual
implementations of protocols, which is, arguably, as important as ver-
ification for ensuring the correct functioning of protocols in the “real”
world, is little studied. We propose an approach for checking secrecy
and authenticity properties not only on protocol specifications, but also
on black-box implementations. The approach is compositional and inte-
grates ideas from verification, testing, and learning. It is illustrated on
the Basic Access Control protocol implemented in biometric passports.

1 Introduction

The verification of cryptographic protocols has been an active research topic for
at least the last two decades. Early approaches consisted in developing dedi-
cated logics for specification and inference rules [1,2,3], which a user applied “by
hand”. More recently, automatic, or, at least, computer-assisted techniques have
emerged. These include model checking [4,5], theorem proving [6,7] and combina-
tions of these two techniques [8]. Other approaches are based on term rewriting
techniques [9] sometimes combined with abstract interpretation [10,11,12]. The
above list, albeit incomplete, shows that most formal verification techniques have
been applied, or adapted to, cryptographic protocol verification.

The situation is quite different in the area of testing of black-box imple-
mentations of protocols1. A thorough search of computer science research bib-
liographies revealed only a few related works. Closest to ours is [14], where an
executable implementation is instrumented (hence, it is not really a black box)
to detect violations of security properties. In other works [15,16], various source-
code verification techniques have been applied to source-code implementations.

� This work was done while the second author was visiting the university of Nijmegen.
1 Here, by “implementation” we mean black-box executable code, which is control-

lable/observable only through some interfaces, e.g., like in conformance testing [13].

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 538–557, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integrating Verification, Testing, and Learning for Cryptographic Protocols 539

All these works assume in one way or another that some kind of source code of
the protocol is available, which may not always be the case.

Outside the academic world, practitioners have also developed empirical ap-
proaches for testing security protocols. The tester (or “cracker”) will try to find
whatever information might leak from a protocol implementation, by applying
ad-hoc techniques such as sending arbitrary messages, trying to overflow buffers,
or attempting to break cryptography by brute force. Some of these techniques
were tried when testing the new Dutch biometric passport [17].

Clearly, there are differences between verification and testing techniques for
cryptographic protocols. Some are the usual differences between the two: for-
mal verification may prove either presence or absence of errors in specifications,
while testing may only prove the presence of errors in implementations. Other
differences are specific to the present field of interest:

– in verification, specifications are often very partial, in the sense that only
some inputs and outputs are specified. Of course, only the specified be-
haviour, together with that of an implicit “intruder”, e.g., following the so-
called Dolev-Yao model [18] can be verified. This amounts to saying that the
intruder does not “try” to feed the honest agents with messages that they
do not “ expect” (i.e., whose reception is not specified in the protocol).

– testing for security is not limited to the behaviour of the protocol as described
by an (incomplete) specification; rather, the protocol’s behaviour outside the
specification is also targeted, in the hope that violations of security properties
will be observed.

The two techniques are different, yet complementary: verification proves correct-
ness of the specification against a given set of security properties, whereas testing
checks correctness of the implementation with respect to the specification and,
outside the specification, with respect to the security properties. In this paper
we propose an approach that builds on this complementarity and, moreover,
performs learning from implementations to “complete” the incomplete specifi-
cations. The approach can be roughly described as follows:

1. the protocol’s specification is automatically verified against a given set of
security properties (e.g., secrecy and authenticity properties);

2. if the properties hold on the protocol’s specification, we proceed with the
learning step, which consists in augmenting each agent’s specification with a
set of new behaviours, obtained by testing/interacting with their respective
implementations; then, the process continues at Step 1;

3. otherwise, the verification finds a violation of a property on the protocol’s
specification, and produces a counterexample. Then, we attempt to execute
the counterexample on the black-box implementation:
(a) if the attempt succeeds, a violation of a property on the protocol’s global

implementation has been found, and the procedure terminates.
(b) if the attempt does not succeed, the last learning step is responsible;

hence, it is modified, and the process is continued at Step 2.

540 M. Oostdijk et al.

The global procedure can terminate by reporting a violation of a security prop-
erty by the protocol’s implementation, or when all “representative” traces up to a
certain length have been learned. In the latter case, the conclusion is that the im-
plementation satisfies the security properties, provided that the testing/learning
was “exhaustive”. This “exhaustiveness” condition is formally defined in the pa-
per, and notions of soundness and (theoretical) completeness of the approach
are formally defined and proved.

The rest of the paper is organised as follows. In Section 2 we introduce the
model of IOSTS (Input-Output Symbolic Transition Systems), which we use for
writing specifications of cryptographic protocols. In Section 3 we present the
ingredients of our approach: verification of security properties (secrecy, authen-
tication) expressed using observers (which are IOSTS augmented with certain
acceptance conditions) against protocol specifications expressed as parallel com-
positions of IOSTS; and learning new behaviours of a specification by testing a
black-box implementation of the protocol and observing/interpreting the results.
In Section 4 our approach integrating verification, testing, and learning is de-
fined. The approach is demonstrated on the Basic Access Control protocol, which
is part of the security mechanisms implemented in biometric passports [19].

2 Models

The IOSTS model (Input/Output Symbolic Transition Systems) is inspired from
I/O automata [20]. We specialise here IOSTS for modelling security protocols.
The symbolic data that our protocol-oriented IOSTS manipulate are of three
main sorts: the sort M of messages, the sort K of keys, and the sort N of
nonces. Keys and nonces are subsorts of messages. We define a composition
(i.e., concatenation) function ′′.′′ : M×M �→ M as well the decomposition of
a composed message into its components, using the usual axiomatic way. We
also define a (symmetrical) encryption function ′′{} ′′ : M × K �→ M, with
the property that {{m}k}k = m, for all m : M and k : K2. We enrich this
signature with the usual Boolean sort, and obtain a simple equational theory,
with the usual notion of terms (closed as well as with free variables). We denote
by free(trm) the set of free variables of a term trm. Each term has a smallest
sort (with the convention that the sorts M, K, and N are ordered such that K
and N are smaller than M). We shall need the following notion: a term trm1

is sort-compatible with a term trm2 if the smallest sort of trm1 is smaller than
or equal to the smallest sort of trm2. The semantics of closed terms is given by
the usual initial algebra of our signature.

2.1 Syntax of IOSTS

Definition 1 (IOSTS). An IOSTS is a tuple 〈V, P,C,Θ, L, l0, Σ?, Σ!, Στ , T 〉
where
2 In this paper we only use symmetrical encryption. If needed, asymmetrical encryp-

tion can also be defined in a similar way.

Integrating Verification, Testing, and Learning for Cryptographic Protocols 541

– V is a finite set of state variables3, P is a finite set of formal parameters,
and C is a finite set of symbolic constants, all of which can be of any of the
above sorts M, K, or N .

– Θ is the initial condition, a term of Boolean sort, with free(Θ) ⊆ V ,
– L is a nonempty, finite set of locations and l0 ∈ L is the initial location,
– Σ? is a set of input actions, Σ! is a set of output actions, and Στ is a

set of internal actions. For each action a ∈ Σ? ∪ Σ!, its formal parameter
list par(a) = 〈p1, . . . , pk〉 ∈ P k (k ∈ N) is a tuple of pairwise distinct formal
parameters. We say that the action a carries the formal parameters in par(a).
By convention, internal actions τ ∈ Στ carry no parameters.

– T is a nonempty, finite set of transitions. Each transition is a tuple 〈l, a,G,A, l′〉
made of:
• a location l ∈ L, called the origin of the transition;
• an action a ∈ Σ? ∪Σ! ∪Στ called the action of the transition;
• a term G of Boolean sort, with free(G) ⊆ V ∪ P , called the guard;
• an assignment A, which is a set of expressions of the form (x := Ax)x∈V

such that, for each x ∈ V , Ax is a term that is sort-compatible with x,
and free(Ax) ∩ P ⊆ free(G);

• a location l′ ∈ L called the destination of the transition.

For an IOSTS S we shall denote by VS its set of state variables, by CS its set of
symbolic constants, by LS its set of locations, etc. In graphical representations of
IOSTS, the identifiers of input actions are followed by the the “?” symbol, and
the identifiers of output actions are followed by the “!” symbol. These symbols
are not part of the action’s name, but are only used to easily identify inputs and
outputs. Input and output actions are also called visible or observable actions;
this in contrast with internal actions, which are not observable from the envi-
ronment. Guards that are identically true are not depicted, and a variable not
present in the assignments of a transition is assumed to be left unmodified.

The difference between state variables, constants and formal parameters is
that a state variable’s value can be modified, whereas a symbolic constant’s
value cannot. However, both state variables and constants always have values,
while a formal parameter, say, p, has a value only during the instantaneous firing
of the transition labelled by the action carrying p4.

Example 1. The two IOSTS depicted in Figure 1 describe, respectively the be-
haviour of a terminal (in the left-hand side) and of a biometric passport (in the
right hand side), executing the Basic Access control protocol [19]. This protocol
is designed to ensure that the passport and the terminal mutually authenticate,
and generate a certain secret session key, by which all communication between
the two - after successful completion of Basic Access Control - will be encrypted.

Initially, both passport and terminal know a certain key K (different from the
session key), which is a symbolic constant. The terminal initiates the protocol
by sending a certain command, Get Chal!, to the passport. Upon reception, the
3 Not to be confused with the free variables appearing in terms of our signature.
4 Cf. Section 2.2 on the formal semantics of IOSTS.

542 M. Oostdijk et al.

p1 = NPp

l4 l4

Mut Auth!(p2)

l2

l3

l1

Get Chal!

l0

Rsp Auth?(p5)

p2 = {NTt.NPt.p4}K

p5 = {NPt.NTt.p6}K

p2 = {p3.NPp.p4}K

Mut Auth?(p2)

l2

l3

l1

Get Chal?

l0

Rsp Auth!(p5)
p5 = {NPp.NT p.p6}K

K ′ := f(p6, KTt) K ′ := f(p6, KTp)

NTp := p3, KTp := p4KTt := p4

PassportTerminal

Snd Chal?(p1)
NPt := p1

Snd Chal!(p1)

Fig. 1. Sample IOSTS: Basic Access Control in the Biometric Passport

passport replies by a Snd Chal! response, carrying a formal parameter p1 of sort
nonce, whose value is equal to NPp, the passport’s nonce (a symbolic constant).
The terminal receives this value and memorises it in its state variable NPt,
which is the terminal’s copy of the passport’s nonce. (State variables/symbolic
constants of the passport are subscripted by p, those of the terminal, by t.)

Then, the terminal sends a Mut Auth! output, carrying a formal parameter
p2 = {NTt.NPt.p4}K , that is, an encryption under K of a sequence consisting
of: the terminal’s nonce NTt (a symbolic constant), the previously memorised
passport’s nonce NPt, and a certain arbitrary value p4 of sort K. The value p4

is stored in the terminal’s variable KTt containing so-called key material (to be
used later). The passport accepts the output only if, on the passport’s side, the
formal parameter p2 contains, under the encryption with the same key K, the
passport’s nonce NPp, surrounded by two arbitrary values: p3 and p4. On the
same transition, these values are stored, respectively, in the state variables NTp,
i.e., the passport’s copy of the terminal’s nonce, and KTp (key material).

Next, the passport outputs a Rsp Auth! response, together with a formal pa-
rameter p5, of the form p5 = {NPp.NTp.p6}K , i.e., an encryption with the same
original key K of a concatenation of the nonces NPp and NTp, together with
an arbitrary value p6, to serve as key material of the passport. This response is
accepted by the terminal only if it is able to decrypt and decompose its formal
parameter p5 and to find, at the beginning, its copies NPt, NTt of the nonces.

Finally, on their last transitions, both passport and terminal compute a new
session K ′ as a function f , not specified here, of the key material exchanged [19].

Integrating Verification, Testing, and Learning for Cryptographic Protocols 543

Note that the behaviour of the passport and terminal in Basic Access Con-
trol is not completely specified by the above IOSTS (which closely follows the
informal documents [19]). For example, nothing is said about what happens if a
Get Chal? input is received in a location different from l0, or if the formal param-
eter carried by the Mut Auth! output is not of the expected form. Later in the
paper we shall make this specification more “complete” by means of learning.

2.2 Semantics of IOSTS

The semantics of IOSTS is described in terms of labelled transition systems.

Definition 2. An input-output labelled transition system (IOLTS) is a tuple
〈S, S0, Λ?, Λ!, Λτ ,→〉 where S is a possibly infinite set of states, S0 ⊆ S is the
possibly infinite set of initial states, Λ?, Λ!, and Λτ are possibly infinite sets of
input, output, and internal actions, respectively, and →⊆ S× (Λ?∪Λ! ∪Λτ)×S
is the transition relation.

Intuitively, the IOLTS semantics of an IOSTS 〈V,C, P,Θ, L, l0, Σ?, Σ!, Στ , T 〉
explores the reachable tuples of values (hereafter called valuations) of the vari-
ables of the IOSTS. Let V denote the set of valuations of the state variables,
and Π denote the set of valuations of the formal parameters P . Then, for a
term E with free(E) ⊆ V ∪ P , and for ν ∈ V, π ∈ Π , we denote by E(ν, π)
the value obtained by evaluating E after substituting each state variable by its
value according to ν, and each formal parameter by its value according to π.
In particular, when the term E does not include parameters, i.e., free(E) ⊆ V ,
the value obtained by evaluating E after substituting each state variable by its
value according to ν is denoted by E(ν). For P ′ ⊆ P and for π ∈ Π , we denote
by πP ′ the restriction of the valuation π to a subset set P ′ ⊆ P of parameters,
and let ΠP ′ � {πP ′ |π ∈ Π}.

Definition 3. The semantics of an IOSTS S = 〈V,C, P,Θ, L, l0, Σ?, Σ!, Στ , T 〉
is an IOLTS [[S]] = 〈S, S0, Λ?, Λ!, Λτ ,→〉, defined as follows:

– the set of states is S = L× V,
– the set of initial states is S0 = {〈l0, ν〉|Θ(ν) = true},
– the set of input actions, also called the set of valued inputs, is the set Λ? =

{〈a, π′〉|a ∈ Σ?, π′ ∈ Πpar(a)},
– the set of output actions, also called the set of valued outputs, is the set
Λ! = {〈a, π′〉|a ∈ Σ!, π′ ∈ Πpar(a)},

– the set of internal actions is Λτ = Στ ,
– → is the smallest relation in S × (Λ? ∪Λ! ∪Λτ)× S defined by the following

rule:
t: 〈l,a,G,A,l′〉∈T π∈Π ν∈V G(ν,π)=true π′=πpar(a) ν′=A(ν,π)

〈l,ν〉〈a,π′〉→ 〈l′,ν′〉

The rule says that the transition t is fireable when control is in its origin lo-
cation l, and its guard G is satisfied by the valuation ν of the state variables

544 M. Oostdijk et al.

and π of the formal parameters. If this is the case, then the system moves to the
destination location l, and the assignment A maps (ν, π) to ν′, via the valued
action 〈a, π′〉, where π′ restricts the valuation π to the formal parameters par(a)
carried by the action a (if any; remember that internal actions do not carry
parameters). Intuitively, this is because par(a) are the only formal parameters
“visible” from the environment. In the sequel, we let Λ � Λ? ∪ Λ! ∪ Λτ .

Definition 4 (Execution). An execution fragment is a sequence of alternating
states and valued actions s0α0s1α1...αn−1sn ∈ S · (Λ · S)∗ such that ∀i = 0, n−
1, si

αi→ si+1. An execution is an execution fragment starting in an initial state.
We denote by Exec(S) the set of executions of the IOLTS [[S]].

Definition 5 (Trace). The trace trace(ρ) of an execution ρ is the projection of
ρ on the set Λ! ∪ Λ? of valued actions. The set of traces of an IOSTS S is the
set of all traces of all executions of S, and is denoted by Traces(S).

We shall sometimes need to restrict the traces of an IOSTS in a given envi-
ronment. This operation, together with the parallel product operation, defined
below, allows for communication of values between IOSTS and enables us to
formally define the interactions between agents in a protocol. These interactions
ar similar to those encountered, e.g., in coordination models such as Linda [21].

Intuitively, an environment is an unordered channel connected to an IOSTS,
and may contain, zero, one, or several instances or each valued action in Λ! ∪Λ?

(hence the multiset structure):

Definition 6 (environment). For an IOSTS S, an environment is a multiset
E : Λ! ∪ Λ? → N of valued inputs and outputs of the IOSTS.

Then, the traces of an IOSTS that are “admissible” in an environment are those
traces obtained by taking valued inputs from the environment and adding valued
outputs to it. In the following definition, ∪ and \ denote the usual union and
difference operations on multisets.

Definition 7 (traces in environment). A trace σ ∈ Traces(S) is admissi-
ble in an environment E ∈ NΛ!∪Λ?

if the pair (σ, E) belongs to the following
recursively defined admissibility relation:

– Any pair (ε, E) where ε denotes the empty trace, is admissible,
– if (σ, E) is admissible, α ∈ Λ! is a valued output, and σ ·α ∈ Traces(S), then

(σ · α, E ∪ {α}) is admissible,
– if (σ, E) is admissible, α ∈ Λ? is a valued input, α ∈ E, and σ ·α ∈ Traces(S),

then (σ · α, E \ {α}) is admissible.

We denote by Traces(S, E) the set of traces of S that are admissible in the envi-
ronment E.

Lemma 1 (Monotonicity of admissible traces). For all IOSTS S1, S2 and
environment E : if Traces(S1) ⊆ Traces(S2) then Traces(S1, E) ⊆ Traces(S2, E).

Integrating Verification, Testing, and Learning for Cryptographic Protocols 545

2.3 Parallel Product

The parallel product of two IOSTS S1, S2 will be used in specification and veri-
fication (for defining the protocol, and its interaction with the intruder and with
“observers” for security properties). The parallel product operation is defined
only for compatible IOSTS, defined as follows:

Definition 8. Two IOSTS S1,S2 are compatible if VS1∩VS2=∅, P1 = P2 and
C1 = C2.

Definition 9 (Parallel Product). The parallel product S = S1||S2 of two
compatible IOSTS Si = 〈Vi, Pi, Ci, Θi, Li, l

0
i , Σ

?
i , Σ

!
i, Σ

τ
i , T i〉 (i = 1, 2) is the

IOSTS defined by the following components: V = V1 ∪ V2, P = P1 = P2, C =
C1 = C2, Θ = Θ1∧Θ2, L = L1×L2, l0 = 〈l01, l02〉, Σ! = Σ!

1∪Σ!
2, Σ

? = Σ?
1 ∪Σ?

2,
Στ = Στ

1 ∪ Στ
2 . The set T of symbolic transitions of the parallel product is the

smallest set satisfying the following rules:

〈l1, a1, G1, A1, l
′
1〉 ∈ T1, l2 ∈ L2

〈〈l1, l2〉, a1, G1, A1 ∪ (x := x)x∈V2 , 〈l′1, l2〉〉 ∈ T
〈l2, a,G2, A2, l

′
2〉 ∈ T2, l1 ∈ L1

〈〈l1, l2〉, a2, G2, A2 ∪ (x := x)x∈V1 , 〈l1, l′2〉〉 ∈ T

The parallel product allows each IOSTS to fire its transitions independently of
the other one. We also note that the parallel product is associative and commu-
tative (up to the names of locations).

Example 2. The Basic Access Control protocol depicted in Fig. 1 can be for-
mally modelled as Traces(Terminal||Passport, ∅), that is, as the traces of the
parallel composition of Terminal and Passport that are admissible in the empty
environment ∅ (cf. Definition 7). This initially empty environment is enriched
by the outputs of the agents, which also consume inputs from it. We shall see in
the next section that the full protocol, including the intruder, can be modelled
in a similar manner.

Lemma 2 (Monotonicity of traces in the parallel product). For three
IOSTS S1,S′

1,S2 such that S1,S2 are compatible and S′
1,S2 are compatible, if

Traces(S ′
1) ⊆ Traces(S1) then Traces(S ′

1||S2) ⊆ Traces(S1||S2).

In the sequel, whenever two IOSTS are composed by the parallel product oper-
ation, we implicitly assume that they are compatible.

3 Verification, Testing, and Learning

In this section we present the ingredients of our approach, which are verification,
testing, and learning. The approach itself is presented in the next section.

546 M. Oostdijk et al.

3.1 Expressing Security Properties Using Observers

We represent security properties, such as secrecy and authentication, using ob-
servers, which are IOSTS equipped with a set of recognising locations. Observers
can be seen as an alternative to, e.g., temporal logics and, for some temporal
logics such as LTL, formulas can be translated into “equivalent” observers; see,
e.g., [22] for a transformation of safety LTL formulas into observers.

Definition 10 (recognised traces). Let F ⊆ L be a set of locations of an
IOSTS S. An execution ρ of S is recognised by F if the execution terminates
in a state in F × V. A trace is recognised by F if it is the trace of an execution
recognised by F . The set of traces of an IOSTS S recognised by a set F of
locations is denoted by Traces(S, F).

VIOLATE

p2 = {p3.p4.p5}K

Mut Auth?(p2)

l0

l1

NTω := p3, NPω = p4

p6 = {NPω .NTω .p7}K

secret?(p6)

Fig. 2. Observer ω for the authentication to Terminal

Example 3. The passport authenticates itself to the terminal by demonstrating
its ability to decrypt the terminal’s nonce, and by sending that nonce (within is
an encrypted tuple of messages) back to the terminal by the Rsp Auth command.
The observer depicted in Figure 2 expresses a scenario where the intruder gains
enough information in order to authenticate itself to the terminal. The observer
starts by observing the Mut Auth? input from the terminal, and, by decrypting
the parameter p2 of the input (which is an encrypted sequence of three messages),
it memorises the first and second messages in the sequence in its variables NTω

and NPω, respectively. Then, the observer waits for a certain secret? input,
emitted only by the intruder (defined below), carrying a parameter of the form
{NPω.NTω.p7}K . Intuitively, when the intruder emits this parameter, it can
also emit Rsp Auth({NPω.NTω.p7}K), hence, it can also authenticate itself to
the terminal. Hence, upon reception of the secret? input, the observer enters its
Violate location, which expresses the violation of the authentication property.

In addition to authentication properties, secrecy properties (and in general all
safety properties) can be defined using observers in a similar way.

Integrating Verification, Testing, and Learning for Cryptographic Protocols 547

all!(p)l0

Knows = {c1,cl, k1, . . . , km}

m1.m2 ∈ Knows

any?(m)

τ1
m1, m2 ∈ Knows τ3

m, k ∈ Knows

τ2

p ∈ Knows
Knows := Knows ∪ {m}

Knows := Knows ∪ {m1.m2}

Knows := Knows ∪ {m1, m2}

Knows := Knows ∪ { {m}k }

Fig. 3. Template IOSTS for generic intruder

Definition 11 (recognised traces of product). For IOSTS S and ω and
F ⊆ Lω a subset of locations of ω, we denote by Traces(S||(ω, F)) the set of
recognised traces Traces(S||ω,LS × F).

Lemma 3 (monotonicity of recognised traces). For IOSTS S1,S2, ω, and
F ⊆ Lω, if Traces(S1) ⊆ Traces(S2) then Traces(S1||(ω, F)) ⊆ Traces(S2||(ω, F)).

3.2 The Intruder

The Basic Access Control protocol will be modelled as a parallel product between
the terminal and passport IOSTS, depicted in Figure 1, together with observers
for security properties (such as that depicted in Figure 2) and an intruder, whose
general structure is given in Figure 3 as a “template” IOSTS. A “template”
IOSTS is just like an IOSTS, except that it has “generic” actions, which are
abbreviations for any (input, output) actions in a given set of actions.

The generic intruder depicted in Figure 3 reacts to “any” input any?(m), by
adding the formal parameter m to the variable Knows, which is a state variable
encoding the intruder’s current knowledge. This state variable is initialised as
a certain set {c1, , . . . , cl, k1, . . . km} (l,m ≥ 1) of symbolic constants. The con-
stants ci will be used as nonces, whereas the constants kj will be used as keys5.
The knowledge of the intruder is then closed under the concatenation, deconcate-
nation, and encryption operations, which is modelled by the transitions labelled
by the internal action τ1, τ2, and τ3, respectively. For example, the transition
labelled τ3 in Figure 3 can be fired whenever some message m and key k belong
to the current knowledge Knows, and, by firing the transition, the intruder adds
the encrypted message {m}k to its knowledge. The intruder sends messages by
the all!(p) output, where p is any term in the current knowledge.

The above model of the intruder corresponds to the Dolev-Yao model [18],
with a few limitations: finitely many nonces and keys, and symmetrical encryp-
tion only. The full Dolev-Yao model can also be encoded as a template IOSTS.

5 Finitely many nonces is a usual approximation in cryptographic protocol verification.
Infinitely many nonces can be generated by using a function symbol nonce : N
→ N .

548 M. Oostdijk et al.

3.3 Modelling the Protocol, Performing the Verification

We now have all the ingredients for defining the protocol and its verification. We
specify the protocol as the admissible traces in the empty environment ∅ (cf. Def-
inition 7) of the parallel product (cf. Definition 9) Terminal||Intruder||Passport,
where Terminal and Passport are the IOSTS depicted in Fig. 1, and Intruder
is obtained from the template depicted in Fig. 3 by letting any? denote any el-
ement in the set {Get Chal?, Snd Chal?,Mut Auth?,Rsp Auth?}, and all! denote
any element in {Get Chal!, Snd Chal!,Mut Auth!,Rsp Auth!, secret!}. We let ini-
tially Knows = {c1, k1}, where c1 is a symbolic constant of sort N and k1 is a
symbolic constant of type K. That is, the intruder uses one nonce to send to
the terminal, and has one key k1. Note that the traces of the product have been
restricted to those admissible in the empty environment ∅, to which the agents
(including the intruder) add outputs, and from which agents consume inputs.

Once the specifications of the two agents and of the intruder are known, and
once the property is expressed by an observer ω with a set Violate of recognising
locations, the verification problem becomes: decide whether

Traces([Terminal||Intruder||Passport||(ω, V iolate)], ∅) = ∅ (1)

where, for an IOSTS S and an observer (ω, V iolate), we denote (cf. Definition 11)
by Traces(S||(ω, V iolate)) the set of recognised traces Traces(S||ω,LS×V iolate).

To decide whether Equality (1) holds, we proceed as follows: we translate
the IOSTS Terminal, Intruder, and Passport into the language of the Maude
tool [23]. We choose this particular tool because it is well adapted to modelling
IOSTS and their parallel compositions. Then, Maude’s rewriting engine checks
whether the Violate location, or set of locations, of the observer are reachable
in the parallel composition of the modules. If yes, then the property is violated,
otherwise, the property holds. Of course, in general (in the presence of loops),
the reachability analysis may not terminate. Hence, for practical reasons, we
restrict the analysis to traces of a certain length n ∈ N, which is a parameter of
our global approach (including verification, testing, and learning). The protocol
depicted in Figure 1 does satisfy the property defined by the observer depicted
in Figure 2. Below is an example of a negative result.

Example 4. Consider the IOSTS Terminal1 in Fig. 4, which is very much like
Terminal (Fig. 1) except for the fact that, in the guard of the transition from
l2 to l3, the variable NPt equals NTt. That is, instead of sending back its own
nonce as it should, Terminal1 sends back the same nonce it received from the
passport6. Then, the intruder may just copy the message p2 and send it back
via a Rsp Auth! command, which the terminal accepts as “valid” authentica-
tion. In this way, the intruder manages to “fake” the identity of the pass-
port. The intruder also generates a secret! output with the same parameter
6 Note that, in the correct protocol in Fig. 1, on the transition from l2 to l3 of Terminal,

we have NPt �= NTt: by the protocol’s semantics, we have NPt = NPp, and by the
initial algebra semantics, the constants NPp and NTt are different as no equality
between has been specified.

Integrating Verification, Testing, and Learning for Cryptographic Protocols 549

NTt = NPt

l4 l4

l2

l3

l1

Get Chal!

l0

Rsp Auth?(p5)

NPt := p1

Snd Chal?(p1)

p5 = {NPt.Ntt.p6}K

p2 = {p3.NPp.p4}K

Mut Auth?(p2)

l2

l3

l1

Get Chal?

l0

Rsp Auth!(p5)

K ′ := f(p6, KTt) K ′ := f(p6, KTp)

NTp := p3, KTp := p4

p5 = {NPp.NTp.p6}K

p1 = NPp

Snd Chal!(p1)

Terminal1 Passport

p2 = {NTt.NPt.p3}K∧

KTt := p4

Mut Auth!(p2)

Fig. 4. Erroneous protocol, which violates authentication property

as Rsp Auth!, which makes the observer enter its Violate location; formally, we
have Traces([Terminal1||Intruder||Passport||(ω, V iolate)], ∅) 	= ∅.

3.4 Learning by Testing

Another ingredient of our approach is testing/learning. Intuitively, each agent’s
specification, say, A, may be “augmented” using information obtained by inter-
acting with the corresponding (unknown) implementation IA. If a trace σA ∈
Traces(IA) \ Traces(A) is observed, then transitions are added to A, such as
to include the trace σA, called thereafter an example; and this part of the
learning process is called adding examples. The ultimate goal of the adding ex-
amples process is that, eventually, Traces(IA) ⊆ Traces(A) and Traces(IB) ⊆
Traces(B) hold, in which case no more examples can be added. In general, in-
finitely many examples, in the above sense, must be added before the process
terminates7.

7 There are two sources of infinity: infinite breadth due to the values of the parameters
carried by the actions, and infinite length (or depth) of the traces. In order to make
this process finite we can resort to uniformity and regularity hypotheses [24]. In our
context, uniformity hypotheses say that the valued inputs can be partitioned into
finitely many classes, and that it is enough to stimulate the implementation with one
input in each class in order to obtain all possible (equivalent) outputs; and regularity
hypotheses state that it is enough to bound the length of the testing/learning step
to a certain natural number n.

550 M. Oostdijk et al.

p2 = {NTt.NPt.p4}K∧

l2

l3

l1

K ′ := f(p6, KTt)

l4

l0

Get Chal!

Snd Chal?(p1)
NPt := p1

p2 = {NTt.NPt.p4}K
Mut Auth!(p2)

KTt := p4

p5 = {NPt.NTt.p6}K

Rsp Auth?(p5)

Mut Auth!(p2)
NTt = NPt

l′3

p2 = {NTt.NPt.p4}K
∧NTt = NPt
Mut Auth!(p2)

Get Chal?

l4

p2 = {p3.NPp.p4}K

Mut Auth?(p2)

l2

l3

l1

Get Chal?

l0

Rsp Auth!(p5)

NPp := p1

Snd Chal!(p1)

p5 = {NPp.NTp.p6}K

K ′ := f(p6, KTp)

NTp := p3, KTp := p4

Fig. 5. Terminal (left) and Passport (right), after learning

Example 5. Assume that, by interacting with the passport’s implementation8 we
obtain the example that, after the first time the nonce was sent via the Snd Chal!
output, a new Get Chal? input results in sending the nonce once again. Then,
we add to the specification the transition labelled Get Chal? from l2 to l1. The
resulting specification Passport2 of the passport is depicted in the right-hand side
of Figure 5. Next, assume that, by interacting with the terminal, we discover that
the Mut Auth! command emits a sequence in which the first element is equal to
the terminal’s copy NPt of the passport’s nonce. Then, we add a transition to
the specification; the left-hand side of Figure 5 shows two possibilities for adding
the new transition (drawn with dashed, and dotted lines, respectively): either
to a new location l′3, or to the existing location l3. We denote by Terminal2 the
IOSTS obtained by adding the latter transition (depicted using a dashed line).

The second part of the learning process deals with removing counterexamples.
Let again A and B denote the honest agents in a protocol and C denote the
intruder. Then, as seen in Section 2, the protocol is modelled by the set of traces
Traces(A||C||B, ∅), and a counterexample is a trace σ ∈ Traces(A||C||B, ∅),
which violates the property ϕ, and which is not in Traces(IA||IC ||IB , ∅). That is,
a trace showing that ϕ is not satisfied by the protocol’s global specification, but
that cannot be “reproduced” on the protocol’s implementation. The existence of
such “spurious” counterexamples indicates that the learning was imperfect; they
have to be removed from the specifications A,B in order to “fix” the learning.

Example 6. We have seen in Example 4 that if the terminal re-uses the nonce
of the passport instead of its own in its Mut Auth output (as does Terminal2 in
8 Due to confidentiality issues about the case study, these examples are fictitious.

Integrating Verification, Testing, and Learning for Cryptographic Protocols 551

the left-hand side of Figure 5), the protocol is incorrect as it is able to “authen-
ticate” the intruder via the Rsp Auth input. Then, a model checker generates a
trace σ, illustrating the authentication property’s violation, which, if the proto-
col’s implementation does not violate our property, is not reproducible on the
implementation. That is, σ is a counterexample for the property described by
the observer in Fig. 2.

We now give more details on the adding examples and removing counterexam-
ples procedures. These procedures are only one way, among many, to perform
learning. We do not know of any existing learning techniques for infinite-states
systems such as IOSTS, but for finite-state automata such techniques exist [25].

Adding examples. The intuition is that we want to preserve as much as possible
the control structures of the honest agent’s current specifications A,B. Let σA ∈
Traces(IA)\Traces(A). Then, σA can be decomposed as σA = σ′A ·α ·σ′′A, where
σ′A ∈ Traces(A), α ∈ Λ?

A ∪Λ!
A, σ′A ·α /∈ Traces(A), and σ′′A ∈ (Λ?

A ∪Λ!
A)∗. Then,

let α = 〈a, π〉, let 〈l, ν〉 be any state of [[A]] in which the IOLTS [[A]] may be after
firing the sequence σ′A. We add one new transition t to the IOSTS A in order to
“include” the valued action α = 〈a, π〉. The transition t has:

– origin l;
– action a;
– guard G, chosen by the user to be some predicate G on the variables VA and

parameters PA such that G(ν, π) = true; by default, G is chosen to be the
complement of the union of the conditions under which a may be fired in l;

– assignments are also chosen by the user - by default, the identity assignments
(x := x)x∈VA ;

– the destination is defined as follows:
• if, by choosing the destination of t to be a location l′ ∈ LA, the whole

sequence σA becomes a trace of the resulting IOSTS, then we let the
destination of t be l′; if several choices are possible for l′, then one is
chosen;

• otherwise, we let the destination of t be a new location l′′ /∈ LA.

In the right-hand side of Figure 5, the transition t labelled Get Chal? from l2
to l1 has been added to the passport’s specification, as a result of the observa-
tion that, after one Snd Chal! output, a new Get Chal? input produces another
Snd Chal!. Here, the existing location l1 has been chosen as the destination of t.
The left-hand side of Figure 5 shows two different ways of adding a transition to
the terminal’s specification: the transition drawn with a dashed line goes to an
existing location, whereas the one depicted with a dotted line goes to a newly
created location.

Removing counterexamples. This procedure is called whenever the last call to
adding examples leads to a violation of the property under verification by the the
protocol’s augmented specification. (It is assumed that the protocol is initially
correct, hence, any counterexample may only exist because of the last added

552 M. Oostdijk et al.

example.) Hence, removing counterexamples consists in undoing the effect of
the last “adding examples” operation, and in proposing another way of adding
the last example (in terms of the transition t to be added to one of the agent’s
specifications). A marking mechanism is used to ensure that a different choice is
proposed if the removing counterexamples operation is called repeatedly for the
same example. These procedures are illustrated in the next section.

4 Our Approach

The proposed approach deals with the problem of establishing whether or not
IA||IC ||IB |= ϕ holds, for black-box implementations IA, IB of the honest agents
and IC of the intruder, assumed to have some (unknown) representations in
terms of finite or infinite IOLTS (Input-Output Labelled Transition Systems),
and a security property ϕ represented using an observer (ω, V iolate)9.

The corresponding specifications of the agents are denoted by A,B, C. We
assume that Traces(IC) = Traces(C), that is, our model of the intruder is correct.
The approach is presented in Figure 6 in pseudocode.

The outer while loop is executed as long as a certain Boolean flag inconclusive
holds true. The flag is set to false and will be reset to true if the function’s
inner while loop, described below, fails to deliver a “conclusive” result.

The inner while loop can be executed as long as A||C||B |= ϕ. The latter
formula denotes a verification problem, to be solved by means of model checking
as described in Section 3.3. In each iteration of the inner while loop, one of the
two honest agent’s specifications, A and B (in alternation) is augmented using
the add-examplemechanism informally described in Section 3.4. The inner while
loop may terminate in two situations: when, after a number of iterations, the
done() function returns true (intuitively, this happens if all “representative”
traces up to a bounded length have been explored and A||C||B |= ϕ still holds);
or when A||C||B |= ϕ fails to hold.

– in the first situation, the result is that if the learning process was exhaus-
tive i.e., such that Traces(IA) ⊆ Traces(A) and Traces(IB) ⊆ Traces(B)
holds, the conclusion is that the property ϕ also holds on the protocol’s im-
plementation. That is, we have established the correctness of the protocol’s
implementation without actually executing it. This is a consequence of the
theoretical completeness theorem given below.

Note that, since IA, IB are black boxes, the hypothesis that Traces(IA) ⊆
Traces(A) and Traces(IB) ⊆ Traces(B) cannot, in general, be validated. It
is only possible to increase our confidence in the validity of the hypothe-
sis, by performing as many iterations of the while loop as possible and by
systematically testing as many sequences of inputs/outputs as possible10.

9 Remember from Section 3 that A||B||C |= ϕ iff Traces([A||B||C||(ω,V iolate)], ∅)=∅.
10 Under regularity and uniformity hypotheses on the data types [24], only a finite set

of traces need to satisfy the trace-inclusion hypotheses, which becomes checkable.

Integrating Verification, Testing, and Learning for Cryptographic Protocols 553

function VerifyTestLearn(A, B, C, IA, IB, IC , ϕ)
inconclusive := true
turn := A
while inconclusive do

inconclusive := false
while A||C||B |= ϕ and not done() do

if turn = A then
choose σA ∈ Traces(IA) \ Traces(A)
A := add-example(A, σA)

else
choose σB ∈ Traces(IB) \ Traces(B)
B := add-example(B, σB)

endif
turn := next(turn)

endwhile
if done() //by assumption, done() = true => A||C||B |= ϕ

return
“Traces(IA) ⊆ Traces(A) ∧ Traces(IB) ⊆ Traces(B) ⇒ IA||IC ||IB |= ϕ”

else // implicitly, after while loop done() = false => A||C||B �|= ϕ

choose(σ ∈ Traces(A||C||B, ∅) ∩ {σ|σ �|= ϕ})
if is-executable(σ, IA||IC ||IB) return “IA||IC ||IB �|= ϕ′′”
else
if turn = B

A := remove-counterexample(A, σA)
else

B := remove-counterexample(B, σB)
endif

endif
inconclusive := true

endif
endwhile

end.

Fig. 6. Our approach

– on the other hand, if, after a number of executions, A||C||B |= ϕ does not
hold any more, we obtain a trace σ, which is a sequence of interactions
between the intruder and the honest agents, demonstrating that the security
property is violated. There are again two cases:
• if σ is executable on the implementation, that is, if it is possible to repro-

duce it on IA||IC ||IB - where, e.g., the intruder’s implementation IC is
replaced by a test execution engine - then the protocol’s implementation
also violates the property. Note that we have obtained an information
about the protocol’s implementation mostly by using informations ob-
tained by verifying the protocol’s specification. Of course, it is necessary
to ensure that the trace σ obtained by verification is executable by the
implementation; but we execute just one trace, obtained via the capabil-
ities of a model checker of exploring “all” the possible traces of a model.

554 M. Oostdijk et al.

This is arguably, more efficient for finding errors than directly executing
and monitoring the implementation IA||IC ||IB (with all the execution
traces induced by the intruder’s implementation!) in the hope of detect-
ing an error.

• otherwise, the trace σ found on the protocol’s specification cannot be
executed on the protocol’s implementation, and we have a spurious coun-
terexample in the sense given in Section 3.4. This means that the learn-
ing performed during the inner while loop was incorrect. Then, the
remove-counterexample procedure just undoes the effect of the last
add-example procedure, and proposes another way of including the last
example. A marking mechanism is employed to ensure that a future at-
tempt to add the same example trace gives a different result.

Example 7. Assume that we have performed one whole iteration of the inner
while loop in the procedure described in Figure 6, and that, after the test-
ing/learning phase, the passport, which plays the role of agent A, is that depicted
in Figure 5 (right). This augmented specification of the passport, together with
the intruder, and the initial specification of the terminal, i.e., that depicted in
Figure 1 (left), satisfies the property represented by the observer depicted in Fig-
ure 2. Then, a new iteration of the inner while loop is started, and it is now the
terminal’s turn to “learn” new behaviours. Assume that in this phase we “learn”
the transition depicted with a dashed line in Figure 5 (left). Then, as seen in
Example 4 the protocol now violates the property, and we are presented with a
counterexample showing how the property is violated. If the counterexample is
executable on the global protocol’s implementation, then, the procedure termi-
nates with a conclusive (negative) answer. Otherwise, the remove counterexample
procedure takes over and replaces the transition depicted with a dashed line in
Figure 5 with the one depicted with a dotted line, and the process continues
until, e.g., all the (finitely many) traces of the agent’s specifications, satisfying
adequate uniformity and regularity hypotheses, have been learned.

We now give the main theorem, stating the method’s theoretical completeness.
Inttuitively, it says that if the models of the agents in a protocol are sufficiently
precise, then the results obtained on the models also hold on the implementation.

Theorem 1 (theoretical completeness). Consider three IOSTS A, B, and
C, such that C is an intruder as described in Section 3.2. Let ϕ be a safety prop-
erty with the corresponding observer, (ω, violate), as described in Section 3.1,
and assume that A, B, C, and ω are pairwise compatible IOSTS (cf. Defini-
tion 8). Let also IA, IB, IC be the (unknown) models for the implementations of
the honest agents and of the intruder, which are IOLTS such that Λ!

IA
= Λ!

[[A]],
Λ?

IA
= Λ?

[[A]], Λ
!
IB

= Λ!
[[B]], Λ

?
IB

= Λ?
[[B]], Λ

!
IC

= Λ!
[[C]], Λ

?
IC

= Λ?
[[C]]. Finally, assume

that A||C||B |= ϕ as defined in Section 3.3. Then, we have the valid implication
Traces(IA) ⊆ Traces(A) ∧Traces(IB) ⊆ Traces(B) ⇒ IA||IC ||IB |= ϕ.

This theorem says that, when the procedure returns ‘Traces(IA) ⊆ Traces(A)∧
Traces(IB) ⊆ Traces(B) ⇒ IA||IC ||IB |= ϕ” then this is really the case. As a

Integrating Verification, Testing, and Learning for Cryptographic Protocols 555

result, using standard conformance testing, one can ensure that the collaborating
agents meet the required (security) properties. As the completeness result does
not require that the composition of the agents is tested, a major advantage of our
method is that the test effort can be distributed over several companies, i.e. each
agent can be certified by a different company (or several). On the one hand, this
reduces the required test effort per company and the amount of information that
a company needs for testing, and, on the other hand, a distributed certification
mechanism can have a significant positive impact on the trust one has in the
agents and the system as a whole. Note that soundness - i.e., when the procedure
says that the protocol’s implementation violates a property, then this is really
the case - is trivial by construction.

5 Conclusion and Future Work

We propose an approach for checking security properties (such as secrecy and
authenticity properties), as well as other, general-purpose temporal logic prop-
erties, on black-box implementations of cryptographic protocols. The approach
integrates ideas from verification, black-box testing, and learning.

Specifications of agents are given as IOSTS (Input-Output Symbolic Tran-
sition Systems), and the implementations of all the agents in the protocol are
black boxes, assumed to have some unknown representations in terms of finite or
infinite IOLTS (Input-Output Labelled Transition Systems). Security properties
and other temporal logic properties are represented using observers, which are
IOSTS equipped with a set of dedicated locations that are entered when the
corresponding property is violated. The verification is then standard state-space
exploration, and the learning consists in adding transitions to the honest agents’
specifications by observing so-called examples, that is, traces of an agent’s imple-
mentation that are not in the corresponding specification. Learning also consists
in removing counterexamples, when a trace violating a property on the protocol’s
specification cannot be reproduced on the implementation.

The method is sound, as it only says that a property is violated by a proto-
col’s implementation when such a violation has actually been found. It is also
theoretically complete, in the sense that, if the learning is exhaustive (i.e., if the
traces of the agent’s implementations are included in the traces of the corre-
sponding specifications obtained by learning) and if the property holds on the
protocol’s global specification, then the property also holds on the protocol’s
implementation. Of course, the trace-inclusion hypothesis between a black-box
implementation and a white-box specification cannot be established in general,
but confidence in it can be increased by increasing the amount of testing and
learning. We are investigating connections with ideas from the area of testing of
processes with data [24] where it is shown that if some regularity and uniformity
hypotheses hold on the data, then a complete finite test suite can be given.

The method is compositional in the testing/learning parts: adding examples
and removing counterexamples operate on each agent, not on the composition
of the agents. The benefit of a compositional approach is the usual one (the

556 M. Oostdijk et al.

ability to deal with larger state spaces). From a security point of view, certifying
a system by testing each agent in isolation has its benefits too: on the one hand,
only isolated pieces of a (possibly proprietary) system have to be made available
to a company for testing, and on the other hand, testing for security properties
such as secrecy and authentication become a less ad-hoc activity.

We illustrate our method on the Basic Access Control protocol implemented in
biometric passports. Some of the examples presented in the paper are simplified
instances of actual experiments that we performed with actual passports [17];
the present paper formalises and enhances the empirical testing methodology
that we used in [17].

Finally, our method is not limited, in principle, to cryptographic protocols or
security properties. Cryptographic protocols are interesting here because they
have “small” specifications, which are typically incomplete and for which it
makes sense to attempt completion by means of learning techniques.

References

1. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

2. Gong, L., Needham, R.M., Yahalom, R.: Reasoning about belief in cryptographic
protocols. In: IEEE Symposium on Security and Privacy, pp. 234–248 (1990)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Inf. Comput. 148(1), 1–70 (1999)

4. Lowe, G.: Casper: A compiler for the analysis of security protocols. Journal of
Computer Security 6(1-2), 53–84 (1998)

5. Armando, A., Basin, D.A., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J.,
Drielsma, P.H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim, S.,
von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron,
L.: The avispa tool for the automated validation of internet security protocols and
applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

6. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1-2), 85–128 (1998)

7. Hughes, J., Warnier, M.: The coinductive approach to verifying cryptographic pro-
tocols. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) Recent Trends in Alge-
braic Development Techniques. LNCS, vol. 2755, pp. 268–283. Springer, Heidelberg
(2003)

8. Gunter, E.L., Felty, A.P. (eds.): TPHOLs 1997. LNCS, vol. 1275, pp. 19–22.
Springer, Heidelberg (1997)

9. Denker, G., Millen, J.K.: Modeling group communication protocols using multiset
term rewriting. Electr. Notes Theor. Comput. Sci., vol. 71 (2002)

10. Genet, T., Klay, F.: Rewriting for cryptographic protocol verification. In:
McAlleste, D.A. (ed.) Automated Deduction - CADE-17. LNCS, vol. 1831, pp.
271–290. Springer, Heidelberg (2000)

11. Bozga, L., Lakhnech, Y., Périn, M.: Pattern-based abstraction for verifying secrecy
in protocols. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003.
LNCS, vol. 2619, pp. 299–314. Springer, Heidelberg (2003)

Integrating Verification, Testing, and Learning for Cryptographic Protocols 557

12. Monniaux, D.: Abstracting cryptographic protocols with tree automata. Sci. Com-
put. Program. 47(2-3), 177–202 (2003)

13. ISO/IEC 9646. Conformance Testing Methodology and Framework (1992)
14. Jeffrey, A.S.A., Ley-Wild, R.: Dynamic model checking of C cryptographic pro-

tocol implementations. In: Workshop on Foundations of Computer Security and
Automated Reasoning for Security Protocol Analysis (fcs’06) (2006)

15. Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real C
code. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer,
Heidelberg (2005)

16. Bhargavan, K.: Provable implementations of security protocols. In: IEEE Sympo-
sium on Logic in Computer Science (LICS 2006), pp. 345–346 (2006)

17. Breunesse, C.-B., Hubbers, E., Koopman, P., Mostowski, W., Oostdijk, M., Rusu,
V., de Vries, R., van Weelden, A., Schreur, R.W., Willemse, T.: Testing the dutch e-
passport, Technical report, Radboud University, Nijmegen, The Netherlands (2006)

18. Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proceedings of the
IEEE 22nd Annual Symposium on Foundations of Computer Science, pp. 350–357
(1981)

19. Technical advisory group on Machine-Readable travel documents. Pki for machine-
readable travel documents, version 1.1. Technical report, International Civil Avia-
tion Organization (October 2004)

20. Lynch, N., Tuttle, M.: Introduction to IO automata. CWI Quarterly, vol. 3(2)
(1999)

21. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458 (1989)
22. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods

in System Design 19(3), 291–314 (2001)
23. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,

C.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 76–87. Springer, Heidelberg (2003)

24. Gaudel, M.-C., James, P.R.: Testing algebraic data types and processes: A unifying
theory. Formal Asp. Comput. 10(5-6), 436–451 (1998)

25. Angluin, D.: Inference of reversible languages. Journal of the ACM 29(3), 741–765
(1982)

Translating FSP into LOTOS and Networks of

Automata�

Gwen Salaün1,∗, Jeff Kramer2, Frédéric Lang1, and Jeff Magee2

1 INRIA, Centre de Recherche Rhône-Alpes / VASY, Montbonnot, France
salaun@lcc.uma.es, Frederic.Lang@inria.fr

2 Imperial College, London, UK
{j.kramer,j.magee}@imperial.ac.uk

Abstract. Many process calculi have been proposed since Robin Milner
and Tony Hoare opened the way more than 25 years ago. Although they
are based on the same kernel of operators, most of them are incompatible
in practice. We aim at reducing the gap between process calculi, and es-
pecially making possible the joint use of underlying tool support. Fsp is
a widely-used calculus equipped with Ltsa, a graphical and user-friendly
tool. Lotos is the only process calculus that has led to an international
standard, and is supported by the Cadp verification toolbox. We pro-
pose a translation from Fsp to Lotos. Since Fsp composite processes
are hard to encode into Lotos, they are translated into networks of au-
tomata which are another input language accepted by Cadp. Hence, it is
possible to use jointly Ltsa and Cadp to validate Fsp specifications. Our
approach is completely automated by a translator tool we implemented.

1 Introduction

Process calculi (or process algebras) are abstract description languages to spec-
ify concurrent systems. The process algebra community has been working on
this topic for 25 years and many different calculi have been proposed. At the
same time, several toolboxes have been implemented to support the design and
verification of systems specified with process calculi. However, although they are
based on the same kernel of operators, most of them are incompatible in practice.
In addition, there is no connection between calculi and very few bridges between
existing verification tools. Our goal is to reduce the gap between the different
formalisms, and to propose some bridges between existing tools to make their
joint use possible.

We focus here on the process calculi Fsp and Lotos. Fsp [16] is a widely-used
and expressive process calculus conceived to make the writing of specifications
easier and concise. Fsp is supported by Ltsa, a user-friendly tool which allows
to compile Fsp specifications into finite state machines known as LTSs (Labelled

� G. Salaün currently works at Universidad de Málaga, Spain.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 558–578, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Translating FSP into LOTOS and Networks of Automata 559

Transition Systems), to visualise and animate LTSs through graphical interfaces,
and to verify LTL properties. On the other hand, Lotos is an ISO standard [13],
which has been applied successfully to many application domains. Lotos is more
structured than Fsp, and then adequate to specify complex systems possibly
involving data types. Lotos is equipped with Cadp [9], a verification toolbox
for asynchronous concurrent systems. Cadp allows to deal with very large state
spaces, and implements various verification techniques such as model checking,
compositional verification, equivalence checking, distributed model checking, etc.

To sum up, the simplicity of Fsp makes it very accessible to everyone, whereas
Lotos requires a better level of expertise. In addition, Cadp is a rich and
efficient verification toolbox which can complement basic analysis possible with
Ltsa. We propose to translate Fsp specifications into Lotos to enable Fsp

users to access the verification means available in the Cadp toolbox. Since some
Fsp constructs for composite processes are difficult to encode into Lotos (for
instance synchronisations between complex labels or priorities), they have been
encoded into the Exp format which is another input format of Cadp. Exp

allows the description of networks of automata using parallel composition, but
also supports renaming, hiding and priorities.

Our goal is not to replace Ltsa, since Ltsa is convenient to debug and
visualise graphically simple examples, but to extend it with supplementary verifi-
cation techniques such as those mentioned before. Furthermore, we choose a high-
level translation between process calculi, as most as possible, instead of low-level
connections with Cadp (through the Open/Cæsar application programming in-
terface [7] for instance) because (i) we preferred to keep the expressiveness of the
specification and then make the translation of most behavioural operators eas-
ier, (ii) high-level models are necessary to use some verification techniques avail-
able in Cadp, such as compositional verification, (iii) verification of the gener-
ated Lotos code can benefit from the numerous optimisations implemented in the
Cæsar.adt and Cæsar [6,12,11] compilers of Lotos available in Cadp, which
would be too expensive to re-implement at the Fsp level.

The translation from Fsp to Lotos/Exp is completely automated in a trans-
lator tool we implemented (about 25,000 lines of code). This tool was validated on
many examples (more than 10,000 lines of Fsp) to ensure that the translation is
reliable. As regards semantics, our translation preserves a branching equivalence
relation [22] which is stronger than observational equivalence.

The remainder of this paper is organised as follows. Section 2 gives short intro-
ductions to Fsp, Lotos, and Exp. Section 3 presents some preliminary definitions
that are used in the remainder of the paper. Sections 4 and 5 describe respectively
the translation of Fsp sequential processes into Lotos and of Fsp composite pro-
cesses into Exp. In Section 6, we present our tool and its validation. Section 7 il-
lustrates how Ltsa and Cadp can be used jointly on a simple system. Section 8
ends with some concluding remarks. More details about this work are given in an
Inria technical report [15].

560 G. Salaün et al.

2 FSP, LOTOS, and EXP

We start with a short description of Fsp (Finite State Processes, see [16] for a more
complete presentation of the language). Fsp can define (i) constants, ranges, and
sets, (ii) basic (i.e., sequential) and composite processes, (iii) safety and progress
properties (not handled in this work). In the grammar of Fsp basic processes be-
low, an upper case identifier P refers to a process identifier,X (or x) is a variable,
act is a string label, and V is an expression involving arithmetic, comparison, and
logical operators with variables. We discard in this paper local process definitions
as well as the visibility operateur “@”, dual of the hiding operator, although the
full expressiveness of Fsp is taken into account in the translator we implemented
(see Section 6).

PB::=P(X1=V1, . . . , Xk=Vk) = B process definition
+{Ae1, . . . , Aen} alphabet extension
/{A′

r1/Ar1, . . . , A
′
rn/Arn} \{Ah1, . . . , Ahn} relabel + hide

B::=stop | end | error | P(V1, . . . , Vn) terminations + process call
| if V then B1 else B2 if-then-else structure
| when V1 S1 → B1 | . . . | when Vn Sn → Bn choice
| P1(V11, . . . , V1k); . . . ;Pn(Vn1, . . . , Vnl);B sequential composition

S::=A1 → . . .→ Ak sequence of labels
A::=L1 . . . Ln label
L::=act action

| V | x : V expression
| {A1, . . . , An} | x : {A1, . . . , An} set of labels
| [V1..V2] | x : [V1..V2] range

Fsp has an expressive syntax to represent labels A, A1, etc. Each label is thus
the concatenation of lower-case identifiers act, expressions V , and integers within
a range “[V1..V2]” where V1 and V2 are integer expressions. A variable x may
be associated to some labels, which allows to reuse them later in the behaviour.
A basic process definition consists of a process name P , a set of parameters
X1, . . . , Xk with default values V1, . . . , Vk, and a sequential behaviour B. This
behaviour can be either relabeled, “A′

ri/Ari” meaning that each label in Ari

renames into labels A′
ri (a single label may rename into several labels, thus

yielding several transitions), or hidden to the environment, which corresponds
to relabeling into the special action τ . Fsp uses label prefix matching while
applying hiding and relabeling operators. The alphabet of a process consists
of the set of labels (possibly renamed) occurring in B and the supplementary
labels in “{Ae1, . . . , Aen}”. The stop, end, and error behaviours correspond
to deadlock, successfull termination, and erroneous termination. Process call
and if-then-else have a standard semantics. The “|” operator denotes a choice
in which every branch “Si → Bi” whose condition Vi evaluates to true may
execute nondeterministically; Si corresponds to a sequence of labels. Finally, a
sequential composition is made up of a list of process calls requiring that all
these processes terminate. Fsp composite processes are defined as follows:

Translating FSP into LOTOS and Networks of Automata 561

PC ::=||P(X1=V1, . . . , Xk=Vk) = C process definition
6 {Ap1, . . . , Apn} \{Ah1, . . . , Ahn} priority + hide

| ||P(X1=V1, . . . , Xk=Vk) = C process definition
5 {Ap1, . . . , Apn} \{Ah1, . . . , Ahn} priority + hide

C::=SL P(V1, . . . , Vn) /{A′
r1/Ar1, . . . , A

′
rn/Arn} process call + relabel

| SL (C1|| . . . ||Cn) /{A′
r1/Ar1, . . . , A

′
rn/Arn} parallel compo. + relabel

| if V then C1 else C2 if-then-else structure
SL::={A1, . . . , Am}::{A1, . . . , An}: sharing / labeling

A composite process definition consists of a name “||P” (the symbol “||” in-
dicating that P belongs to the class of composite processes), a set of parameters
X1, . . . , Xk with default values V1, . . . , Vk, and a composite behaviour C. Priori-
ties can be assigned to labels in C, “6” (respectively “5”) meaning that labels
in “{Ap1, . . . , Apn}” have lower (respectively higher) priority than all other labels
occurring in C. A composite behaviour may be either a call to a basic process, a
parallel composition of composite behaviours synchronising on the intersection of
their alphabets, or a deterministic choice between composite processes. Relabel-
ing and hiding are also possible using a syntax similar to basic processes. At last,
Fsp contains two original operators named process labeling “:” and process shar-
ing “::” which are always used subsequently (first sharing then labeling, see the
grammar above). Process labeling “{A1, . . . , An}:C” generates an interleaving of
as many instances ofC as there are labels in “{A1, . . . , An}”. All the labels of each
instance are prefixed by the label of “{A1, . . . , An}” associated to this instance.
Process sharing “{A1, . . . , Am}::C” replaces each label loccurring inC by a choice
between labels “{A1l, . . . , Aml}”. As an illustration, the resulting automata for
“||C1 = {a,b}:P” and “||C2 = {a,b}::P” are given below with “P = comm.END”.

Example 1. The following specification describes a semaphore. The process
ACCESS simulates a client which accesses the critical section protected by the
process SEMAPHORE. The system, called SEMADEMO, is made up of the semaphore in
charge of three resources a, b, c, and of the process which wants to access them.

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:0..1] = (up -> SEMA[v+1] | when (v>0) down -> SEMA[v-1]).
ACCESS = (mutex.down -> critical -> mutex.up -> ACCESS).
||SEMADEMO = ({a,b,c}:ACCESS || {a,b,c}::mutex:SEMAPHORE(1)).

Lotos (Language Of Temporal Ordering Specification) is a specification lan-
guage standardised by ISO [13]. It combines definitions of abstract data types
and algebraic processes. The full syntax of a process is the following:

process P [G1, ..., Gm] (X1:S1, ..., Xn:Sn) : func :=
B where block1, ..., blockp

endproc

562 G. Salaün et al.

A process defines a list of formal gates Gi∈{1,...,m} and of parameters
Xj∈{1,...,n} of sort Sj . Each blockk∈{1,...,p} denotes a data type or process defini-
tion. The functionality func of a process is exit if it ends by an exit behaviour,
or noexit otherwise. The process behaviour B is formalised in the following
grammar. We present only operators that are required for our translation:

B ::= exit termination
| G O1 . . . On [V] ;B | i;B action prefix
| [V]->B guarded behaviour
| B1[]B2 choice
| B1>>B2 sequential composition
| hide G1, . . . , Gn in B hiding
| P[G1, . . . , Gn](V1, . . . , Vm) process call
| choice X : T [] B choice on values

O ::= !V | ?X : T emission / reception
V ::=X | f(V1, . . . , Vn) value expression

Gate identifiers G may be complemented with a set of parameters called
offers. An offer has either the form “!V ” which corresponds to the emission
of a value V , or the form “?X : T ” which means the reception of a value of
sort T in a variable X . A single action can contain several offers, and these
offers can be complemented by a guard which constrains the received values. For
instance, “COMM?X:Int[X==1]” means that 1 is the only value that can be received
in X. The guarded behaviour “[V]->B” means that B is executed only if the
boolean expression V evaluates to true. The sequential composition “B1>>B2”
executes first B1 until it reaches an exit, then B2 is executed. Hiding masks
gates within a behaviour, thus producing an hidden event written i. Cyclic
behaviours may be defined using tail-recursive process calls. The choice on values
“choice X : T [] B” generates a choice between behaviours BV1 , . . . , BVn where
V1, . . . , Vn are all the values of sort T , and variable X is instantiated with value
V1 in BV1 , with value V2 in BV2 , etc.

The main differences between Fsp and Lotos resides in the treatment of
labels. On the one hand, Lotos labels are structured in the form of a static
(i.e., determined at compile time) gate, possibly followed by dynamic (i.e., com-
puted at run-time) offers. Label hiding and label synchronisation are determined
uniquely by the gate. On the other hand, no such distinction between gate and
offers exists in Fsp, where hiding and synchronization depend on full labels, com-
puted at run-time by concatenation of sub-labels and replacement of variables.
This difference constitutes the main difficulty of the translation.

Fortunately, Cadp also provides a tool for communicating automata, called
Exp.Open [14], whose input language (Exp) features more flexible label han-
dling mechanisms than Lotos. Exp allows to describe parallel compositions
of finite state machines using several parallel composition operators, synchro-
nisation vectors, as well as renaming, hiding, cutting, and priority operators.
We present the part of the Exp language that is used in this paper. L1, L

′
1, . . .

represent labels, which are merely character strings.

Translating FSP into LOTOS and Networks of Automata 563

B ::= total rename L1 → L′
1, . . . , Ln → L′

n in B end rename rename
| total hide L1, . . . , Ln in B end hide hide
| total cut L1, . . . , Ln in B end cut cut
| total prio all but L1, . . . , Ln > L′

1, . . . , L
′
k in B end prio priority (1)

| total prio L1, . . . , Ln > all but L′
1, . . . , L

′
k in B end prio priority (2)

| B1|||B2 interleaving
| label par L1, . . . , Lm in B1|| . . . ||Bn end par par. compo.
| label par V1, . . . , Vm in B1|| . . . ||Bn end par vect. compo.

V ::= (L1|) ∗ . . . ∗ (Ln|) → L vector

Rename and hide respectively define a set of labels to be renamed, and a
set of labels to be hidden in behaviour B. The cut operator is used to cut
the transitions that carry some given labels in a transition system. Priority
expresses that a set of labels have a higher priority than another set of la-
bels. “all but L1, . . . , Ln” represents all labels except L1, . . . , Ln. We intro-
duce three forms of parallel composition: “B1|||B2” means that B1 and B2 run in
parallel without synchronising, “label par L1, . . . , Lm in B1|| . . . ||Bn” means
that B1, . . . , Bn run in parallel and synchronise all together on labels L1, . . . , Lm,
and “label par V1, . . . , Vm in B1|| . . . ||Bn” means that they synchronise fol-
lowing the constraints expressed by the synchronisation vectors V1, . . . , Vm. Pre-
cisely, a vector “l1∗ . . .∗ ln → l” produces a transition labeled l if all Bi such that
“li 	= ” execute all together a transition labeled li. Exp.Open provides alterna-
tive semantics for the hide, rename, cut, prio, and par operators, the precise
semantics used in this paper being determined by the total (which means that
a label matches if it matches a regular expression entirely) and label (which
means that processes synchronise on full labels, and not only on the gate part of
the label) keywords. Finally, we mention Svl [8] (Script Verification Language),
which allows a high-level and concise description of the calls to the different
Cadp tools.

3 Preliminary Definitions

3.1 Environment

When translating an Fsp specification into Lotos/Exp, we need to propagate
along the abstract syntax tree of the Fsp specification, information collected
during the tree traversal. This information is called an environment and is made
of the following objects:

– E is a partial function associating expressions to variables, represented as a
set of couples of the form “x �→ v”. Environment E will be used during the
translation to store variables defined in Fsp labels but also process parame-
ters and constant definitions. E is initialised with constant definitions which
are global to all processes.

– S is a set of labels used with the “::” Fsp operator, to be shared between
the parallel processes.

564 G. Salaün et al.

– L is a label coming from the “:” Fsp operator, to be distributed as prefix
over the parallel processes.

– R is a relabeling relation represented as a set of elements of the form “l �→
{l1, . . . , lk}”, which associates sets of new labels to old labels.

– H is a set of labels to be hidden.
– X is a mapping from variables to sets of labels, represented as a set of

elements of the form “x �→ s”, where s is either a range “(v1, v2)” or a set
of labels “{l1, . . . , lk}”.

An environment is a tuple “〈E,M,X〉” where M is a list of tuples “〈S,L,R,H〉”.
We now define some functions used thereafter to formalise the translation. Func-
tion dom applies to R such that: dom({l1 �→ s1, . . . , lk �→ sk}) = {l1, . . . , lk}
where si∈{1,...,k} are sets of labels. The dispatching function �→d associates every
element of one source set to all the elements of a target set:

{l1, . . . , lk} �→d {l′1, . . . , l′k} = {l1 �→ {l′1, . . . , l′k}, . . . , lk �→ {l′1, . . . , l′k}}
Function ⊗ concatenates elements of two sets:
{l1, . . . , lk} ⊗ {m1, . . . ,mp} = {l1m1, . . . , l1mp, . . . , lkm1, . . . , lkmp}
Function pm is a prefix matching test, which takes as input a label l and a

set of labels, and returns true if one of the labels in the list is a prefix for l:
pm(l, {l1, . . . , ln}) = (∃i ∈ {1, . . . , n})(∃l′) l = lil

′

Function newlab takes as input a label l and returns the set of labels after
relabeling by R:
newlab(l, {l1 �→ s1, . . . , lk �→ sk}) = {l′il′|(∃i ∈ {1, . . . , k}) l = lil

′ ∧ l′i ∈ si}

3.2 Expressions

Function f2le translates Fsp expressions (which are of type integer or string)
into Lotos expressions substituting the values of variables wrt. environment E:
f2le(x,E) = E(x)
f2le(f(V1, . . . , Vn), E) = f(f2le(V1, E), . . . , f2le(Vn, E))
Function vars extracts the variables appearing in an expression:
vars(x) = {x}

vars(f(V1, . . . , Vn)) = vars(V1) ∪ . . . ∪ vars(Vn)
Function type computes the type of an expression, that is either Int or String.

This function is standard, and therefore not defined here.

3.3 Translation of a Label

The translation of an Fsp label is not easy because Fsp labels involve different
notions that have no direct counterpart in Lotos, namely sets, ranges, complex
expressions, and variable definitions. Moreover, hiding or renaming of a label
can only be made after flattening this high-level notation, as computed by Ltsa

while generating transition systems from Fsp specifications. Consequently, we
define two functions, flatten and flattenx, to translate an Fsp label into a set
of Lotos labels. Function flatten expands all the variables appearing in the
label, whereas flattenx translates as often as possible into Lotos variables the

Translating FSP into LOTOS and Networks of Automata 565

variables defined in the Fsp label. In the following, function flatten is used
instead of the less space-consuming flattenx one when hiding or renaming has
to be applied on the label.

We start with the definition of the flatten function which is called with an
environment E associating one value to every variable appearing in Fsp, and
returns a set of couples (label, environment). In case a variable is assigned several
values (as defined in an Fsp range or set), flatten generates as many labels and
environments as there are values associated to the variable. At this abstract
level, all the label portions are stored in a list using the cons and nil operator.
A variable is defined only once in an Fsp specification, so union between variable
environments can be used instead of an overloading operation.

flatten(L1 . . . Ln, E) =
{(cons(l1, l11), E11 ∪E1), . . . , (cons(l1, l1m), E1m ∪ E1), . . . ,

(cons(lk, lk1), Ek1 ∪Ek), . . . , (cons(lk, lkl), Ekl ∪ Ek)}
where {(l1, E1), . . . , (lk, Ek)} = flattenl(L1, E),

{(l11, E11), . . . , (l1m, E1m)} = flatten(L2 . . . Ln, E1), and
{(lk1, Ek1), . . . , (lkl, Ekl)} = flatten(L2 . . . Ln, Ek).

The terminal case is defined on an empty list ε as: flatten(ε, E) = {(nil, E)}
Function flattenl flattens a portion of label. In case of an expression indexed

by a variable, environment E is extended with the variable x and its value v
obtained after evaluation by f2le.
flattenl(act, E) = {(act, E)}
flattenl(V,E) = {(v,E)}
flattenl(x :V,E) = {(v, {x �→ v} ∪ E)}
where v = f2le(V,E).
In case of sets of labels, all the labels are expanded, and environments updated

if necessary.
flattenl({A1, . . . , An}, E) =

{(l11, E11), . . . , (l1k, E1k), . . . , (ln1, En1), . . . , (lnm, Enm)}
flattenl(x:{A1, . . . , An}, E) =

{(l11, {x �→ l11} ∪ E11), . . . , (l1k, {x �→ l1k} ∪ E1k), . . . ,
(ln1, {x �→ ln1} ∪ En1), . . . , (lnm, {x �→ lnm} ∪ Enm)}

where {(l11, E11), . . . , (l1k, E1k)} = flatten(A1, E), and
{(ln1, En1), . . . , (lnm, Enm)} = flatten(An, E).

In case of ranges, all the integer expressions are computed from the range.
flattenl([V1..V2], E) = {(v1, E), . . . , (vr, E)}
flattenl(x:[V1..V2], E) = {(v1, {x �→ v1} ∪ E), . . . , (vr, {x �→ vr} ∪ E)}
where v1 = f2le(V1, E), r = (f2le(V2, E) − f2le(V1, E)) + 1, and

(∀i ∈ {1, . . . , r − 1}) vi+1 = vi + 1.

Example 2. The Fsp label “lab[x:1..2]” is translated using flatten as
two abstract Lotos labels (see Section 7 for the concrete notation):
“cons(lab, cons(1, nil))” and “cons(lab, cons(2, nil))”.

Function flattenx generates Lotos labels keeping variables when the label is
not concerned by relabeling or hiding. Function flattenx returns a set of tuples

566 G. Salaün et al.

“(l, E,X)” where l is a label, E is a variable environment, and X binds variables
which are kept while translating to a range of integer values, or a set of labels.
flattenx(L1 . . . Ln, E,X) = {(cons(l1, l11), E11 ∪ E1, X11 ∪X1), . . . ,
(cons(l1, l1m), E1m ∪E1, X1m ∪X1), . . . , (cons(lk, lk1), Ek1 ∪Ek, Xk1 ∪Xk),

. . . , (cons(lk, lkl), Ekl ∪ Ek, Xkl ∪Xk)}
flattenx(ε, E,X) = {(nil, E,X)}
where {(l1, E1, X1), . . . , (lk, Ek, Xk)} = flattenxl(L1, E,X),

{(l11, E11, X11), . . . , (l1m, E1m, X1m)} = flattenx(L2 . . . Ln, E1, X1),
{(lk1, Ek1, Xk1), . . . , (lkl, Ekl, Xkl)} = flattenx(L2 . . . Ln, Ek, Xk),

Function flattenxl translates a portion of an Fsp label into a portion of
a Lotos label. All the variables appearing in the Fsp label are kept taking
advantage of the expressiveness of Lotos offers. Thus, an Fsp set or range is
translated as the variable at hand, and the set or range is stored in X that will
be used during the translation of the full label to generate a guard constraining
the value of the variable. If a variable is part of an expression to be translated,
a new variable (y below) is kept in place of this expression.
flattenxl(act, E,X) = {(act, E, ∅)}
flattenxl(V,E,X) ={

{(y, {y �→ y} ∪E, {y �→ (v, v)})} if ∃z ∈ vars(V) ∧ z ∈ X

{(v,E, ∅)} otherwise
flattenxl(x:V,E,X) ={

{(y, {x �→ v, y �→ y} ∪ E, {y �→ (v, v)})} if ∃z ∈ vars(V) ∧ z ∈ X

{(v, {x �→ v} ∪E, ∅)} otherwise
where v = f2le(V,E).
When translating sets and ranges, several labels with environments E and X

are generated. In case a variable x appears as index of the set (resp. range), x is
kept as a variable in E and the environment X is extended with all the possible
values that can be computed for x from the set (resp. range).
flattenxl({A1, . . . , An}, E,X) = {(l11, E11, X11), . . . , (l1k, E1k, X1k), . . . ,

(ln1, En1, Xn1), . . . , (lnm, Enm, Xnm)}
flattenxl(x:{A1, . . . , An}, E,X) =

{(x, {x �→ x} ∪ E, {x �→ {l11, . . . , l1k, . . . , ln1, . . . , lnm}})}
where {(l11, E11, X11), . . . , (l1k, E1k, X1k)} = flattenx(A1, E,X), and

{(ln1, En1, Xn1), . . . , (lnm, Enm, Xnm)} = flattenx(An, E,X).
flattenxl([V1..V2], E,X) ={
{(y, {y �→ y} ∪E, {y �→ (v1, vr)})} if ∃z ∈ (vars(V1) ∪ vars(V2)) ∧ z ∈ X

{(v1, E, ∅), . . . , (vr, E, ∅)} otherwise
flattenxl(x:[V1..V2], E,X) = {(x, {x �→ x} ∪ E, {x �→ (v1, vr)})}
where v1 = f2le(V1, E), r = (f2le(V2, E) − f2le(V1, E)) + 1, and

(∀i ∈ {1, . . . , r − 1}) vi+1 = vi + 1.

Example 3. The Fsp label “lab[x:1..2]” is translated using flattenx in Lotos

as “cons(lab, cons(x, nil))” with a guard “(x ≥ 1)∧ (x ≤ 2)” which restricts the
values of x. Both pieces of specification generate exactly the same labels.

Translating FSP into LOTOS and Networks of Automata 567

3.4 Hiding or Renaming

Function horr tests if a set of flattened labels is concerned by hiding or renaming,
and is used while translating sequences of labels to decide if variables may be
kept (use of flattenx) or not (use of flatten) in the Lotos code. The list of
tuples “〈S,L,R,H〉” is applied starting by the first tuple since this list is built
adding in head, and tuples have to be applied starting by the most recent one.
horr({l1, . . . , lk}, [〈S1, L1, R1, H1〉, . . . , 〈Sn, Ln, Rn, Hn〉]) =∨

i∈{1,...,q},j∈{1,...,k}
(pm(simlj , H1) ∨ pm(simlj , dom(R1))
∨ horr({simlj}, [〈S2, L2, R2, H2〉, . . . , 〈Sn, Ln, Rn, Hn〉]))

where S1 = {s1, . . . , sq}, and L1 = m.

4 Translating FSP Sequential Processes into LOTOS

This section presents function f2lp which translates a sequence of labels, and
function f2lb which generates Lotos code for Fsp sequential processes.

4.1 Sequence of Labels

The translation of a sequence depends if labels have to be modified (renamed
or hidden) during the translation: if it is the case, they are flattened using the
flatten function; otherwise variables are kept and function flattenx is used.
We also recall that an Fsp label may correspond to several labels in Lotos.
Therefore, the translation of a label may generate a choice in Lotos with as
many branches as labels computed by flatten or flattenx.

Hiding or relabeling required. More formally, it means that
horr({l1, . . . , lh},M) = true where {(l1, E1), . . . , (lh, Eh)} = flatten(A1, E).
f2lp(A1 → . . .→ Ak → B, 〈E,M,X〉) =

f2ll(apply(l1,M)) seq(l1,M) f2lp(A2 → . . .→ Ak → B, 〈E1 ∪E,M,X〉)
[] . . . []
f2ll(apply(lh,M)) seq(lh,M) f2lp(A2 → . . .→ Ak → B, 〈Eh ∪ E,M,X〉)

f2lp(B, 〈E,M,X〉) = f2lb(B, 〈E,M,X〉)
The last rule applies when the sequence of labels is empty. Function f2lb

dedicated to the translation of sequential processes is defined in the sequel.
Function apply computes a set of labels resulting of the application in sequence
of the list of tuples on a label. Note that relabeling may replace a single label by
several ones, and that prefixing, relabeling and hiding are successively applied.
apply(l, [〈S1, L1, R1, H1〉, . . . , 〈Sn, Ln, Rn, Hn〉]) =

apply(l′′1 , [〈S2, L2, R2, H2〉, . . . , 〈Sn, Ln, Rn, Hn〉])
∪ . . . ∪
apply(l′′k , [〈S2, L2, R2, H2〉, . . . , 〈Sn, Ln, Rn, Hn〉])

where S1 = {s1, . . . , sq}, L1 = m, {l1, . . . , lp} = {s1ml, . . . , sqml},
{l′1, . . . , l′r} = applyR(l1, R1) ∪ applyR(lp, R1), and
{l′′1 , . . . , l′′k} = applyH(l′1, R1) ∪ applyH(l′r, R1).

568 G. Salaün et al.

Functions applyR and applyH are resp. in charge of renaming and hiding.

applyR(l, R) =

{
newlab(l, R) if pm(l, dom(R))
l otherwise

applyH(l, H) =

{
i if pm(l, H)
l otherwise.

Function f2ll generates a Lotos choice from a set of labels.

f2ll({l1, . . . , ln}) =

{
l1 if n = 1
l1;exit [] . . . [] ln;exit otherwise

Function seq chooses the Lotos sequential composition “6” as sequence
operator when this operator is preceded by a behaviour (a choice among several
labels), and the Lotos action prefix “;” when preceded by a single label.

seq(l,M) =

{
6 if |apply(l,M)| > 1
; otherwise

No hiding or relabeling required. In this case, there is
horr({l1, . . . , lm},M) = false where {(l1, E1), . . . , (lm, Em)} = flatten(A1, E).
f2lp(A1 → . . .→ Ak → B, 〈E,M,X〉) =

f2ll(apply(l1,M), X1 ∪X) seq(l1,M,X1 ∪X)
f2lp(A2 → . . .→ Ak → B, 〈E1 ∪ E,M,X1 ∪X〉)

[] . . . []
f2ll(apply(lh,M), Xh ∪X) seq(lh,M,Xh ∪X)

f2lp(A2 → . . .→ Ak → B, 〈Eh ∪ E,M,Xh ∪X〉)
f2lp(B, 〈E,M,X〉) = f2lb(B, 〈E,M,X〉)
where {(l1, E1, X1), . . . , (lh, Eh, Xh)} = flattenx(A1, E,X).
Extra variables in X generated while flattening labels using flattenx (see

for instance the second rule of flattenxl, page 566) are not considered below
because they make the notation concise but are not used in the following of the
behaviour.
f2ll({l1, . . . , ln}, X) ={

l1 if n = 1
l1[G];exit(x1, . . . , xp) [] . . . [] ln[G];exit(x1, . . . , xp) otherwise

where X = {x1 �→ D1, . . . , xp �→ Dp}, and
G = f2lt(x1 �→ D1) ∧ . . . ∧ f2lt(xp �→ Dp).

Function f2lt generates guards from tuples of X . These guards are used to
constrain the values of variables introduced in the translation of labels.
f2lt(x �→ (v1, v2)) = (x ≥ v1) ∧ (x ≤ v2)
f2lt(x �→ {l1, . . . , lk}) = (x = l1) ∨ . . . ∨ (x = lk)
Finally, function seq makes the variable passing explicit when the Lotos

sequential composition “6” is chosen as sequence operator. This is mandatory
compared to the expanded translation of labels since variables are preserved here
and can be used in the rest of the behaviour.

seq(l,M,X) =

{
6 accept x1 : T1, . . . , xp : Tp in if |apply(l,M)| > 1
; otherwise

where X = {x1 �→ D1, . . . , xp �→ Dp}, and T1 = type(x1), . . . , Tp = type(xp).

Translating FSP into LOTOS and Networks of Automata 569

4.2 Sequential Processes

Fsp sequential processes are translated into Lotos processes. Fsp allows the
definition of local processes which are translated as local processes into Lotos

as well. We only present the translation of a process without local definitions,
although this structuring is taken into account into the tool we have implemented
(see Section 6). Now, we define the translation from Fsp to Lotos as a function
f2lb. Function func computing the process functionality is defined in [15]. Note
also that only two concrete Lotos gates are generated by our translation: EVENT
which prefixes all the regular Fsp labels, and EVENT ERROR which is used to
encode the Fsp error termination.
f2lb(P(X1=V1, . . . , Xk=Vk) = B + {Ae1, . . . , Aen}

/{A′
r1/Ar1, . . . , A

′
rn/Arn} \{Ah1, . . . , Ahn}, 〈E,M,X〉) =

process P [EVENT,EVENT ERROR] (X1 : T1, . . . , Xk : Tk) : func(B) :=
f2lb(B, 〈E0, [〈∅, ∅, R0, H0〉,M], X〉)

endproc
where T1 = type(V1), . . . , Tk = type(Vk), E0 = {X1 �→ V1, . . . , Xk �→ Vk} ∪E,

{(lr11, Er11), . . . , (lr1k, Er1k)} = flatten(Ar1, E),
{(l′r11, E

′
r11), . . . , (l

′
r1k, E

′
r1k)} = flatten(A′

r1, E),
{(lrn1, Ern1), . . . , (lrnk, Ernk)} = flatten(Arn, E),
{(l′rn1, E

′
rn1), . . . , (l′rnk, E

′
rnk)} = flatten(A′

rn, E),
R0 = {{lr11, . . . , lr1k} �→d {l′r11, . . . , l

′
r1k}, . . . ,

{lrn1, . . . , lrnk} �→d {l′rn1, . . . , l
′
rnk}},

{(lh11, Eh11), . . . , (lh1k, Eh1k)} = flatten(Ah1, E),
{(lhn1, Ehn1), . . . , (lhnk, Ehnk)} = flatten(Ahn, E), and
H0 = {lh11, . . . , lh1k, . . . , lhn1, . . . , lhnk}.

Usual terminations (stop and end) have direct equivalent in Lotos. The
error termination is translated using a P ERROR process whose behaviour is an
endless loop on an EVENT ERROR label.
f2lb(stop, 〈E,M,X〉) = stop
f2lb(end, 〈E,M,X〉) = exit
f2lb(error, 〈E,M,X〉) = P ERROR [EVENT ERROR]
A process call is translated as is with as parameter its list of arguments.
f2lb(P(V1, . . . , Vn), 〈E,M,X〉) =

P [EVENT,EVENT ERROR] (f2le(V1, E), . . . , f2le(Vn, E))
The if structure is encoded as a Lotos choice with two branches respectively

encoding the then and else part of the Fsp behaviour.
f2lb(if V then B1 else B2, 〈E,M,X〉) =

[f2le(V,E)]-> f2lb(B1, 〈E,M,X〉)
[]
[¬f2le(V,E)]-> f2lb(B2, 〈E,M,X〉)

The Fsp choice is translated into a Lotos choice with guards.
f2lb(when V1 S1 → B1| . . . |when Vn Sn → Bn, 〈E,M,X〉) =

[f2le(V1, E)]-> f2lp(S1 → B1, 〈E,M,X〉)
[] . . . []
[f2le(Vn, E)]-> f2lp(Sn → Bn, 〈E,M,X〉)

570 G. Salaün et al.

Last, a sequential composition is translated similarly in Lotos.
f2lb(P1(V11, . . . , V1k); . . .;Pn(Vn1, . . . , Vnl);B, 〈E,M,X〉) =

P1[EVENT,EVENT ERROR](f2le(V11, E), . . . , f2le(V1k, E)) 6 . . .6
Pn[EVENT,...](f2le(Vn1, E), . . . , f2le(Vnl, E)) 6 f2lb(B, 〈E,M,X〉)

No variables are passed along the Lotos sequential composition because pro-
cesses involved in the composition are independent of each other: each process
has to terminate correctly before starting the next one. In addition, Lotos local
processes are generated for each process called in the sequential composition.
This is needed to apply the environment (and possible renaming or hiding) to
the definitions of referred processes. As an example, process P1 is translated as
follows, where P̂1 is the process definition of P1:

process P1 [EVENT,EVENT ERROR] (X1 : T1, . . . , Xk : Tk) : func(P̂1) :=
f2lb(P̂1, 〈E0,M,X〉)

endproc
where T1 = type(V1), . . . , Tk = type(Vk), E0 = {X1 �→ V1, . . . , Xk �→ Vk} ∪E.

5 Translating FSP Composite Processes into EXP

Encoding Fsp composite processes into Lotos is tedious for several reasons:

– Lotos hiding and synchronisation constructs operate on gates, whereas Fsp

constructs operate on full labels (which are gates + offers in Lotos).
– Lotos has no renaming operator. The only way to rename a gate in Lotos

is to instantiate a process with an actual gate different from the formal one.
Such a renaming is not always satisfactory, because it only permits injective
renaming (different gates cannot be renamed into the same gate), whereas
non-injective renaming is allowed in Fsp.

– Lotos does not have a priority operator. The only way to express it is by
refactoring the specification to only allow labels with high priority to be
executed when necessary.

Consequently, we chose to translate Fsp composite processes into the Exp format
instead of Lotos. Translation of an Fsp composite process into Exp is made
up of three steps. First, all the Fsp sequential processes are translated into
Lotos using function f2lb presented in Section 4. This translation takes into
account the possible parameters coming with the process call. Then, Svl [8]
scripts are automatically derived to generate a Bcg file (which is a computer
representation for state/transition models) for each sequential process translated
into Lotos. These Bcg descriptions of processes are used in the last step, namely
the translation of Fsp composite processes into Exp.

Function f2lc translates composite processes into Exp specifications. The ab-
stract notation “l.∗” matches labels with l as prefix, and is used to take the
prefix matching into account while hiding labels. The environment is only used
during the translation of composite processes to store values of process param-
eters. This is due to the top-down approach our translation is based on, and to
the fact that all the Fsp operators are directly expressed in Exp.

Translating FSP into LOTOS and Networks of Automata 571

f2lc(||P(X1=V1, . . . , Xk=Vk) =
C 6 {Ap1, . . . , Apn} \{Ah1, . . . , Ahn}, 〈E,M,X〉) =

total hide lh11, lh11.∗, . . . , lh1k, lh1k.∗,
. . . , lhn1, lhn1.∗, . . . , lhnk, lhnk. ∗ in

total prio all but lp11, . . . , lp1k, . . . , lpn1, . . . , lpnk >
lp11, . . . , lp1k, . . . , lpn1, . . . , lpnk in

f2lc(C, 〈E0,M,X〉)
end prio

end hide
f2lc(||P(X1=V1, . . . , Xk=Vk) =

C 5 {Ap1, . . . , Apn} \{Ah1, . . . , Ahn}, 〈E,M,X〉) =
total hide lh11, lh11.∗, . . . , lh1k, lh1k.∗, . . . ,

lhn1, lhn1.∗, . . . , lhnk, lhnk. ∗ in
total prio lp11, . . . , lp1k, . . . , lpn1, . . . , lpnk >

all but lp11, . . . , lp1k, . . . , lpn1, . . . , lpnk in
f2lc(C, 〈E0,M,X〉)

end prio
end hide

where T1 = type(V1), . . . , Tk = type(Vk), E0 = {X1 �→ V1, . . . , Xk �→ Vk} ∪E,
{(lh11, Eh11), . . . , (lh1k, Eh1k)} = flatten(Ah1, E),
{(lhn1, Ehn1), . . . , (lhnk, Ehnk)} = flatten(Ahn, E),
{(lp11, Ep11), . . . , (lp1k, Ep1k)} = flatten(Ap1, E), and
{(lpn1, Epn1), . . . , (lpnk, Epnk)} = flatten(Apn, E).

As regards the translation of a process call into Exp, process P is duplicated
in as many interleaved processes P as there are labels in the labeling set with
all the labels of process P prefixed by one label of this set, respectively m1, m2,
etc. The “label par” statement is used below for renaming purposes, since the
rename statement existing in Exp does not allow to rename a single label into
several labels (thus producing several transitions from a single one). Therefore,
we use synchronisation vectors (usually used for synchronisation purposes) to
rename labels (vectorsr), and to prefix all the labels of the process by the labels
defined in S (vectorsp). Function alpha computing the alphabet of a process is
defined in [15].
f2lc(SL P(V1, . . . , Vn) /{A′

r1/Ar1, . . . , A
′
rn/Arn}, 〈E,M,X〉) =

label par vectorsr(R0, alpha(SL P(V1, . . . , Vn), 〈E,M,X〉)) in
label par
vectorsp({s1, . . . , sk}, {m1} ⊗ alpha(P(V1, . . . , Vn), 〈E,M,X〉)) in

f2lpr(P(V1, . . . , Vn), 〈E,M,X〉)
end par
||| . . . |||
label par
vectorsp({s1, . . . , sk}, {mp} ⊗ alpha(P(V1, . . . , Vn), 〈E,M,X〉)) in

f2lpr(P(V1, . . . , Vn), 〈E,M,X〉)
end par

end par

572 G. Salaün et al.

where {s1, . . . , sk} = flattensh(SL,E), {m1, . . . ,mp} = flattenlb(SL,E),
{(l11, E11), . . . , (l1k, E1k)} = flatten(Ar1, E),
{(l′11, E′

11), . . . , (l′1k, E
′
1k)} = flatten(A′

r1, E),
{(ln1, En1), . . . , (lnk, Enk)} = flatten(Arn, E),
{(l′n1, E

′
n1), . . . , (l

′
nk, E

′
nk)} = flatten(A′

rn, E), and
R0 = {{l11, . . . , l1k} �→d {l′11, . . . , l′1k}, . . . ,

{ln1, . . . , lnk} �→d {l′n1, . . . , l
′
nk}}.

Functions flattensh and flattenlb flatten the sets of labels used as prefixes:
flattensh({A1, . . . , Am}::{A1, . . . , An}:, E) = flatten({A1, . . . , Am}, E)
flattenlb({A1, . . . , Am}::{A1, . . . , An}:, E) = flatten({A1, . . . , An}, E)
Auxiliary functions f2lpr, vectorsr, and vectorsp are now defined. Function

f2lpr refers to the Bcg file generated previously from the Lotos code if it is
a sequential process, or calls the f2lc function if it is a composite process. We
present a simplified version of f2lpr since a same process can be referred several
times with different parameters. In our translator tool, we indexed such processes
with numbers to distinguish their different instances.
f2lpr(P(V1, . . . , Vn), 〈E,M,X〉) ={

"P.bcg" if is sequential(P)
f2lc(P(X̂1=V1, . . . , X̂n=Vn)=P̂ , 〈E,M,X〉) otherwise

where X̂i∈{1,...,n} refers to formal parameter identifiers, and Vi∈{1,...,n} refer
to actual values for them.

Function vectorr generates vectors with as left part a single element corre-
sponding to the label to rename, and as right part its new name. Labels which
are not concerned by relabeling preserve their original name.
vectorsr(R, {l1, . . . , lp}) ={

l1 -> l1, vectorsr(R, {l2, . . . , lp}) if newlab(l1, R) = ∅
l1 -> n1, . . . ,l1 -> nq, vectorsr(R, {l2, . . . , lp}) otherwise

where {n1, . . . , nq} = newlab(l1, R).
Function vectorp generates vectors with as left part the label to extend, and

derives from it a new label with a prefix taken into a set of prefixes. All the
combinations are computed for the set of labels and prefixes in input. Function
cat corresponds to the concatenation of lists.
vectorsp({s1, . . . , sk}, {l1, . . . , lp}) =
l1 -> cat(s1, l1), . . . ,l1 -> cat(sk, l1), vectorsp({s1, . . . , sk}, {l2, . . . , lp})

Similarly to the translation of a process call, for a parallel composition, inter-
leaving of processes is derived, as well as renaming and prefixing using respec-
tively vectorsr and vectorsp functions. Synchronisation sets are made explicit.
Below, the composite process C1 synchronise with the rest of the involved pro-
cesses on labels I1, . . . , Iq.
f2lc(SL (C1|| . . . ||Cn) /{A′

r1/Ar1, . . . , A
′
rn/Arn}, 〈E,M,X〉) =

label par I1, . . . , Iq in
(

label par vectorsr(R0, alpha(SL C1, 〈E,M,X〉)) in
label par

Translating FSP into LOTOS and Networks of Automata 573

vectorsp({s1, . . . , sk}, {m1} ⊗ alpha(C1, 〈E,M,X〉)) in
f2lc(C1, 〈E,M,X〉)

end par
end par
||| . . . |||
label par vectorsr(R0, alpha(SL C1, 〈E,M,X〉)) in

label par
vectorsp({s1, . . . , sk}, {mp} ⊗ alpha(C1, 〈E,M,X〉)) in

f2lc(C1, 〈E,M,X〉)
end par

end par
)
|| f2lc(SL (C2|| . . . ||Cn) /{A′

r1/Ar1, . . . , A
′
rn/Arn}, 〈E,M,X〉)

end par
where {I1, . . . , Iq} = alpha(SL C1 /{A′

r1/Ar1, . . . , A
′
rn/Arn}, 〈E,M,X〉),

∩ alpha(SL (C2|| . . . ||Cn) /{A′
r1/Ar1, . . . , A

′
rn/Arn}, 〈E,M,X〉),

{s1, . . . , sk} = flattensh(SL,E), {m1, . . . ,mp} = flattenlb(SL,E),
{(lr11, Er11), . . . , (lr1k, Er1k)} = flatten(Ar1, E),
{(l′r11, E

′
r11), . . . , (l′r1k, E

′
r1k)} = flatten(A′

r1, E),
{(lrn1, Ern1), . . . , (lrnk, Ernk)} = flatten(Arn, E),
{(l′rn1, E

′
rn1), . . . , (l

′
rnk, E

′
rnk)} = flatten(A′

rn, E), and
R0 = {{lr11, . . . , lr1k} �→d {l′r11, . . . , l

′
r1k}, . . . ,

{lrn1, . . . , lrnk} �→d {l′rn1, . . . , l
′
rnk}}.

The if construct is translated as for sequential processes.
f2lc(if V then C1 else C2, 〈E,M,X〉) ={

f2lc(C1, 〈E,M,X〉) if f2le(V,E)
f2lc(C2, 〈E,M,X〉) otherwise

6 Tool and Validation

Translator Tool. We developed an automatic translator from Fsp to Lotos

using the Syntax and Lotos nt compiler construction technologies [10]. The
tool consists of about 5,000 lines of Syntax, 20,000 lines of Lotos nt, and 500
lines of C. This implementation was split into two main steps: (i) parsing the Fsp

language and storing the result into an abstract syntax tree, (ii) translating the
abstract syntax tree into semantically equivalent Lotos code. The parsing task
was difficult since Syntax accepts only LALR(1) grammar as input. Therefore,
the abstract Fsp grammar as formalised in [16] was refined to a concrete gram-
mar free of ambiguities. We validated the translator on about 10,500 lines of Fsp

specifications (approx. 2,400 Fsp processes) that we reused from [16] or wrote
ourselves. In the latter case, we tried to systematically explore all the expressive-
ness that allows the Fsp notation to ensure robustness of our translation. These
10,500 lines of Fsp correspond after translation to about 72,000 lines of Lotos,
2,000 lines of Svl, and 8,000 lines of Exp. This large number of Lotos lines
has two main explanations: (i) Lotos is more verbose than Fsp, for instance

574 G. Salaün et al.

there are more keywords, or gates have to be made explicit; (ii) although we
keep variables as often as possible, our translation of Fsp sequential processes
may flatten labels whereas Fsp allows a concise notation for them.

Correctness of the Translation. It is essential to preserve the semantics of
the source language after translation into the target one. Indeed, any verifica-
tion performed with Cadp on the specification obtained after translation has
to be valid for the initial specification. Our translation preserves semantics of
both process calculi wrt. a branching equivalence relation [22]. Branching equiv-
alence is the strongest of the weak equivalences found in the literature. Unlike
strong equivalence, branching equivalence does not require a strict matching of τ
transitions. This is exactly what we need since sequential composition in Lotos

induces τ transitions which do not appear in the semantics of Fsp. Semantics
preservation modulo branching equivalence is important as it ensures that the
properties restricted to visible actions (e.g., safety and fair liveness) verified on
the Lotos specification are indeed properties of the Fsp specification. One draw-
back of branching equivalence might be that it does not preserve τ cycles. For
instance, two systems can be branching equivalent even if one system contains
a τ cycle which does not appear in the other. However, our translation ensures
that all the τ cycles in the Fsp specification are preserved in the Lotos one,
and no new cycle is introduced.

We checked on all the examples that we used for validation that branching
equivalence is preserved by our translation. For each specification, this test is
performed on LTSs generated by Ltsa and Cadp wrt. the semantics of their
respective notations. It was verified automatically using Bisimulator [2] for
nontrivial examples. Bisimulator is a tool of the Cadp toolbox which allows
to verify the most common notions of behavioural equivalences. The equivalence
test cannot be applied directly because Fsp labels generated by Ltsa and Lo-

tos labels generated by Cadp do not follow the same syntactic conventions.
Additionally, the Fsp hidden event tau corresponds to i in Lotos, and the Lo-

tos termination event exit has no counterpart in Fsp. However, Cadp allows
to systematically transform an LTS with Fsp conventions into one with Lotos

conventions, by renaming and cutting labels that match some predefined regular
expressions.

7 Application

In this section, we focus on the specification of a semaphore. We present several
refinements of this specification, and show how the use of Ltsa is complemented
by the use of Cadp based on the translation from Fsp to Lotos/Exp. The
starting point is the specification of the semaphore given in Fsp in Example 1.
The resulting automaton is made up of 7 states and 9 transitions.

A first refinement is to extend the number of resources (“{a,b,c}” but also
“{1,2,3}”) being concerned by the mutual exclusion as well as the number of
accesses. This result is obtained by this new specification:

||SEMADEMO1 = ({a,b,c}:ACCESS

Translating FSP into LOTOS and Networks of Automata 575

|| {a,b,c,[1..3]}::mutex:SEMAPHORE(1) || [1..3]:ACCESS).

from which Ltsa generates an automaton with 13 states and 18 transitions.
The next step aims at duplicating both semaphores so that each semaphore is
in charge of a single resource.

||SEMADEMO2 =
({a,b,c}:ACCESS || {a,b,c}::mutex:SEMAPHORE(1)
|| [1..3]::mutex:SEMAPHORE(1) || [1..3]:ACCESS).

The resulting automaton contains 49 states and 126 transitions and be-
comes difficult to analyse visually, because all the transitions between resources
“{a,b,c}” and “{1,2,3}” are interleaved. The last refinement defines the spec-
ification as a composition of two composite processes being dedicated to one
resource.

||C_P = ({a,b,c}:ACCESS || {a,b,c}::mutex:SEMAPHORE(1)).
||C_Q = ([1..3]:ACCESS || [1..3]::mutex:SEMAPHORE(1)).
||SEMADEMO3 = (C_P || C_Q).

The automaton generated by Ltsa has the same number of states and transi-
tions as the former system, but it is impossible to claim that both specifications
(SEMADEMO2 and SEMADEMO3) are equivalent. At this level, we use the translation
to check this equivalence with the Cadp toolbox. We show first some pieces of
the code obtained by our translation. The Fsp process SEMAPHORE is translated
as follows in Lotos:

process SEMAPHORE [EVENT,EVENT_ERROR] (N:Int): noexit :=
SEMA [EVENT,EVENT_ERROR] (N)

where
process SEMA [EVENT,EVENT_ERROR] (N:Int): noexit :=
EVENT !CONS(UP,NIL); SEMA[EVENT,EVENT_ERROR](N+POS(1))
[]
[V>POS(0)]-> EVENT !CONS(DOWN,NIL); SEMA[EVENT,EVENT_ERROR](N-POS(1))

endproc
endproc

The concrete notation for Lotos labels is slightly different from the abstract
notation we introduced in Section 3. Indeed, a label is systematically represented
by the EVENT gate followed by an offer consisting of a list of items of types Int
and String, using the following data type:

576 G. Salaün et al.

type Label is IntegerNumber, String
sorts Label
opns CONS (*! constructor *) : String, Label -> Label

CONS (*! constructor *) : Int, Label -> Label
NIL (*! constructor *) : -> Label

endtype

If variables appear in one label, the Lotos choice construct is used to
distinguish variables and regular string labels. For instance, the Fsp label
“lab[x:1..2]” is translated in Lotos using the aforementioned concrete syn-
tax as:

choice X:Int []
EVENT !CONS (LAB, CONS (X, NIL)) [(X>=POS(1)) and (X<=POS(2))]

Now we show a piece of Exp code generated for the C P process defined in
the SEMADEMO3 system. Processes ACCESS and SEMAPHORE synchronise on the set of
labels appearing at the beginning of the Exp description. This example shows
how prefixing labels of ACCESS by B is done using synchronisation vectors, and
how the exit label is cut within sequential processes.

label par
"EVENT !CONS (A, CONS (MUTEX, CONS (DOWN, NIL)))",
"EVENT !CONS (A, CONS (MUTEX, CONS (UP, NIL)))",
"EVENT !CONS (B, CONS (MUTEX, CONS (DOWN, NIL)))", ...

in
label par

"EVENT !CONS (MUTEX, CONS (DOWN, NIL))"
-> "EVENT !CONS (B, CONS(MUTEX, CONS (DOWN, NIL)))",

"EVENT !CONS (CRITICAL, NIL)"
-> "EVENT !CONS (B, CONS (CRITICAL, NIL))" ,

"EVENT !CONS (MUTEX, CONS (UP, NIL))"
-> "EVENT !CONS (B, CONS (MUTEX, CONS (UP, NIL)))"

in
total cut exit in "ACCESS.bcg" end cut

end par
||
... total cut exit in "SEMAPHORE.bcg" end cut ...

end par

Processes SEMADEMO2 and SEMADEMO3 translated into Lotos/Exp have been
checked strongly equivalent using the Bisimulator tool of the Cadp toolbox.
We illustrated here the use of equivalence checking on Fsp designs, but other
Cadp verification techniques can be used to complement Ltsa validation, such
as distributed, compositional, or on-the-fly verification to tackle the state ex-
plosion problem, or efficient model checking techniques available in Evalua-

tor [17]. Last, the debugging stage using Cadp does not add any complexity
for designers because labels used in counter-examples may be translated in Fsp

format (see Section 6) using renaming facilities available in Cadp.

Translating FSP into LOTOS and Networks of Automata 577

8 Concluding Remarks

In this paper, our motivation was to reduce the gap between existing tool sup-
port for process calculi. We chose here the popular process calculus Fsp and
the international standard Lotos. Fsp is based on an expressive and concise
notation. Therefore, we proposed a translation from Fsp to Lotos (and Exp)
to make the joint use of Ltsa and Cadp possible for Fsp users. The transla-
tion is completely automated by a tool we implemented. This translator will be
integrated in a future release of the Cadp toolbox.

As regards related work, to the best of our knowledge, the only proposals
focusing on high-level translations between process algebras have been made in
the hardware area [20,23]. Their common goal is to allow verification of asyn-
chronous circuits and architectures. Beyond that, the most related set of works
are those advocating the encoding of process calculi (mainly Acp, Ccs, Csp and
their dialects) into higher-order logics, inputs of theorem provers such as Hol,
Pvs, Isabelle [18,4,21,1] or into the B method [3]. Motivations of these works
are to take advantage of the formal verification means available for the target
formalism. Theorem proving allows to fight the state explosion problem and to
deal with infinite automata, but is not suitable to prove temporal properties. We
preferred model checking because it makes verification steps easier thanks to a
full automation and its adequacy to automata-based models.

A first future work is to apply our approach on complex systems, such as web
service models described first in Bpel or Ws-Cdl, and then automatically trans-
lated into Fsp for analysis purposes [5]. In this case, many interacting services
can involve huge underlying state spaces which can be generated and minimised
using the optimised means of Cadp. Moreover, equivalence checking available in
Cadp can help in web services to ensure that an abstract specification of a prob-
lem and its solution described as a composition of services are equivalent [19].
Another perspective is to take Fsp safety and progress properties into account,
and to translate them into regular alternation-free mu-calculus formulas, input
format of the on-the-fly model checker Evaluator [17].

References

1. Basten, T., Hooman, J.: Process Algebra in Pvs. In: Cleaveland, W.R. (ed.) ETAPS
1999 and TACAS 1999. LNCS, vol. 1579, pp. 270–284. Springer, Heidelberg (1999)

2. Bergamini, D., Descoubes, N., Joubert, C., Mateescu, R.: Bisimulator: A Modular
Tool for On-the-Fly Equivalence Checking. In: Halbwachs, N., Zuck, L.D. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 581–585. Springer, Heidelberg (2005)

3. Butler, M.: Csp2B: A Practical Approach to Combining Csp and B. Formal Aspects
of Computing 12(3), 182–198 (2000)

4. Dutertre, B., Schneider, S.: Using a Pvs Embedding of Csp to Verify Authentication
Protocols. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp.
121–136. Springer, Heidelberg (1997)

5. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Tool Support for Model-Based En-
gineering of Web Service Compositions. In: Proc. of ICWS’05, pp. 95–101. IEEE
Computer Society Press, Los Alamitos (2005)

578 G. Salaün et al.

6. Garavel, H.: Compilation of Lotos Abstract Data Types. In: Proc. of FORTE’89,
pp. 147–162. North-Holland, Amsterdam (1989)

7. Garavel, H.: Open/Cæsar: An Open Software Architecture for Verification, Sim-
ulation, and Testing. In: Steffen, B. (ed.) ETAPS 1998 and TACAS 1998. LNCS,
vol. 1384, pp. 68–84. Springer, Heidelberg (1998)

8. Garavel, H., Lang, F.: Svl: A Scripting Language for Compositional Verification.
In: Proc. of FORTE’01, pp. 377–394. Kluwer, Dordrecht (2001)

9. Garavel, H., Lang, F., Mateescu, R.: An Overview of Cadp 2001. EASST Newslet-
ter 4, 13–24 (2001)

10. Garavel, H., Lang, F., Mateescu, R.: Compiler Construction Using Lotos nt. In:
Horspool, R.N. (ed.) CC 2002 and ETAPS 2002. LNCS, vol. 2304, pp. 9–13.
Springer, Heidelberg (2002)

11. Garavel, H., Serwe, W.: State Space Reduction for Process Algebra Specifications.
Theoretical Computer Science 351(2), 131–145 (2006)

12. Garavel, H., Sifakis, J.: Compilation and Verification of Lotos Specifications. In:
Proc. of PSTV’90, pp. 379–394. North-Holland, Amsterdam (1990)

13. ISO. Lotos: a Formal Description Technique based on the Temporal Ordering of
Observational Behaviour. Technical Report 8807, International Standards Organ-
isation (1989)

14. Lang, F.: Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-The-Fly Verification Methods. In: Romijn, J.M.T., Smith, G.P., van de Pol,
J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

15. Lang, F., Salaün, G.: Translating Fsp into Lotos and Networks of Automata. Tech-
nical report, INRIA (2007)

16. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. Wiley, Chich-
ester (1999)

17. Mateescu, R., Sighireanu, M.: Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Comp. Progr. 46(3), 255–281 (2003)

18. Nesi, M.: Formalising a Value-Passing Calculus in Hol. Formal Aspects of Com-
puting 11(2), 160–199 (1999)

19. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and Reasoning on Web Services
using Process Algebra. In: Proc. of ICWS’04, pp. 43–51. IEEE Computer Society
Press, Los Alamitos (2004)

20. Salaün, G., Serwe, W.: Translating Hardware Process Algebras into Standard Pro-
cess Algebras: Illustration with Chp and Lotos. In: Romijn, J.M.T., Smith, G.P.,
van de Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 287–306. Springer, Heidelberg
(2005)

21. Tej, H., Wolff, B.: A Corrected Failure-Divergence Model for Csp in Isabelle/Hol.
In: Jones, C.B. (ed.) FME 1997. LNCS, vol. 1313, pp. 318–337. Springer, Heidelberg
(1997)

22. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM 43(3), 555–600 (1996)

23. Wang, X., Kwiatkowska, M.Z., Theodoropoulos, G.K., Zhang, Q.: Towards a Unify-
ing Csp approach to Hierarchical Verification of Asynchronous Hardware. ENTCS,
vol. 128, pp. 231–246 (2005)

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 579–598, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Common Semantics for Use Cases and Task Models

Daniel Sinnig1, Patrice Chalin1, and Ferhat Khendek2

1 Department of Computer Science and Software Engineering,
Concordia University, Montreal, Quebec, Canada
{d_sinnig,chalin}@encs.concordia.ca

2 Department of Electrical and Computer Engineering,
Concordia University, Montreal, Quebec, Canada

khendek@ece.concordia.ca

Abstract. In this paper, we introduce a common semantic framework for
developing and formally modeling use cases and task models. Use cases are the
notation of choice for functional requirements specification and documentation,
whereas task models are used as a starting point for user interface design. Based
on their intrinsic characteristics we devise an intermediate semantic domain for
use cases and for task models, respectively. We describe how the intermediate
semantic domain for each model is formally mapped into a common semantic
domain which is based on sets of partial order sets. We argue that a two-step
mapping results in a semantic framework that can be more easily validated,
reused and extended. As a partial validation of our framework we provide a
semantics for ConcurTaskTrees (CTT) one of the most popular task model
notations as well as our own DSRG use case formalism. Furthermore we use
the common semantic model to formally define a satisfiability relation between
task model and use case specifications.

Keywords: Use cases, task models, requirements, formal semantics, partial
order sets, labeled transition systems.

1 Introduction

User Interface (UI) design and the engineering of functional requirements are
generally carried out by different teams using different methodologies, processes and
lifecycles [1]. Since both disciplines have their own models and theories, often the
respective artifacts are created independently of each other; as a result there arises:

• Duplication in effort during development and maintenance due to redundancies /
overlaps in the (independently) developed UI and software engineering models.

• Possible conflicts during implementation as both processes do not have the same
reference specification and thus may result in inconsistent designs.

A process allowing for UI design to follow as a logical progression from functional
requirements specification does not exist.

Use cases are the artifacts of choice for functional requirements specification and
documentation [2] while UI design typically starts with the identification of user tasks,
and context requirements [3]. Our primary research goal is to define an integrated

580 D. Sinnig, P. Chalin, and F. Khendek

methodology for the development of use cases and task models within an overall
software process. A prerequisite of this initiative is the definition of a formal framework
for handling use case models and task models. The cornerstone for such a formal
framework is a common semantic domain for both notations.

Figure 1 illustrates how our framework promotes a two-step mapping from a
particular use case or task model notation to the common semantic domain which is
based on sets of partial order sets. The common semantic model will serve as a
reference for tool support and will be the basis for the definition of a satisfiability
relation between a use case specification and a task model specification. A definition
of the latter is given in this paper.

Fig. 1. Two-Step Semantic Mapping

The main reason behind a two-step mapping, rather than a direct mapping, is to
provide a semantic framework that can be more easily validated, reused and extended.
The intermediate semantic domains have been carefully chosen by taking into
consideration the intrinsic characteristics of task models and use cases, respectively,
so that the mappings to the intermediate semantic domains are straightforward and
intuitive: task models are mapped into what we call Generic Task Expressions (GTE);
use cases are mapped to Use Case Labeled Transition Systems (UC-LTS). Since the
second level mappings to sets of posets are more involved, the intermediate semantic
domains have been chosen so as to be as simple as possible, containing only the
necessary core constructs. As a consequence of this two-step semantic definition, we
believe that our framework can be easily extended to incorporate new task model or
use case notations by simply defining a new mapping to the intermediate semantic
domain.

In this paper, we focus on providing concise definitions of both the intermediate
semantic domains for use cases and task models and the common semantic model. As
concrete examples of mappings, we illustrate how ConcurTaskTree (CTT) [4]
specifications and DSRG-style use cases (defined in the next section) are mapped to
the intermediate semantic domains. This is followed by a formalization of the second
level mappings of GTEs and UC-LTSs into the sets of posets.

 Common Semantics for Use Cases and Task Models 581

The remainder of this paper is organized as follows. In Section 2 we provide
necessary background information by reviewing and contrasting use cases and task
models. Section 3 discusses related work with respect to the definition of semantics of
scenario-based notations. Section 4, formally defines our semantic framework.
Finally, in Section 5 we conclude and provide an outlook of future work.

2 Background

In this section we remind the reader of the key characteristics of use cases and task
models. For each model we present a particular notation, and an illustrative example.
Finally, both models are compared and main commonalities and differences are
contrasted.

2.1 Use Case Models

A use case captures the interaction between actors and the system under development.
It is organized as a collection of related success and failure scenarios that are all
bound to the same goal of the primary actor [5]. Use cases are typically employed as a
specification technique for capturing functional requirements. They document the
majority of software and system requirements and as such, serve as a contract (of the
envisioned system behavior) between stakeholders [2].

Every use case starts with a header section containing various properties of the use
case. The core part of a use case is its main success scenario, which follows
immediately after the header. It indicates the most common ways in which the
primary actor can reach his/her goal by using the system. A use case is completed by
specifying the use case extensions. These extensions constitute alternative scenarios
which may or may not lead to the fulfillment of the use case goal. They represent
exceptional and alternative behavior (relative to the main success scenario) and are
indispensable to capturing full system behavior. Each extension starts with a
condition (relative to one or more steps of the main success scenario), which makes
the extension relevant and causes the main scenario to “branch” to the alternative
scenario. The condition is followed by a sequence of action steps, which may lead to
the fulfillment or the abandonment of the use case goal and/or further extensions.
From a requirements point of view, exhaustive modeling of use case extensions is an
effective requirements elicitation device.

Different notations at different degrees of formality have been suggested as a
medium to capture use cases. The extremes range from purely textual constructs
written in prose language [2] to entirely formal specification written in Z [6], or as
Abstract State Machines (ASM) [7, 8]. While the use of narrative languages makes
use case modeling an attractive tool to facilitate communication among stakeholders,
prose language is well known to be prone to ambiguities and leaves little room for
advanced tool support.

Therefore, in this paper we take up a compromise solution, which enforces a
formal structure (needed for the definition of formal semantics) but preserves the
intuitive nature of use case. In particular, we have developed an XML Schema

582 D. Sinnig, P. Chalin, and F. Khendek

Fig. 2. DSRG Use Case Meta Model

(depicted in Figure 2), which acts as a meta model for use cases. As such, it identifies
the most important use case elements, defines associated mark-up and specifies
existing containment relationships among elements. We refer to use cases that
correspond to the schema presented in Figure 2 as “DSRG-style use cases”.

Most relevant for this paper is the definition of the stepGroup element as it
captures the behavioral information of the use case. As depicted, the stepGroup
element consists of a sequence of one of the following sub elements:

• The step element denotes an atomic use case step capturing the primary actor’s
interactions or system activities.

• The stepChoice element denotes the alternative composition of two stepGroup
elements.

• The stepConcurrent element entails a set of (atomic) step elements, whose
execution order is not defined.

• The stepGoto element denotes an arbitrary branching to another step.

We note that the stepGroup element is part of the mainSuccessScenario as well as
the extension element. The latter additionally contains a condition and a reference to
one or many steps stating why and when the extension may occur.

In order to generate a readable representation of the use case XML document we
use XSLT style sheets [9]. Figure 3 depicts the generated HTML presentation of a
sub-function level use case for a “Login” function. Note that we will be using the
same “Login” example throughout this paper, and for the sake of simplicity, have kept
the complexity of the use case to a minimum.

2.2 Task Models

User task modeling is by now a well understood technique supporting user-centered
UI design [4]. In most UI development approaches, the task set is the primary input to
the UI design stage. Task models describe the tasks that users perform using the
application, as well as how the tasks are related to each other. The origin of most task
modeling approaches can be traced back to activity theory [10], where a human

 Common Semantics for Use Cases and Task Models 583

Fig. 3. Generated HTML Presentation of the “Login” Use Case

operator carries out activities to change part of the environment (artifacts) in order to
achieve a certain goal [11]. Like use cases, task models describe the user’s interaction
with the system. The primary purpose of task models is to systematically capture the
way users achieve a goal when interacting with the system [12]. More precisely, the
task model specifies how the user makes use of the system to achieve his/her goal but
also indicates how the system supports the user tasks.

Various notations for task models exits. Among the most popular ones are
ConcurTaskTrees (CTT) [4], GOMS [13], TaO Spec [14], and TKS [15]. Even
though all notations differ in terms of presentation, level of formality, and
expressiveness they share the following common tenet: Tasks are hierarchically
decomposed into sub-tasks until an atomic level has been reached. Atomic tasks are
also called actions, since they are the tasks that are actually carried out by the user or
the system. The execution order of tasks is determined by operators that are defined
between peer tasks.

Figure 4 shows a CTT visualization of the “Login” task model. The figure
illustrates the hierarchical break down and the temporal relationships between tasks
involved in the “Login” functionality (depicted in the use case of Section 2.1). An
indication of task types is given by the symbol used to represent tasks. In CTT the
execution order between tasks is defined by temporal operators. Various temporal
operators exist; examples include: enabling (>>), choice ([]), iteration (*), and
disabling ([>].A complete list of the CTT operators together with an informal
definition of their interpretation can be found in [4]. In Section 4.2 we will assign

584 D. Sinnig, P. Chalin, and F. Khendek

t1

t2 t3 t4 t5 t6

Fig. 4. “Login” Task Model

formal semantics to CTT task models by defining a mapping to the intermediate
semantic domain of generic task expressions.

2.3 Use Cases vs. Task Models: A Comparison

In the previous two sections, the main characteristics of use cases and task models
were discussed. In this section, we compare both models and outline noteworthy
differences and commonalities.

Both, use cases and task models, belong to the family of scenario-based notations
and as such capture sets of usage scenarios of the system. On the one hand, a use case
specifies system behavior by means of a main success scenario and any corresponding
extensions. On the other hand, a task model specifies system interaction within a
single “monolithic” task tree. In theory, both notations can be used to describe the
same information. In practice however, use cases are mainly employed to document
functional requirements whereas task models are used to describe UI
requirements/design details. Based on this assumption we identify three main
differences which are pertinent to their purpose of application:

1. Use cases capture requirements at a higher level of abstraction whereas task
models are more detailed. Hence, the atomic actions of the task model are often
lower level UI details that are irrelevant (actually contraindicated [2]) in the
context of a use case. We note that due to its simplicity, within our example, this
difference in the level of abstraction is not explicitly visible.

2. Task models concentrate on aspects that are relevant for UI design and as such,
their usage scenarios are strictly depicted as input-output relations between the user
and the system. Internal system interactions (i.e. involvement of secondary actors
or internal computations) as specified in use cases are not captured.

3. If given the choice, a task model may only implement a subset of the scenarios
specified in the use case. Task models are geared to a particular user interface and

 Common Semantics for Use Cases and Task Models 585

as such must obey its limitations. E.g. a voice user interface will most likely
support less functionality than a fully-fledged graphical user interface.

3 Related Work

For scenario-based notations, the behavioral aspects of a system (capturing the
ordering and relations between the events) represent the important features to
describe. While several different formalisms have been proposed for scenario-based
notations, in what follows we briefly discuss three prominent approaches, namely:
process algebras, partial orders and graph structures.

Process Algebra has been widely used to define interleaving semantics of
scenario-based notations [17-19]. The International Telecommunication Union
(ITU) has published a recommendation for the formal semantics of basic Message
Sequence Charts (MSCs) based on the Algebra of Communicating Processes (ACP)
[20, 18]. This work is a continuation of preliminary research work by Mauw and
Reniers [17]. In more recent work, Xu et. al. also suggest a process algebraic
semantics for use case models, with the overall goal of formalizing use case
refactoring [19]. In their approach, scenarios are represented as basic MSCs. The
authors assign meaning to a particular use case scenario (episode) by partially
adapting the ITU MSC semantics.

Formalisms suitable for the definition of non-interleaving semantics are based on
partial orders. For example, Zheng et. al. propose a non-interleaving semantics for
timed MSC 2000 [21, 22] based on timed labeled partial order sets (lposets). Partial
order semantics for (regular, un-timed) MSCs has been proposed by Alur [23], and
Katoen and Lambert [24]. Alur et. al. propose a semantics for a subset of MSCs that
restricts MSC event types to message events only.

Mizouni et. al. propose use case graphs as an intermediate notation for use cases
[25]. Use case graphs are directed, potentially cyclic graphs whose edges represent
use case steps and nodes represent system states. This allows for a natural
representation of the order in which actions are to be performed. Structural
operational semantics for CTT task models are defined in [26]. In particular Paternò
defines a set of inference rules to map CTT terms into labeled transition systems.

The semantic framework proposed in this paper is inspired by the lposet approach
proposed in [22]. Similar to the approach in [22], our semantic framework is based on
sets of partial order sets. The main motivation for this choice was the quest for a true,
non-interleaving, model of concurrency. System behavior is represented as causally
inter-related events based on a partial order relation. Events, that are not causally
related, are seen as concurrent. In addition, similar to the work in [25], we employ
labeled graph structures (Use Case LTS) as an intermediate notation for use cases.
Preliminary results towards the definition of a common semantic model for use cases
and task models were reported in [27]. In this paper we complete and define our
framework as a two-step mapping process, provide a formal semantics for all CTT
expressions, and formalize the mapping from DSRG-style use cases to partial order
sets using the intermediary notation of Use Case LTS.

586 D. Sinnig, P. Chalin, and F. Khendek

4 Semantics for Use Cases and Task Models

In the previous section we have studied key characteristic of use cases and task
models and reviewed relevant related work. In this section we re-employ this
information to define a common formal semantics for use cases and task models. We
start with the definition of the intermediate semantic domains. Then we define the
common semantic model based on sets of partial order sets and specify the
corresponding mappings from the intermediate domains. We conclude the section by
providing a formal definition of a satisfiability relation based on the common
semantic model.

4.1 Intermediate Semantic Domain for Use Cases

In this section we define an intermediate semantic domain, UC-LTS, for use cases and
specify how DSRG-style use cases are transformed into UC-LTS.

Definition 1: (UC-LTS). A use case labeled transition system (UC-LTS) is defined
by the tuple (S, Q, q0, F, T), where:

S is the set of labels of atomic use case steps.
Q is a set of states.
q0 œ Q is the initial state.
F Œ S is the set of final states.
T = Q x 2S x Q is the set of transitions.

We have defined UC-LTS in order to capture easily and intuitively the nature of
use cases. A use case primarily describes the execution order of user and system
actions in the form of use case steps. From a given state, the execution of a step
leads into another state. Sometimes, the execution order of two or more steps is not
important or just abstracted away for the purpose of the description. In UC-LTS
the execution of a step is denoted by a labeled transition, from a source state to a
target state. The transition labels serve as references to the corresponding steps in
the original use case. The execution order of use case steps is modeled using
transition sequences, where the target state of a transition serves as a source state
of the following transition.

Contrary to LTSs, the labels in the UC-LTS are sets. For a given transition, if this
set contains more than one label, then no specific execution order exists between the
corresponding use case steps. This partial order semantics reflects better the nature of
use cases.

In what follows we illustrate how use cases in DSRG style are transformed to the
intermediate UC-LTS form. As the mapping turns out to be quite straightforward we
will only sketch out the main translation principles. Given a UC-LTS consisting of a
single state q0 and a DSRG-style use case specification, iterate through the steps of
stepGroup of the Main Success Scenario. For each found element, perform the
following (depending on the type), using q0 as a starting state:

• Step: Create a new state qnew and define the following transition: (qlast, {label},
qnew) where qlast is the last state that has been created and ‘label’ is a (unique)

 Common Semantics for Use Cases and Task Models 587

identifier of the currently visited use case step. If there exists an extension for the
currently visited step then, using qnew as a starting state, recursively repeat the
same procedure for each step defined in the stepGroup of the extension.

• stepChoice: For each of the two entailed stepGroup elements recursively re-
perform this procedure with qlast as a starting state.

• stepConcurrent: Create a new state qnew and define the following transition: (qlast,
L, qnew) where qlast is the last state that has been created and L is the set of labels
of all the step elements entailed in the stepConcurrent element. If there exist an
extension for the stepConcurrent element then, using qnew as a starting state,
recursively repeat the same procedure for each step defined in the stepGroup of
the extension.

• stepGoto: Continue with the target step referenced in stepGoto element. If the
target step has been already visited then replace qlast with the target step and
update all transition definitions that included qlast, accordingly.

S1{S1}

q0 q1 q2 q3 q4 q5

q8

q7

q6

{S3} {S4} {S5} {S6}{S21, S22}

{S4a2}

{S4a1}

Fig. 5. Intermediate UC-LTS corresponding to the “Login” Use Case

Figure 5 illustrates the UC-LTS generated from the use case of Figure 3. Note that
the transition between state q1 and state q2 has been annotated with labels of two use
case steps, denoting the concurrent execution of use case step 2.1 and step 2.2. It is
also to be noted that starting from state q4 two transitions are defined, denoting the
execution of step 5 in the main success scenario and alternatively the execution of
step 4a1 defined in extension 4.

4.2 Intermediate Semantic Domain for Task Models

In this section we define an intermediate semantic domain for task models called
Generic Task Expressions (GTE) and specify how a CTT specification (possibly
including “Disabling” and “Suspend / Resume”) is mapped into a corresponding GTE
specification. In Section 2.2 we noted that tasks are commonly decomposed into
subtasks and sub-subtasks until an atomic level is reached. For the definition of GTE
we adopted the same paradigm and define a task expression as either an atomic action
or a composition of (sub) task expression.

588 D. Sinnig, P. Chalin, and F. Khendek

Definition 2: (Generic Task Expression). A generic task expression T is recursively
defined as follows:

(1) An atomic action a is a generic task expression (a ∈ T)
(2) If ψ and ρ are generic task expressions (ψ , ρ ∈ T) then

 ψ Opt,
 ψ Rep,
 ψ _|| ρ,
 ψ _[] ρ,
 ψ _>> ρ,
are also generic task expressions.

Please note that the operator precedence is reflected by the order of their enumeration
in Definition 2. Operators listed at a higher position have a higher precedence than
operators listed at a lower position. Intuitively the meaning of the operators is as
follows: The binary operators _>>, _||, and _[] denote the sequential, concurrent or
alternative composition of two generic task expressions. The unary operators ‘Opt’
and ‘Rep’ denote the optional or the iterative (zero to infinitely many times) execution
of a generic task expression.

In what follows we demonstrate how CTT task models are mapped to GTE. More
precisely, we assign for each CTT task expression a corresponding denotation
expressed in GTE. At the atomic level, we define that CTT leaf tasks correspond to
atomic GTE expressions (a). At the composite level, CTT expressions entailing basic
operators are mapped in a one-to-one manner to the corresponding GTE expressions.
As depicted in Table 1, the only exception is the “Order_Independency” operator
which is translated into the shallow interleaving of its operands. In order to illustrate
the basic mapping, let us use again the “Login” task model from Section 2.2.
According to the definitions of Table 1 the CTT specification is mapped into the
following GTE specification: t1 _>> t2 _>> t3 _>> t4 _>> (t5 _[] t6).

Unfortunately, the mappings of the complex binary operators disabling and
suspend/resume are not straightforward and require a pre-processing of their
operands.

Table 1. Mappings of Basic CTT Operators into GTE

CTT Expression GTE Expression
tl >> tr (Enabling) = tl _>> tr
tl ||| tr (Concurrency) = tl _|| tr
tl [] tr (Choice) = tl _[] tr
t* (Iteration) = t Rep
(t) (Optional) = t Opt
tl |+| tr (Order Indepen.) = (tl _>> tr) _[] (tr _>> tl)

Intuitively the meaning of the disabling operator is defined as follows: Both tasks
specified by its operands are enabled concurrently. As soon as the first (sub) task
specified by the second operand is executed, the task specified by the first operand

 Common Semantics for Use Cases and Task Models 589

becomes disabled. If the execution of the task(s) specified by the first operand is
completed (without interruption) the task(s) specified by the second operand are
subsequently executed. In other words, none of the (sub) tasks of the first operand
must necessarily be executed, whereas the execution of the tasks of the second
operand is mandatory. Hence, a term including the disabling operator can be rewritten
as the “optionalization” of all tasks involved in the first operand, followed by the
execution of the second operand.

For the purpose of “optionalizing” the first operand we have defined the unary
auxiliary operator Deep Optionalization ({}). As inductively defined in Table 2, the
application of the operator defines every subtask of its target task expression as
optional. However if the subtasks are executed, they have to be executed in their pre-
defined order. The final mapping of the disabling operator to an AGT expression,
using the Deep Optionalization operator can be found in Table 3. We note that the
definition of the CTT disabling operator has been inspired by the disabling operator
of the LOTOS process algebra [28]. Yet, the interpretation of both operators is not
identical. In particular, in LOTOS the subsequent execution of the second operand,
after completion of the first one is not allowed.

Table 2. Inductive Definitions of “Deep Optionalization” and “Interleaved Insertion”

(Unary) Deep Optionalization {} (Binary) Interleaved Insertion ⊕
{a} = a1 a ⊕ ti = ti _>> a
{tl _>> tr} = ({tl} _>> ({tr}) Opt) Opt (tl _>> tr) ⊕ ti = (tl ⊕ ti) _>> (tr ⊕ ti)
{tl _|| tr} = ({tl}) Opt || ({tr}) Opt (tl _|| tr) ⊕ ti = (tl ⊕ ti) _|| (tr ⊕ ti)
{tl _[] tr} = ({tl} + {tr}) Opt (tl _[] tr) ⊕ ti = (tl ⊕ ti) _[] (tr ⊕ ti)
{t Opt } = ({t}) Opt (t Opt ⊕ ti) = (t ⊕ ti)

 Opt
{t Rep } = t Rep _>> ({t}) Opt (t Rep ⊕ ti) = (t ⊕ ti)

 Rep

The interpretation of the suspend/resume operator is similar to the one of the
disabling operator. Both tasks specified by its operands are enabled concurrently. At
any time the execution of the first operand can be interrupted by the execution of the
first (sub) task of the second operand. In contrast to disabling, however, the execution
of the task specified by the first operand is only suspended and will (once the
execution of the second operand is complete) be reactivated from the state reached
before the interruption [4]. At this point, the task specified by the first operand may
continue its execution or may be interrupted again by the execution of the second
operand.

Table 3. Mappings of Disabling and Suspend/Resume into GTE

CTT Expression GTE Expression
tl [> tr (Disabling) = ({tl}) Opt _>> tr
tl |> tr (Suspend/Resume) = tl ⊕ (tr

 Rep)

1 a denotes an atomic action.

590 D. Sinnig, P. Chalin, and F. Khendek

In order to model this behavior, we have defined the auxiliary binary operator
Interleaved Insertion (⊕). As defined in Table 2 it “injects” the task specified by its
second operand at any possible position in between the (sub) tasks of the first
operand. Using the auxiliary operator it is now possible to define a mapping from a
suspend/resume CTT expression to a corresponding GTE expression (Table 3).

4.3 Common Semantic Domain Based on Sets of Posets

This section defines the second-level mapping of our semantic framework. We start
by providing necessary definitions. Next we present a semantic function that maps
GTE specifications into the common semantic domain. Finally we specify an
algorithm that generates a set of posets from a UC-LTS.

4.3.1 Notations and Definitions
The common semantic domain of our framework is based on sets of partial order sets
(posets). In what follows we provide definitions of the involved formalisms and
specify a set of operations needed for the semantic mapping. It is also in this section,
where we propose a notion of refinement between two sets of posets specifications.

Definition 3: (Poset). A partially ordered set (poset) is a tuple (E,≤), where

E is a set of events, and
≤ ⊆ E × E is a partial order relation (reflexive, anti-symmetric, transitive) defined
on E. This relation specifies the causal order of events.
We will use the symbol ∅poset to denote the empty poset with ∅poset = (∅,∅).
Further we will use the symbol eposet to denote a poset containing a single event e
(eposet = ({e}, {(e,e)}).

In order to be able to compose posets we define the following operations:

Definition 4: (Binary Operations on Posets). The binary operations: sequential
composition (.) and parallel composition (||) of two posets p and q are defined as2:

Let p = (Ep, ≤p) and q = (Eq, ≤q) with Ep ∩ Eq = ∅ then:
p.q = (Ep ∪ Eq, (≤p ∪ ≤q ∪ {(ep, eq) | ep ∈ Ep and eq ∈ Eq})*)
p||q = (Ep ∪ Eq, ≤p ∪ ≤q)

We define semantics for GTE and UC-LTS using the following operations over sets
of posets.

Definition 5.1: (Binary Operators on Sets of Posets). For two sets of posets P and
Q, sequential composition (.), parallel composition (||), and alternative composition
(#) are defined as follows:

P . Q = { pi . qj | pi ∈ P and qj ∈ Q }
P || Q = { pi || qj | pi ∈ P and qj ∈ Q }
P # Q = P ∪ Q

2 Note that R* denotes the reflexive, transitive closure of R.

 Common Semantics for Use Cases and Task Models 591

Definition 5.2: (Repeated Sequential Composition). The repeated sequential
composition of a set of posets P is defined as:

 =0P {∅poset}

 PPP nn .1−= for n > 0

"..* PPP =

Definition 5.3: (Iterated Alternative Sequential Composition). The iterated
alternative sequential composition of a set of posets P is defined as:

 =0

#P {∅poset}

 nn PPPP ### 10

…=

 …## 10*

PPP =

Also fundamental to our model is the notion of a trace. A trace corresponds to one
particular scenario defined in the original use case or task model specification. In the
following we define the set of traces for a given poset, and for a given set of posets.

Definition 6: (Trace). A trace t of a poset p = (E, ≤) is defined as a (possibly infinite)
sequence of events from E such that

∀ (i, j in the index set of t) • i < j ⇒ ¬(t(j) ≤ t(i)) and

∪ t(i) = E

where t(i) denotes the ith event of the trace.

Definition 7: (Set of All Traces of a Poset). The set of all traces of a poset p is
defined as:
 tr(p) = { t | t is a trace of p }.

Definition 8: (Set of All Traces of a Set of Posets). The set of all traces of a set of
posets P is defined as:

Tr(P) =)(∪
Pp

i

i

ptr
∈

Using the set of all traces as a basis, we can define refinement among two sets of
posets through trace inclusion.

Definition 9: (Refinement). A set of posets Q is a refinement of a set of posets P if,
and only if

 Tr (Q) ⊆ Tr (P)

The refining specification is more restricted (in terms of possible orderings of events)
than the refined specification. Or, in other words, the refining specification has less
partial orders than the refined specification. In Section 4.4 we will re-use the

592 D. Sinnig, P. Chalin, and F. Khendek

definition of refinement to specify a satisfiability relation between two task model or
use case specifications.

4.3.2 Mapping GTE Specifications to Sets of Posets
This section specifies how a generic task expression is mapped into a corresponding
set of posets. For this purpose we define a (compositional) semantic function in the
common denotational style. As given in Definition 10, an atomic generic task
expression (denoted by a) is mapped into a set containing a single poset, which in
turn consists of a single element only. Composite task expressions are represented by
sets of posets, which are composed using the composition operators, defined in the
previous section.

Definition 10: Let t, t1, t2 be abstract task expressions, then the mapping to sets of
partial order sets is defined as follows:

 M [[a]] = {aposet}

 M [[t1 _>> t2]] = M [[t1]] . M [[t2]]

 M [[t1 _|| t2]] = M [[t1]] || M [[t2]]

 M [[t1 _[] t2]] = M [[t1]] # M [[t2]]

 M [[tOpt]] = M [[t]] # {∅poset}

 M [[tRep]] = M [[t]] #
*

In what follows we illustrate the application of the semantic function by applying it to
the “Login” generic task expression of the previous section. The overall application of
M (t1 _>> t2 _>> t3 _>> t4 _>> (t5 _[] t6)

can be further decomposed, by successively applying the definition of _>> and _[]. As
a result, we obtain the following expression:
M (t1). M (t2). M (t3). M (t4).(M (t5) # M (t6)).
By mapping the atomic tasks into the corresponding sets of posets and by

performing the required set compositions we obtain the following:

 {({t1, t2, t3, t4, t5}, {(t1, t2), (t2, t3), (t3, t4), (t4, t5)}*),
 ({t1, t2, t3, t4, t6}, {(t1, t2), (t2, t3), (t3, t4), (t4, t6)}*)}

The first poset denotes the scenario of a successful login and the second poset
represents a scenario of login failure.

4.3.3 Transforming UC-LTS to Sets of Posets
In this section we demonstrate how UC-LTS specifications (as defined in
Section 4.1) are mapped into the common semantic model. For this purpose we
have devised an algorithm that generates a set of posets from a given UC-LTS
specification. Table 4 gives the corresponding pseudo code. We note that the main
idea for the algorithm stems from the well-known algorithm that transforms a
deterministic finite automaton into an equivalent regular expression [29].
However, as described in the following, instead of step-wise composition of
regular expressions, we compose sets of posets.

 Common Semantics for Use Cases and Task Models 593

Table 4. Algorithm Transforming a UC-LTS to a Set of Posets

 (1)

var tt:SPOSET[][] with all array elements initialized to {«sposet}
for each transition (qs, X, qe) in T do
 tt[qs, qe] := {(X, id X)} where id X = {(l, l) | l œ X)}
od

(2) for each state qi in Q – (F ∪ {q0}) do

(3)
 for each pair of states qn and qk with n ∫ i & k ∫ i and

 X, Y œ 2S such that (qn, X, qi) œ T and (qi, Y, qk) œ T do

(4) var tmp:SPOSET
tmp := tt[qn, qi] . tt[qi, qi] #

* . tt[qi, qk]

(5)
 if $ V œ 2S such that (qn, V, qk) œ T then

 tmp := tmp # tt[qn, qk]
endif

(6) T := T ∪ { (qn, «,qk) }
(7) tt[qn, qk] := tmp

 od
(8) Q = Q – {qi}

 od

(9)

var result:SPOSET := «

for each qf in F do
 if result = « then
 result := tt[q0, qf]
 else
 result := result # tt[q0, qf]
 endif
od

(10)
if $ W œ 2S such that (q0, W, q0) œ T then
 result := result # tt[q0, q0]
endif

 return result

The procedure starts (1) with the creation of the transition table (a two-dimensional
array (‘tt’)) populated with all transitions of the given UC-LTS specification. Indexed
by a source and a target state a table cell contains a set of posets constructed from the
label(s) associated to the representative transition. In most cases the set of posets will
contain a single poset, which in turn consists of a single element representing one use
case step. Only, if multiple labels were associated with the transition, indicating the
concurrent or unordered execution of use case steps, the set of posets will contain a
poset which consists of several elements. Those elements, however, are not causally
related.

The core part of the algorithm consists of two nested loops. The outer loop (2)
iterates through all states of the UC-LTS (except for the initial and the final states)
whereas the inner loop (3) iterates through all pairs of incoming and outgoing
transitions for a given state.

594 D. Sinnig, P. Chalin, and F. Khendek

For each found pair, we perform the following: Compute (and temporarily store)
the sequential composition of the following three sets of posets (4):

1. Set of posets associated to the incoming transition
2. Result of the iterated alternative sequential composition (Definition 5.2) of the

poset associated to a possible self-transition defined over the currently visited state.
If such a self transition does not exist then the iterative alternative composition
yields «sposet.

3. Set of posets associated to the outgoing transition.

Next we examine whether there exists a transition from the source state of the
incoming transition to the target state of the outgoing transition. If yes (5), the
temporary stored set of posets is overwritten by the choice composition of the set of
posets denoted by the found existing transition and the former “value” of the
temporary store. Then (6) we add a new transition from the source state of the
incoming transition to the target state of the outgoing transition. In addition (7) we
populate the corresponding cell in the transition table with the temporary stored set of
posets.

Back in the outer loop, we eliminate (8) the currently visited state from the UC-
LTS and proceed with the next state. Once the UC-LTS consists of only the initial
state and the final states we exit the outer loop and perform the following two
computations, in order to obtain the final result. First (9) we perform a choice
composition of the sets of posets indexed by all the transitions from the initial state to
a final state. Second, if the initial state additionally contains a self loop (10) then we
add the set of posets denoted by that self loop to the before-mentioned choice
composition.

If we apply our algorithm to the example “Login” UC-LTS of section 4.1 we
obtain the following set of posets:

{
({s1, s21, s22, s3, s4, s5, s6}, {(s1, s21), (s1, s22), (s21, s3), (s22, s3), (s3, s4), (s4, s5), (s5, s6)}*),
({s1, s21, s22, s3, s4, s4a1, s4a2}, {(s1, s21), (s1, s22), (s21, s3), (s22, s3), (s3, s4), (s4, s4a1), (s4a1, s4a2)}*)
}

The first poset represents the main success scenario in the original “Login” use case
whereas the second poset represents the scenario where extension 4a (“The provided
username or/and password is/are invalid”) is taken. We note that the events e21 and e22
are not related by the partial order relation. Hence, a valid trace (see Definition 6) can
contain e21 and e22 in any order. This correlates to the original use case specification
where the primary actor may perform step 2.1 and step 2.2 in arbitrary order.

4.4 Satisfiability Between Use Cases and Task Models

The common semantic domain defined in the previous sections is the essential basis
for the formal definition of a satisfiability relation between two specifications. Such a
notion of satisfiability applies equally well between artifacts of a similar nature (e.g.
two use cases) as it does between use cases and task models. Our definition of
satisfiability is as follows: A specification ‘X’ satisfies another specification ‘Y’ if
every scenario of ‘X’ is also a valid scenario of ‘Y’.

 Common Semantics for Use Cases and Task Models 595

Within our semantic framework, a scenario of a use case or task model corresponds
to a trace (Definition 6) in the corresponding set of posets. Hence a task model or use
case specification satisfies another specification if the set of all traces (Definition 8)
of the former is a subset of the set of all traces of the latter. One precondition for the
application of the definition is that both sets of posets are based on the same event
‘alphabet’. This can be achieved by renaming the events of the refined specification to
their corresponding counterparts in the refining specification. Moreover, if a task
model specification is compared with a use case specification, all events representing
internal use case steps need to be removed. As pointed out in Section 2.3 task models
focus on aspects that are relevant for UI design and as such abstract from internal
system interactions.

For illustration purposes, we will formally determine whether the specification of
the “Login” task model satisfies the specification of the “Login” use case. As a first
step we need to unify the event alphabets. In the case of the “Login” use case steps 4,
4a1 and 6 represent internal (UI irrelevant) system interactions and hence are to be
deleted. Moreover, the events representing use case steps must be renamed after the
events representing the corresponding tasks in the task model.

Table 5. Mappings of Disabling and Suspend/Resume into GTE

Set of Posets representing “Login” UC (after Event Mapping)
{({t1, t2, t3, t4, t5}, {(t1, t2), (t1, t3), (t2, t4), (t3, t4), (t4, t5)}*),
({t1, t2, t3, t4, t6}, {(t1, t2), (t1, t3), (t2, t4), (t3, t4), (t4, t6)}*)}
Set of Posets representing the “Login” Task Model
{({t1, t2, t3, t4, t5}, {(t1, t2), (t2, t3), (t3, t4), (t4, t5)}*),
 ({t1, t2, t3, t4, t6}, {(t1, t2), (t2, t3), (t3, t4), (t4, t6)}*)}

As depicted by Table 5, it can be easily seen that every trace of the set of posets
representing the task model is also a trace of the set of posets (after the event
mapping) of the use case. Hence, according to the definition above, we can conclude
that the “Login” task model satisfies the “Login” use case.

5 Conclusion and Future Work

In this paper we have presented a common semantic framework for use cases and task
models. The main motivation behind our research is the need for an integrated
development methodology where task models are developed as logical progressions
from use case specifications. Our semantic framework is based on a two-step mapping
from a particular use case or task model notation to the common semantic domain of
sets of partial order sets. We argue that a two-step mapping results in a semantic
framework that can be more easily validated, reused and extended.

The intermediate semantic domains have been carefully chosen by taking into
consideration the intrinsic characteristics of task models and use cases, respectively.
In particular we defined a Use Case Labeled Transition System as an intermediate
semantic domain for use cases. It was demonstrated that UC-LTS allow for a natural
representation of the order in which actions are to be performed. In the case of task

596 D. Sinnig, P. Chalin, and F. Khendek

models we defined generic task expressions (GTE) as an intermediate semantic
domain. Similar to tasks, a generic task expression is hierarchically composed of sub-
task expressions using a set of standard operators. Hence the mapping from a concrete
task model to GTE remains straightforward and intuitive. In order to (partially)
validate our approach we used the framework to define a semantics for CTT task
models, including complex operators such as “disabling” and “suspend/resume”. We
also demonstrated how DSRG-style use cases are mapped into a set of partially order
sets. Finally we used our semantic framework to provide a formal definition of
satisfiability between use case and task model specifications. According to the
definition, a use case or task model specification satisfies another specification if
every scenario of the former is also a valid scenario of the latter.

Thus far, we concentrated on capturing sets of usage scenarios. As future work, we
are aiming at further extending our semantic framework. One such extension is the
introduction of different event types. The main motivation for such an extension is
that in task modeling (e.g. CTT), one often distinguishes between different task types.
Examples are: “data input”, “data output”, “editing”, “modification”, or “submit”. As
a consequence, rules to further restrict the definition of a valid trace may need to be
defined. An example of such a rule may be the condition that an event of type “data
input” must always be followed by a corresponding event of type “submit”. Another
extension of the semantic model deals with the capturing of state information. State
information is often employed in a use case to express and evaluate conditions. For
example the pre-condition of a use case denotes the set of states in which the use case
is to be executed. In addition, every use case extension is triggered by a condition that
must hold before the steps defined in the extension are executed. In order to be able to
evaluate conditions, the semantic model must provide means to capture the notion of
the state and should be able to map state conditions to the appearance of events.

Further avenues deal with the extension of the proposed definition of a
satisfiability relation for use case and task model specifications. Such an extended
definition may take into account different event types and the refinement of state
conditions. Moreover, we envision that refinements, and proofs of satisfiability, can
ideally be aided by tools, supporting the verification. We are currently investigating
how our approach can be translated into the specification languages of existing model
checkers and theorem provers.

Acknowledgments. This work is partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) in the form of a Postgraduate
Scholarship for D. Sinnig and Discovery Grants for P. Chalin and F. Khendek.

References

1. Seffah, A., Desmarais, M.C., Metzger, M.: Software and Usability Engineering: Prevalent
Myths, Obstacles and Integration Avenues. In: Human-Centered Software Engineering—
Integrating Usability in the Software Development Lifecycle, Springer, Heidelberg

2. Cockburn, A.: Writing effective use cases. Addison-Wesley, Boston (2001)
3. Pressman, R.S.: Software engineering: a practitioner’s approach. McGraw-Hill, Boston,

MA (2005)

 Common Semantics for Use Cases and Task Models 597

4. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
Heidelberg (2000)

5. Larman, C.: Applying UML and patterns: an introduction to object-oriented analysis and
design and the unified process. Prentice Hall PTR, Upper Saddle River, NJ (2002)

6. Butler, G., Grogono, P., Khendek, F.: A Z Specification of Use Cases. In: Proceedings of
APSEC 1998, pp. 94–101 (1998)

7. Grieskamp, W., Lepper, M., Schulte, W., Tillman, N.: Testable use cases in the abstract
state machine language. In: Proc. APAQS’01, Asia-Pacific Conference on Quality
Software (2001)

8. Barnett, M., Grieskamp, W., Schulte, W., Tillmann, N., Veanes, M.: Validating Use Cases
with the AsmL Test Tool in Proceedings of QSIC 2003 (Third International Conference on
Quality Software) (November 2003)

9. XSLT, XSL Transformations Version 2.0 [Internet], Available from Accessed: December
2006. Last Update: November 2006 http://www.w3.org/TR/xslt20/

10. Kuutti, K.: Activity theory as a potential framework for human-computer interaction
research (chapter) In: Context and consciousness: activity theory and human-computer
interaction, Massachusetts Institute of Technology, pp. 17–44

11. Dittmar, A., Forbrig, P.: Higher-Order Task Models. In: Proceedings of Design,
Specification and Verification of Interactive Systems 2003, Funchal, Madeira Island,
Portugal, pp. 187–202 (2003)

12. Souchon, N., Limbourg, Q., Vanderdonckt, J.: Task Modelling in Multiple contexts of
Use. In: Proceedings of Design, Specification and Verification of Interactive Systems,
Rostock, Germany, pp. 59–73 (2002)

13. Card, S., Moran, T.P., Newell, A.: The Psychology of Human Computer Interaction (1983)
14. Dittmar, A., Forbrig, P., Stoiber, S., Stary, C.: Tool Support for Task Modelling - A

Constructive Exploration. In: Proceedings of Design, Specification and Verification of
Interactive Systems 2004 (July 2004)

15. Johnson, P., Johnson, H., Waddington, R., Shouls, A.: Task Related Knowledge
Structures: Analysis, Modelling and Application. In: Jones, D.M., Winder, R. (eds.)
People and Computers IV, Manchester, pp. 35–62. Cambridge University Press,
Cambridge (1988)

16. Sinnig, D., Chalin, P., Khendek, F.: Consistency between Task Models and Use Cases. To
Appear in Proceedings of Design, Specification and Verification of Interactive Systems,
Salamanca, Spain (March 2007)

17. Mauw, S., Reniers, M.A.: An Algebraic Semantic of Basic Message Sequence Charts. In
Computer Journal, 37 (1994)

18. ITU-T, Recommendation Z.120- Message Sequence Charts, Geneva (1996)
19. Xu, J., Yu, W., Rui, K., Butler, G.: Use Case Refactoring: A Tool and a Case Study. In:

Proceedings of APSEC 2004, Busan, Korea, pp. 484–491 (2004)
20. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University Press, Cambridge

(1990)
21. ITU-T, Recommendation Z.120- Message Sequence Charts, Geneva (1999)
22. Zheng, T., Khendek, F.: Time consistency of MSC-2000 specifications, in Computer

Networks, June 2003, vol. 42(3). Elsevier, Amsterdam (2003)
23. Alur, R., Holzmann, G.J., Peled, D.: An Analyzer for Message Sequence Charts. In:

Software - Concepts and Tools, vol. 17, pp. 70–77 (1996)
24. Katoen, J.P., Lambert, L.: Pomsets for Message Sequence Charts, in Proceedings of FBT-

VS 1998, Cottbus, Germany, Shaker Verlag, pp. 197–207 (1998)

598 D. Sinnig, P. Chalin, and F. Khendek

25. Mizouni, R., Salah, A., Dssouli, R., Parreaux, B.: Integrating Scenarios with Explicit
Loops. In: Proceedings of NOTERE, 2004, Essaidia Morocco (2004)

26. Paternò, F., Santoro, C.: The ConcurTaskTrees Notation for Task Modelling, Technical
Report at CNUCE-C.N.R. (May 2001)

27. Sinnig, D., Chalin, P., Khendek, F.: Towards a Common Semantic Foundation for Use
Cases and Task Models, to appear in Electronic Notes in Theoretical Computer Science
(ENTCS) (2007)

28. Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implementations,
and their tests. In: Proceedings of IFIP Workshop Protocol Specification, Testing, and
Verification VI, pp. 349–360 (1987)

29. Linz, P.: An introduction to formal languages and automata. Jones and Bartlett Publishers,
Sudbury, MA (1997)

Unifying Theories of Objects

Michael Anthony Smith1,2 and Jeremy Gibbons1

1 Oxford University, UK
Michael.Smith@kellogg.ox.ac.uk

2 Systems Assurance Group, QinetiQ, UK
Jeremy.Gibbons@comlab.ox.ac.uk

Abstract. We present an approach to modelling Abadi–Cardelli-style
object calculi as Unifying Theories of Programming (UTP) designs. Here
we provide a core object calculus with an operational small-step evalua-
tion rule semantics, and a corresponding UTP model with a denotational
relational predicate semantics. For clarity, the UTP model is defined in
terms of an operand stack, which is used to store the results of sub-
programs. Models of a less operational nature are briefly discussed. The
consistency of the UTP model is demonstrated by a structural induction
proof over the operations of the core object calculus. Overall, our UTP
model is intended to provide facilities for encoding both object-based
and class-based languages.

1 Introduction

Hoare and He’s Unifying Theories of Programming (UTP) [6] can be used to
formally define how results produced in one formal model can be translated as
assumptions to another formal model. Essentially, programs are considered to be
predicates that relate the values of their observable input and output variables
(their alphabet). For example, the increment program x := x + 1 is typically
defined by the relational predicate x ′ = x + 1, where predicate variables x and
x ′ denote the input and output values of the program variable x . In general,
the alphabet of a program P is denoted by αP ; it is the disjoint union of P ’s
input and output sets (inαP and outαP respectively), which in the case of the
example is the set {x , x ′}.

This basic relational model has been specialised to reflect the semantics of
various programming paradigms and languages, such as: imperative programs
without subroutines; reactive systems for simple message-based concurrency;
and class-based object orientation [4,2,11]. Here, we consider a variant of the
Abadi–Cardelli-style untyped object calculus (ς-calculus) [1]. We hope that, by
providing an encoding of the ς-calculus in the UTP, we can provide facilities
for modelling and relating a wide range of object-oriented (OO) languages. In
particular, we take an object-based rather than class-based approach, following
Abadi and Cardelli, providing both object values and references through the use
of a heap. We do not discuss delegation, inheritance, or other mechanisms for
sharing methods, since these can be implemented in terms of our primitives; nor

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 599–618, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

600 M.A. Smith and J. Gibbons

again, following Abadi and Cardelli, do we support evolution of object interfaces,
although it would be trivial to remove this restriction.

In the remainder of this section we introduce the notion of a UTP design
and some notation that is too cumbersome to introduce when it is required.
The paper then presents our variant of the object calculus, its stack-based UTP
model, the consistency of this model, and some concluding remarks.

1.1 Designs in Unifying Theories of Programming

A UTP design specialises the general model of programming within the UTP
by adding the notion of program termination. It introduces two special model
variables Πok and Πok

′ to denote when a program is ready to start and when a
program has terminated, respectively.

Definition 1 (UTP design). A design predicate p . P states that the program
represented by the relational predicate P will successfully terminate whenever it
has been started in an input state that satisfies input assumption (precondition)
predicate p.

p . P =̂ (Πok ∧ p) ⇒ (Πok
′ ∧ P)

α(p . P) =̂ αP ∪ {Πok, Πok
′}

where αp ⊆ inαP and Πok, Πok
′ 	∈ αP.

This definition of a UTP design is taken from [4]. It updates the original defini-
tion in [6] by ensuring that “the assumption is a precondition, containing only
undashed [input] variables [. . . which . . .] corresponds exactly to the third health-
iness condition” of [6, page 84]. The remainder of the UTP design language is
now summarised as follows:

skip to represent the program whose outputs are unchanged;
chaos to represent the program whose outputs are arbitrary;
miracle to represent the program whose outputs are always correct;
var x to introduce variable x (i.e. add it to the alphabet);
end x to complete variable x (i.e. remove it from the alphabet);
x k
i=1 :=ek

i=1 to assign the evaluation of each ei to xi simultaneously;
P � Q to compose subprograms P and Q sequentially;
P # b � Q to execute P when b is true, and Q otherwise;
P ! Q to choose non-deterministically between P and Q ;
b ∗ P to iterate subprogram P whilst b is true;
μ z • P [z] to establish the weakest fixed point of recursive program P .

where the meta variables
b, e denote a boolean value and a general expression respectively;
P ,Q denote UTP relational predicates (e.g. designs);
x , y denote variables (in this case program variables);
z denotes the special fixed point variable;
P [z] denotes a relational predicate P that may contain the variable z .

Unifying Theories of Objects 601

The miracle program is not implementable; it and chaos are useful for reasoning
about program, as they are the bottom and top of the design refinement lattice
respectively. For further information on UTP designs refer to [4,6,12].

1.2 Design Frame and Compilation Notation

We now introduce two utility notations. First, design frames are introduced
to simplify the definitions of relational predicates that affect only some of the
variables within an alphabet.

Definition 2 (Design Frame). Let V be a set of program variables. A design
with frame V has the form V : (p . P), denoting the predicate p . P ∧ w ′ =w,
where the vector w contains the logical and program variables within the input
alphabet of p . P except those in the set V (i.e. {x | x ∈ w} = inα(p . P)\V).

Second, the compilation of a source language term t with subterms t1, . . . , tk is
denoted by 〈〈t{tki=1}〉〉m, where m represents an optional compilation mode. We
use this notation for compiling the heap extended core ς-calculus (Och-calculus)
into the UTP operand stack model (Ush) below.

1.3 Operational Reduction Rule Notation

The semantics of object calculus operations is defined in terms of a collection of
small-step evaluation-rules. These rules are similar to those in [10] except that
they include a notion of a general context (Γ), which is essentially used to denote
those specific contexts that are irrelevant to a given rule. A specific context, such
as the heap in the Och-calculus (Section 2.3), can be selected and set as follows:

{heap �→ H } Let H denote the heap context.
{heap ←� H } Set the heap context to the value of H .

The objective of the evaluation rules is to provide the circumstances under which
a term t in a context Γ can evaluate in one step to a term t ′ in context Γ ′; such
one-step evaluations are denoted by Γ • t −→ Γ ′ • t ′, where • denotes the
context-term pair binder and −→ denotes an individual evaluation step. It
is now possible to define the rule representation as follows:

〈condition1〉 . . . 〈conditionn 〉
〈concluded term evaluation step〉 RuleName 〈optional side condition〉

where conditioni may be either a logical constraint or an evaluation step.

2 The Object Calculi

The Och-calculus we consider in this paper is an extension of the ς-calculus
presented in Chapter 6 of Abadi and Cardelli’s book on objects [1]. We now

602 M.A. Smith and J. Gibbons

provide a brief summary of the ς-calculus (Section 2.1), which is followed by our
arithmetic and heap extensions (Sections 2.2 and 2.3 respectively).

2.1 Abadi–Cardelli Untyped Object Calculus

The Abadi–Cardelli ς-calculus introduces the notion of an object, as a collection
of labelled methods that can be updated and selected as follows.

[ki=1 li = mi] denotes an object value – a partial map from labels to meth-
ods, where method mi is identified by label li .

ς(x) e denotes a method whose body is defined by the expression
e, which may itself contain one or more instances of the self
variable (identifier) x .

o.l ↼↽ m denotes a method update operation, which generates a new
object by taking a copy of the object o and replacing the
method identified by label l with the method m.

o.l denotes a method selection operation, which evaluates the
body of the method with label l in object o, after each
instance of the method’s self variable has been replaced by
a copy of the invoking object o.

where the meta-variables
o, l denote an object and a label value respectively;
m denotes a method;
e, x denote an expression and the self identifier (variable/expression).

Note that a ς-calculus expression is either an object value, variable identifier,
or an application of the method selection or update operators. In particular,
neither a label nor a method is considered to be a value-expression.

Method Update. The base case for the method update operations can now
be defined by the following small-step evaluation rule.

l 	 o
Γ • o.l ↼↽ m −→ Γ • �o ⊕ {l �→ m}� UpdM

where
l 	 o label l is in the domain of object o.
o1⊕o2 object map o1 is overridden by object map o2.
�e� the meta-expression e.

There is one other small-step evaluation rule, which ensures that the evaluable
argument (i.e. expression argument) of the method update operation is evaluated
prior to the operation being applied.

Unifying Theories of Objects 603

Γ • e −→ Γ ′ • e ′

Γ • e.l ↼↽ m −→ Γ ′ • e ′.l ↼↽ m
UpdM-1

Method Invocation (or Selection). The base case for the method invocation
operations of the ς-calculus can be defined by the following rule.

l 	 o
Γ • o.l −→ Γ • �b{|x ←� o|}� InvM

m =̂ o(l)
ς(x) b .= m

where

o(l) is the method of object o with label l .
m =̂ e defines variable m to be the evaluation of meta-expression e.
ς(x) b .= m binds x and b to the self-variable and body of method m.
b{|x ←� o|} the substitution of object o for free variable x in term b.

The rule for evaluating an evaluable argument before the base rule can be applied
is defined in precisely the same manner as that of the method update operation.

2.2 Core Object Calculus (Oc-Calculus)

The core ς-calculus (Oc-calculus) introduces field assignment, integer literals,
and some basic arithmetic operators.

o.l := e denotes the operation that evaluates the expression e to a value
v , then applies the method update operation o.l ↼↽ ς() v .

i denotes a (literal) integer value.

(ek
i=1) denotes a k -ary operation on literal values (e.g. binary "+").

The following rules specify the base cases for both of the above operations.

Γ •
(vk
i=1) −→ Γ • �
(vk

i=1)�
LitOp vk

i=1 ∈ dom(
)

l 	 o
Γ • o.l := v −→ Γ • �o ⊕ {l �→ ς() v}� FldA

The other cases for these operations ensure that their evaluable arguments are
processed in a left to right order.

Γ • en −→ Γ ′ • e ′n
Γ •
(vn−1

i=1 , e
k
i=n) −→ Γ ′ •
(vn−1

i=1 , e
′
n , e

k
i=n+1)

LitOp-n

Γ • e1 −→ Γ ′ • e ′1
Γ • e1.l := e2 −→ Γ ′ • e ′1.l := e2

FldA-1

Γ • e −→ Γ ′ • e ′

Γ • o.l := e −→ Γ ′ • o.l := e ′
FldA-2

604 M.A. Smith and J. Gibbons

2.3 Heap-Extended Object Calculus (Och-Calculus)

The Och-calculus introduces a copy-based heap storage model [10], where the
heap is a partial map from abstract locations to values. Here the contents of an
abstract location can be read (dereferenced) or updated (assigned) via atomic
operations that take copies of the source values. The new constants and operators
introduced by this model now follow.

�i denotes an abstract location on the heap and an allocated refer-
ence value.

null denotes the null (i.e. unallocated) reference value.
¿ denotes the unset value.

fresh denotes the operation that results in the location of a newly
allocated heap entry, whose contents are unset.

∗r denotes the operation that takes a copy of the contents in heap
location r .

r ∗= v denotes the assignment, by copy, of value v to location r .

where r , v , and i are reference, general, and integer values respectively.
The following rules specify the base cases for the fresh, dereference, and as-

signment (reference update) operators. The other cases for these operators are
defined to follow the usual left to right evaluation order, in a similar manner to
those of the Oc-calculus operators.

Γ{heap
→ H } • fresh −→ Γ{heap ← � H ′} • r
Fresh

r =̂ freshloc(domH)
H ′ =̂ H ⊕ {r
→ ¿}

r � H
Γ{heap
→ H } • ∗r −→ Γ • H (r)

DeRef

r � H
Γ{heap
→ H } • r ∗= v −→ Γ{heap ← � H ⊕ {r
→ v}} • r

UpdL

where freshloc is a meta-function that takes a set of location values and returns
a location that is not within this set.

3 The Operand Stack Model (Ush) of the Och-Calculus

The UTP operand stack model (Ush) extends the notion of a UTP design with
an operand stack for storing intermediate results, and a heap map for storing
dynamically allocated values in abstract heap locations. Formally this stack and
heap are denoted by the UTP context variables Πstk, Πheap, Πstk

′, and Πheap
′,

which represent the input and output states (values) of the operand stack and
heap storage respectively.

The contents of the stack are the semantic entities that represent the operands
of the Och-calculus operations, i.e. the integers, objects, labels, methods, and
(heap) locations. The idea is that following the execution of a subprogram the
top value on the stack represents its result.

Unifying Theories of Objects 605

The heap storage (map) context is essentially taken from the Och-calculus, the
main differences being in the changes to its name and the precise representation
of its contents (values). In particular, the restriction that the heap can only
contain values is kept; thus unlike the stack a heap cannot contain labels or
methods. An alternative trace-based approach to modelling the Och-calculus is
the subject of current work as discussed in Section 5.2.

3.1 Literal Value Programs

The simplest object calculus program is represented by a literal value, which is
also the final result value of the program. Therefore, the compilation of such an
Och-calculus program must result in the Ush design (E sv) that pushes a single
stack-value (sv) – i.e. a label, a method or a value – onto the operand stack.

E sv =̂ {Πstk} : (true . Πstk
′ = 〈sv〉 �Πstk)

The compilation of a literal value lv to the Ush is now defined in stages by the
following two compilation rules. Here, the first rule compiles the value to a UTP
program, whereas the second rule compiles the value to a UTP expression.

〈〈lv 〉〉 =̂ E〈〈lv 〉〉e 〈〈lv 〉〉e =̂ lv

Note that these compilation rules produce Ush texts, which can then be converted
into a Ush program by applying the semantic meaning brackets as follows.

� t � =̂ t

where t is a valid output of the program compilation process. This amounts
to being in a subset of the available Ush operations, whose syntactic forms are
amenable to the structural definition of functions involving scope of variables.
For example, the free-variable substitution function in Section 3.5 is defined in
terms of such a structural definition.

3.2 Modelling Object Values and Method Definitions

In the Ush an object value is defined as a map from labels to methods. This is
denoted by {k

i=1 li �→ mi}, where k represents the number of object methods mi

with distinct labels li . The compilation of an object value is similar to that of
literal values.

〈〈[ki=1li = mi]〉〉 =̂ E〈〈[ki=1li = mi]〉〉e

〈〈[ki=1li = mi]〉〉e =̂ {k
i=1 〈〈li 〉〉e �→ 〈〈mi 〉〉e}

A method is defined as a pair of compiled program texts that represent the
method’s self variable and body. It is denoted by (| x ,P |), where the scope
of the self variable x is the program text P . Methods cannot occur as top

606 M.A. Smith and J. Gibbons

level programs as they are not considered to be values, thus they only have an
evaluation moded compilation scheme.

〈〈ς(x) e 〉〉e =̂ (| 〈〈x 〉〉e, 〈〈e 〉〉 |)

where a variable is represented by itself in both the program and declaration
(literal evaluation) contexts.

〈〈x 〉〉 =̂ x 〈〈x 〉〉e =̂ x

Note that a variable by itself is not a valid program, but it may be the entire
contents of a method’s body (i.e. a compiled program text). Such variables are
substituted by their values, prior to the program text being extracted to a Ush

subprogram. Details of the program text variable-substitution and extraction
processes are presented in the discussion of method invocation (Section 3.5).

3.3 Command Expressions

In the Och-calculus, almost all the programming operations are expressions. Such
expressions are converted into UTP commands by evaluating each of their argu-
ments, whose results are stored in the operand stack (Πstk), and then applying
an appropriate stack transformation command.

The Ush stack transformation operation trans(f , k) takes a k -parameter func-
tion f , which defines the operation being modelled, and constructs a UTP pro-
gram that applies this function to the top k contents of the operand stack. Care
must be taken to ensure that the parameters are in the order that they are going
to appear on the operand stack, as this may not be the same as the left-to-right
declaration order.

Given that the meta-variables x1, . . . , xk represent the arguments for func-
tion f , then the updated stack can be modelled by 〈f (x1, . . . , xk)〉 � (tailk Πstk),
assuming that: it has started (Πok = true); there are sufficient arguments
(k ≤ #Πstk); and these arguments are in the domain of the function being
modelled ((x1, . . . , xk) 	 f).

trans(f , k) =̂
∃ x k

i=1 • (
(k ≤ #Πstk) ∧ (∀k

i=1 xi = head(tailk−i Πstk)) ∧ (x k
i=1) 	 f

.
Πstk

′ = 〈f (x k
i=1)〉 � (tailk Πstk)

)

Having defined the transformation function, the next step is to provide a Ush

operation that evaluates the arguments for this function and then applies this
function to these arguments. Note that these arguments range over acceptable
stack values, so may include labels and methods, which are considered to be

Unifying Theories of Objects 607

values for the purpose of the argument evaluation. Therefore, the arguments
consist of stack values and general expressions (se1, . . . , sek).

cmdExp(f , (sek
i=1)) =̂ (�ki=1〈〈sei 〉〉) � trans(f , k)

Example 1. The Och-calculus addition operation can be modelled in terms of
the cmdExp operation as follows:

〈〈e1 + e2〉〉 =̂ cmdExp((+), (〈〈e1〉〉, 〈〈e2〉〉))

= 〈〈e1〉〉 � 〈〈e2〉〉 � trans((+), 2)

3.4 Method Updates and Field Assignments

Method update in the Och-calculus is compiled in two parts: first, the terms
representing the arguments are compiled; and second, they are combined by an
appropriate method update transformation function.

〈〈e1.e2 ↼↽ m 〉〉 =̂ cmdExp(methUpd , (〈〈e1〉〉, 〈〈e2〉〉, E〈〈m 〉〉))

where:

methUpd = { (o, l ,m) �→ o ⊕ {l �→ m} |
(o, l ,m) ∈ Object × Label × Method ∧ l 	 o

}

A field assignment is compiled in a similar manner.

〈〈e1.e2 := e3〉〉 =̂ cmdExp(fldUpd , (〈〈e1〉〉, 〈〈e2〉〉, 〈〈e3〉〉))

where:

fldUpd = { (o, l , v) �→ o ⊕ {l �→ (| , v |)} |
(o, l , v) ∈ Object × Label × Value ∧ l 	 o

}

3.5 Method Invocation

Method invocation in the Och-calculus is compiled in two parts. First an object-
member pair is constructed from the invocation arguments: a pair of expressions
(e1 and e2) representing an object (o) and a label (l). This is achieved by retriev-
ing the method with label l from object o. The second part performs the actual
method invocation, using a generic method call command (call). It executes the
body of the method where the method’s self variable has been instantiated with
the calling object’s value.

〈〈e1.e2〉〉 =̂ cmdExp(omPair , (〈〈e1〉〉, 〈〈e2〉〉)) � call

608 M.A. Smith and J. Gibbons

where:

omPair = {(o, l) �→ (o, o(l)) | (o, l) ∈ Object × Label}

Before formally defining the generic call command, it is worth presenting two
helper functions, for method extraction and self variable substitution. Both these
functions are defined by cases, where the first case that matches is taken. The
ext(t , z) constructs a program that can be represented by program text t once
the fixed point variable z has been instantiated.

ext(t , z) =̂ � extInner(t , z) �
extInner(call, z) =̂ z
extInner(t{k

i=1 ti}, z) =̂ t{k
i=1 extInner(ti , z)}

extInner(t , z) =̂ t

The following Ush substitution function (t{|x ←� sv |}) performs the same role as
that of its Och-calculus counterpart, in that it replaces all free occurrences of
the program variable x with the stack-value sv in the program text t .

x{|x ←� sv |} =̂ sv
(| x , t |){|x ←� sv |} =̂ (| x , t |)
t{k

i=1 ti}{|x ←� sv |} =̂ t{k
i=1 ti{|x ←� sv |} }

t{|x ←� sv |} =̂ t

Note that this definition assumes that both the variable x and the stack-value
sv have a textual representation. Both variables and literal values are their own
texts. This leaves methods and object stack values. As a method is modelled
by its text and an object is a partial map from labels to method texts, it is
possible to define a straightforward function (text) for taking these values to an
equivalent program text.

We are now in a position to define the call command. It is defined as the
least fixed point of the apply function, which substitutes the self object o in the
method text t for its self variable x .

call =̂ μ z • apply(z)

where

apply(z) =̂ (∃ o, x , t | (o, ((| x , t |))) = headΠstk •
pop � ext(t{|x ←� text(o)|}, z)

)
#Πstk > 0 ∧ (headΠstk) ∈ Object × Method �
chaos

3.6 Modelling the Heap Operations

The Ush model of a heap mirrors that of the Och-calculus, where the location,
unset and null values are shared semantic entities between the models.

Unifying Theories of Objects 609

Fresh Operator. The Och-calculus fresh operation is compiled to its Ush mir-
ror.

〈〈fresh〉〉 =̂ fresh

The fresh command creates a new location on the heap, which is initialised to
the explicit unset value; it then pushes the value of this new location onto the
operand stack.

fresh =̂ ∃ r | r = freshloc(domΠheap) •
Πstk, Πheap := 〈r〉 �Πstk, Πheap ⊕ {r �→ ¿}

Note that this operation deliberately uses the same fresh location generation
function as in the Och-calculus, as it simplifies the consistency proof between
the models. Without this we would have to have a notion of heap equivalence.

Dereference Operator. The dereference Och-calculus operation is compiled
by evaluating the expression representing the heap location, then applying the
Ush’s command for dereferencing the current result.

〈〈∗e 〉〉 =̂ 〈〈e 〉〉 � deref

The heap dereference command (deref), takes the heap location on the top of
the stack and replaces it with a copy of the associated heap value.

deref =̂ {Πstk} : (
#Πstk > 0 ∧ (headΠstk) 	 Πheap

.
Πstk

′ = 〈Πheap(headΠstk)〉 � (tailΠstk)
)

Heap Update Operator. The heap update Och-calculus operation is compiled
by evaluating its arguments in a left to right order, storing their results into
a single location-value pair, and then applying the model of the heap update
operation.

〈〈e1 ∗= e2〉〉 =̂ cmdExp(lvPair , (〈〈e1〉〉, 〈〈e2〉〉)) � update

where lvPair is a variant of the identity function whose domain elements are
defined to be the location-value pairs.

lvPair = {(r , v) �→ (r , v) | (r , v) ∈ Location × Value}

The reason for combining the location and value into a pair, is so that it has
the same form as the heap extended result-value and constant-map UTP models
of the Och-calculus. This helps to highlight the semantic, rather than syntactic,

610 M.A. Smith and J. Gibbons

differences between the models. These alternative models are discussed briefly
in Section 5.2.

The heap update command consumes the location-value pair on the top of
the stack, assigns the new value to the existing heap location, and then pushes
the heap location onto the stack.

update =̂ (∃ r , v | (r , v) = headΠstk •
Πstk, Πheap := 〈r〉 � (tailΠstk), Πheap ⊕ {r �→ v}
# r 	 Πheap �
chaos

)
#Πstk > 0 ∧ (headΠstk) ∈ Location × Value �
chaos

4 Consistency of the Operand Stack Model

We now demonstrate that the Ush denotational semantics is consistent with the
Och-calculus operational semantics via a structural induction over the object cal-
culus’ terms — specifically, that the denotational semantics of an Och-calculus
operation is the same as that of its result. The commuting diagram in Figure 1
illustrates the structure of the proof that the semantic models for an object cal-
culus operation op with k subterms are consistent, where:

sei is the i th subexpression of the original operation.

svi is the i th subterm of the operation after its arguments (i.e. stack
values) have been evaluated in the correct order.

〈t 〉m is the the combination of the compilation and semantic meaning
functions (i.e. � 〈〈t 〉〉m �), where m is the compilation mode.

Γi is the i th object calculus run-time context variable.

A0 is the assumption that the subterms can be evaluated in the cor-
rect order. Note this assumption also guarantees the consistency
of the sub-term mappings (i.e. ∀k

i=1 〈〈svi 〉〉 = E svi).

A1 is the assumption that the arguments are in the domain of the
operation being modelled (i.e. (svk

i=1) 	 op).

A2 is the assumption that the result of executing the operation with
arguments svk

i=1 is the expression e.

→,� are the one-step and multi-step Och-calculus operations.
↓ is a compilation and/or semantic evaluation function.

=, ‖ are two different representations of the equality relation, for hor-
izontal and vertical display contexts respectively.

The left hand square of the commuting diagram in Figure 1 is essentially the
same for every operator being checked, as it mirrors the use of the induction

Unifying Theories of Objects 611

Γ0 • op{sek
i=1} Γ1 • op{svk

i=1} Γ2 • e

〈Γ0〉 � 〈op{sek
i=1}〉 〈Γ1〉 � 〈op{svk

i=1}〉 〈Γ2〉 � 〈e 〉

A0

〈 〉

A1, A2

〈 〉 〈 〉

A0 A1, A2

Fig. 1. Commuting diagram principle

Γ1 • op{svk
i=1} Γ2 • e

〈Γ1〉 � 〈op{svk
i=1}〉 〈Γ2〉 � 〈e 〉

�

〈 〉

�

A1, A2

�

〈 〉

A1, A2

Fig. 2. Commuting diagram practice

hypothesis, that an operation’s arguments (subterms) can be evaluated success-
fully. Therefore, in practice this aspect of the diagram is omitted, as illustrated
in Figure 2.
The remainder of this section presents a representative sample of the consistency
proofs; space limits preclude completeness.

4.1 Scalar Value Operations

The Och-calculus provides a variety of arithmetic operations that take scalar
values and return a scalar value. Further, as all of these operations are system-
atically translated into the Ush, it is possible to present a generic proof that these
operations are consistently modelled.

The commuting diagram in Figure 3 outlines the structure of the proof that a
generic infix binary operator (3), over scalar values in the Och-calculus, has
a consistent denotational semantics. Here we assume that:

A1 The scalar values sv1 and sv2 are in the domain of the infix operator;
i.e. (sv1, sv2) 	 (3).

A2 The scalar value sv3 is the result of evaluating the binary operator;
i.e. sv3 = sv1 3 sv2.

In Figure 3’s commuting diagram, L1 denotes the first lemma (Lemma 1). It is
the key step in this consistency proof, which demonstrates that a command ex-
pression has the expected semantics. Essentially, this commuting diagram forms
a template for all the Och-calculus operations that are defined as command ex-
pressions in the Ush. In particular, field assignment and method update are also
covered by this proof template.

612 M.A. Smith and J. Gibbons

Γ • sv1 & sv2 Γ • sv3

〈Γ 〉 � cmdExp((&), (E sv1, E sv2))

〈Γ 〉 � E(sv1 & sv2) 〈Γ 〉 � E sv3

A1, A2

〈 〉

〈 〉

A1, L1

A2

Fig. 3. Generic binary operation commuting diagram

Command expression lemma. The command expression lemma demon-
strates that the effect of applying a command-expression command to a function
f , with pre-evaluated arguments svk

i=1, is the same as the effect of applying the
evaluation command to the result of the function f on its arguments. It assumes
that the arguments are in the domain of the function (i.e. (svk

i=1) 	 f). Note
that a pre-evaluated argument is an operand-stack value (i.e. a label, method
definition or a value).

Lemma 1 (Command Expression Lemma)

(svk
i=1) 	 f ⇒ cmdExp(f , (ki=1 E svi)) = E(f (svk

i=1))

Note that within the following proof, the left-hand-side of the initial implication
is added as an assumption to the proof context.

cmdExp(f , (ki=1 E svi))

= ·
(�k

i=1 E svi) � trans(f , k)

Defn. of cmdExp

= ·
(�k

i=1 (true ' Πstk
′ = 〈svi〉 � Πstk))�

trans(f , k)

Defn. of E

= ·
(true ' Πstk

′ = 〈ki=1 svk+1−i 〉 � Πstk)�
trans(f , k)

Defn. of �

and predicate logic

= ·
(true ' Πstk

′ = 〈ki=1 svk+1−i 〉 � Πstk)�
∃ x k

i=1 • #Πstk ≥ k ∧
(∀k

i=1 xi = head(tailk−i Πstk)) ∧
(x k

i=1) � f
'
Πstk

′ = 〈f (x k
i=1)〉 � (tailk Πstk)

Defn. of trans

Unifying Theories of Objects 613

= ·
#(〈ki=1 svk+1−i 〉 � Πstk) ≥ k ∧
(∀k

i=1 svi = head(tailk−i Πstk)) ∧
(svk

i=1) � f
'
Πstk

′ = 〈f (svk
i=1)〉 � tailk(〈ki=1svk+1−i 〉 � Πstk)

Defn. of �

and predicate logic

= ·
(svk

i=1) � f ' Πstk
′ = 〈f (svk

i=1)〉 � Πstk

Predicate logic

= ·
true ' Πstk

′ = 〈f (svk
i=1)〉 � Πstk

A1, i.e. (svk
i=1) � f

= ·
E(f (svk

i=1))

Defn. of E

4.2 Method Invocation

The commuting diagram in Figure 4 demonstrates that the Och-calculus method
invocation is consistent with one unwinding of the fixed-point function (call) that
defines method invocation, where:

A1 The label l of object o has the method ς(x) e;
A2 The compilation of substitution process is defined as:

〈〈e{|x ←� o|}〉〉 =̂ ext(〈〈e 〉〉{|x ←� 〈〈o〉〉e|}, call)

Γ • o.l Γ • e{|x ← � o|}

〈Γ 〉 � cmdExp(omPair , (E 〈o〉 , E l)) � call

〈Γ 〉 � E(〈o〉 , 〈ς(x) e 〉) � apply(call) 〈Γ 〉 � ext(〈〈e 〉〉{|x ← � 〈〈o〉〉e|}, call)

�

A1

�

〈 〉

�

〈 〉 , A2

A1, L1, L2

L3

Fig. 4. Method invocation commuting diagram

The consistency diagram in Figure 4 relies on three lemmas: the command ex-
pression lemma (Lemma 1); the unwinding lemma (Lemma 2), which uses the
fixed-point definition to provide a single unwinding; and the method call lemma
(Lemma 3), which demonstrates that this unwinding is correct. We now state
and prove the remaining two lemmas.

Recall that the method call operation is defined as the fixed point of an apply
function (μ z • apply(z)). The structure of this definition leads to the following
unwinding lemma.

614 M.A. Smith and J. Gibbons

Lemma 2 (Unwinding Lemma)

call = apply(call)

Proof

call
= ·

(μ z • apply(z))
Defn. of call

= ·
apply(μ z • apply(z))

Defn of fixed point μ

= ·
apply(call)

Defn. of call

Method call lemma. Informally the method call lemma says that the effect of
applying the call command is equivalent to the effect of applying one iteration
of this command to itself.

Lemma 3 (Method Call Lemma)

E(〈o〉 e, 〈ς(x) e 〉) � apply(call) = ext(〈〈e 〉〉{|x ←� 〈〈o〉〉e|}, call)

Proof

E(〈o〉 e, 〈ς(x) e 〉) � apply(call)
= ·

E(〈o〉 e, (| x , 〈〈e 〉〉 |)) � apply(call)
Defn. of 〈ς(x) e 〉

= ·
(true ' Πstk

′ = 〈(〈o〉 e, (| x , 〈〈e 〉〉 |))〉 � Πstk)�
apply(call)

Defn. of E

= ·
(true ' Πstk

′ = 〈(〈o〉 e, (| x , 〈〈e 〉〉 |))〉 � Πstk)�
((∃ o1, x1, t1 | (o1, (| x1, t1 |)) = headΠstk •

pop � ext((| t1{|x1 ← � text(o1)|} |), call)
)
� #Πstk > 1 ∧ (headΠstk) ∈ Object × Method �
skip

)

Defn. of apply

= ·
(true ' Πstk

′ = 〈(〈o〉 e, (| x , 〈〈e 〉〉 |))〉 � Πstk)�
((∃ o1, x1, t1 | (o1, (| x1, t1 |)) = headΠstk •

(#Πstk > 1 ' Πstk
′ = tail Πstk)�

ext((| t1{|x1 ← � text(o1)|} |), call)
)
� #Πstk > 1 ∧ (headΠstk) ∈ Object × Method �
skip

)

Defn. of pop

Unifying Theories of Objects 615

= ·
(∃ o1, x1, t1 | (o1, (| x1, t1 |)) = (〈o〉 e, (| x , 〈〈e 〉〉 |)) •

(true ' Πstk
′ = Πstk)�

ext((| t1{|x1 ← � text(o1)|} |), call)
)
� true ∧ (〈o〉 e, (| x , 〈〈e 〉〉 |)) ∈ Object × Method �
skip

Defn. of �

and predicate logic

= ·
∃ o1, x1, t1 | (o1, (| x1, t1 |)) = (〈o〉 e, (| x , 〈〈e 〉〉 |)) •

(true ' Πstk
′ = Πstk)�

ext((| t1{|x1 ← � text(o1)|} |), call)

Defn. of (� �)
and predicate logic

= ·
skip�

ext((| 〈〈e 〉〉{|x ← � text(〈o〉 e)|} |), call)

One point rule
and defn of skip

= ·
ext((| 〈〈e 〉〉{|x ← � 〈〈o〉〉e|} |), call)

skip unit of (�)
and defn. of text

4.3 Fresh Heap Locations

The commuting diagram in Figure 5 outlines the structure of the proof that the
fresh operator in the Och-calculus has a consistent denotational semantics. Here
we assume that:

A1 The initial Och-calculus context-heap value is H0.
A2 The expression freshloc(domH0) evaluates to �j .
A3 The context-heap value H1 is H0 ⊕ {�j �→ ¿}.

Γ0 • fresh Γ1 • �j

(Πheap := H0) � fresh (Πheap := H1) � (E �j)

A2

〈 〉 , A1 〈 〉 , A3

L4, A2, A3

Fig. 5. Fresh operator commuting diagram

Lemma 4 (Fresh location lemma)

(Πheap := H0) � fresh = (Πheap := H1) � (E �j)

Proof

(Πheap := H0) � fresh

616 M.A. Smith and J. Gibbons

= ·
(Πheap

′ = H0)�
(∃ r | r = freshloc(dom Πheap) •

Πstk, Πheap := 〈r〉 � Πstk, Πheap ⊕ {r
→ ¿}
)

Defn. of fresh

= ·
∃ r | r = freshloc(domH0) •

Πstk, Πheap := 〈r〉 � Πstk, H0 ⊕ {r
→ ¿}

Defns. of � and :=

= ·
∃ r | r = �j •

Πstk, Πheap := 〈r〉 � Πstk, H0 ⊕ {r
→ ¿}

A2

= ·
Πstk, Πheap := 〈�j 〉 � Πstk, H1

1-point rule & A3

= ·
(Πheap := H1) � (E �j)

Defns. of � and E

5 Conclusions and Related Work

In this paper we have provided a UTP encoding of an Abadi–Cardelli-style ς-
calculus with an explicit heap model, along with a proof of its consistency. It is
straightforward to add several other features, such as direct support for eagerly
evaluated untyped lambda calculus (λ-calculus) functions, and for treating labels
as values. In the former case, this amounts to relaxing the restriction on the
definition of the Ush’s call operator, to accept any value-method pair rather than
an object-method pair. The latter case amounts to treating labels as values, and
adding operations for conditional execution and for checking whether an object
contains a method with a given label.

5.1 Related Work

Hoare and He’s UTP [6,12] provides a rich model of programs as relational-
predicates. Abadi and Cardelli’s ς-calculi [1] provides an alternative model of
programs as objects. Our contribution is to model the Abadi–Cardelli notion of
an object in the UTP, which provides: a simple untyped object calculus with a
relational-predicate denotational semantics; and the UTP with an object-based
model of object-orientation. Further, as the UTP already has several models of
concurrency, this encoding provides the potential for adding one (or more) of
these concurrency models to the ς-calculus.

This is not the first time object-oriented ideas have been added to (or modelled
in) the UTP. In particular, there have been several works that model class-
based object-orientation, such as [4,2,11]. These differ fundamentally from our
approach, as each object is considered to be an instance of a class, rather than
a class being a special sort of object. In particular, within our approach objects
need not be associated with a class. This opens the possibility of considering
prototype-based languages, such as Self.

Unifying Theories of Objects 617

Within the more general field of predicative programming [5], another notion
of object-orientation has been modelled [9]. It defines objects as a combination of
their attributes and behaviour, where each attribute (field) has a unique address
and the details of its behaviour (methods) are defined by its type (e.g. class).
This approach is similar to that of Abadi and Cardelli’s imperative ς-calculus [1],
except that in this case both methods and fields are bound to objects. Further,
the Och-calculus deliberately separates the heap and object representations, to
gain a measure of orthogonality between concerns. An earlier version of this
predicative programming model [8] did not use addresses in the definition of an
object, but was still essentially class-oriented in its outlook.

Alternative approaches to modelling references (pointers) in the UTP have
been provided in [7,3]. The former of these approaches was the inspiration for
the trace model that is briefly discussed in Section 5.2. The latter of these
approaches uses path-based equivalence classes to identify variables that share
the same reference, which are referred to as entity groups. Preliminary results
of the on-going work in this area suggest that our trace-based model is also
essentially an entity group model, which ought to enable us to unify these ideas.

5.2 On-Going Work

The operand-stack model of the Och-calculus is arguably too operational in
nature. In order to address this issue three further models have been constructed,
the result-value, constant-map, and trace models. For reasons of space we can
only provide a brief description of these models.

Result-value Model. This replaces the stack with a single value that repre-
sents the result of executing an Och-calculus model, and intermediate results are
stored in temporary variables, which are introduced and completed in the usual
UTP manner. The one significant complication introduced by this model is the
need to manage the scope of its alphabets – specifically the requirement to hide
the intermediate result variables from the execution of a subprogram. This fol-
lows from two observations: first, that a subprogram’s execution is independent
of the result – but not side-effecting heap updates – of a previous subprogram;
and second, that the weakest fixed point semantics of method invocation requires
the alphabets both before and after any method invocation to be the same.

Constant-Map Model. This extends the result-value model by updating the
representation of a method (and its invocation). Here a method is represented
by a triple: a self variable; a program-text body ; and a map from the free
variables within that body to their values. Such values may be updated during
the method invocation process, which recursively updates all free instances of a
method’s self variable, within both its own and its inner-method variable maps.
The idea is that by the time of a method’s invocation, all the free-variables
within a method’s body have a defined value in their associated variable map;
and that this variable map is used to introduce read-only (constant) variables
for the scope of the method’s definition.

618 M.A. Smith and J. Gibbons

Trace Model. This takes a fundamentally different approach from that pre-
sented in this paper, in that it models variables, values, and heap locations, in
terms of a directed graph that can be represented by a set of trace sets. This
approach was inspired by trace-based pointers in [7] and is also similar to the
entity-group work in [3]. Essentially, it came from the motivation of using the
ideas presented in these UTP models on the Och-calculus. Here, each entity
group is represented by an equivalence class, which is the set of traces that de-
fines a node of the directed graph. There are several complicating factors, not
least of which is that in the Och-calculus not all values have locations (nor should
they).

Having said that the trace-based model is fundamentally different from the
others, it also has some striking similarities to the constant-map model; specif-
ically, that the layout of the graph essentially mirrors the structure of the vari-
ables and the heap of the constant-map model. With a little extra work, we can
make use of the constant-map model’s variable-maps to provide a named path
(trace) to any location within the graph.

References

1. Martin Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
2. A.L.C. Cavalcanti, A.C.A. Sampaio, and J.C.P. Woodcock. Unifying classes and

processes. Software and System Modelling, 4(3):277–296, 2005.
3. Ana Cavalcanti, Will Harwood, and Jim Woodcock. Pointers and records in the

unifying theories of programming. In Steve Dunne and Bill Stoddart, editors, First
International Symposium on Unifying Theories of Programming, volume 4010 of
Lecture Notes in Computer Science. Springer-Verlag, 2006.

4. Jifeng He, Zhiming Liu, and Xiaoshan Li. Towards a refinement calculus for object
systems. Research Report 251, UNU/IIST, P.O. Box 3058, Macau, May 2002.

5. Eric C.R. Hehner. A Practical Theory of Programming. Springer-Verlag, 1993. Elec-
tronic edition freely available on line from: www.cs.utoronto.ca/∼hehner/aPToP.

6. C.A.R. Hoare and J. He. Unifying Theories of Programming. Computer Science.
Prentice Hall, 1998.

7. C.A.R. Hoare and Jifeng He. A trace model for pointers and objects. In 13th

European Conference on Object-Oriented Programming, pages 1–17, 1999.
8. Ioannis T. Kassios. Objects as predicates. Technical report, Computer Systems

Research Group, University of Toronto, 2004.
9. Ioannis T. Kassios. A Theory of Object Oriented Refinement. PhD thesis, Univer-

sity of Toronto, 2006.
10. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
11. Thiago Santos, Ana Cavalcanti, and Augusto Sampaio. Object-orientation in UTP.

In Steve Dunne and Bill Stoddart, editors, First International Symposium on Uni-
fying Theories of Programming, volume 4010 of Lecture Notes in Computer Science,
pages 20–38. Springer-Verlag, 2006.

12. J.C.P. Woodcock and A.L.C. Cavalcanti. A tutorial introduction to designs in uni-
fying theories of programming. In IFM 2004: Integrated Formal Methods, volume
2999 of Lecture Notes in Computer Science, pages 40–66. Springer-Verlag, 2004.
Invited tutorial.

Non-interference Properties for Data-Type

Reduction of Communicating Systems�

Tobe Toben

Carl von Ossietzky Universität Oldenburg, Germany
toben@informatik.uni-oldenburg.de

Abstract. An increasing interest in “Systems of Systems”, that is, Sys-
tems comprising a varying number of interconnected sub-systems, raises
the need for automated verification techniques for dynamic process cre-
ation and a changing communication topology. In previous work, we de-
veloped a verification approach that is based on finitary abstraction via
Data-Type Reduction. To be effective in practice, the abstraction has to
be complemented by non-trivial assumptions about valid communication
behaviour, so-called non-interference lemmata.

In this paper, we mechanise the generation and validation of these
kind of non-interference properties by integrating ideas from communi-
cation observation and counter abstraction. We thereby provide a fully
automatic procedure to substantially increase the precision of the ab-
straction.

We explain our approach in terms of a modelling language for dynamic
communication systems, and use a running example of a car platooning
system to demonstrate the effectiveness of our extensions.

1 Introduction

The current trend of mobile computing induces complex systems that comprise
a varying number of interconnected sub-systems, for example in ad-hoc net-
working [6] where mobile devices detect other devices within a certain scanning
range and autonomously maintain networks of arbitrary size. Similar principles
are nowadays employed in traffic control systems, e.g. the European Train Con-
trol System [18] defines so-called Radio Block Controllers (RBC) along the track
that are dynamically contacted by trains entering their communication range.
From the viewpoint of an RBC, the responsibility for spontaneously appearing
trains adds a new level of complexity when designing safety-critical systems.

Not surprisingly, automatic verification of systems with dynamic process cre-
ation and destruction is an active research problem. As the number of involved
process within the system is a priori unbounded, finitary abstraction is applied

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Centre “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS).

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 619–638, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

620 T. Toben

ι1 : free ι2 : last ι3 : mid ι4 : head

fc

bc

fc

bc

Fig. 1. Snapshot of the car platooning system where car ι1 approaches a platoon. After
detecting and merging with car ι2, a platoon of size four will be established.

to obtain a manageable representation of the infinite state system. As demon-
strated in the literature [5,20], in particular the technique of Data-Type Reduc-
tion (DTR) [12] is suitable for systems with dynamic process creation. Up to
now, it is however an open problem how DTR can effectively be refined in order
to reduce the large amount of spurious behaviour stemming from the abstraction.

In this paper, we devise an automatic procedure for excluding a typical source
for spurious behaviour in abstractions of communicating systems, namely mes-
sage interferences. We show that the observation of the communication history
allows to identify invalid communication even if the actual status of a commu-
nication partner is blurred by the abstraction. We demonstrate our approach in
terms of a modelling language for Dynamic Communication Systems (DCS) [2],
a proper extension of Communicating Finite State Machines [3] by process cre-
ation and dynamic link topologies. The following example system will be used
throughout the paper in order to demonstrate the ideas of our approach.

Running Example “Car Platooning”. Another real-world example of a DCS is
the car platooning scenario as studied in the PATH project [9]. There, cars
travelling on a highway are supposed to form car platoons, i.e. to establish series
of interlinked cars driving with only little distance. The main manoeuvres are
merge, i.e. a car joins an existing platoon, and split, i.e. a platoon is separated
into unconnected cars again. Figure 1 depicts a snapshot of the car platooning
system. Every car is aware of its current state, i.e. whether it is not involved in
a platoon (free), the last car in a platoon (last), the first car in a platoon (head)
or somewhere in the middle of a platoon (mid). The platoon itself is organised
as a doubly-linked list of wireless communication channels, where a car knows
its front car under the name fc and its back car under the name bc.

Analysis Approach. Due to the unbounded number of participating processes,
DCS are infinite state systems. In [5,20], Data-Type Reduction (DTR) has been
shown to be a valuable abstraction for system with dynamic process creation
and destruction, and in [2] we already sketched how DTR applies to the special
case of DCS models.

DTR belongs to the category of heterogeneous abstraction techniques [22]
which allow different parts of the system to be abstracted using different de-
grees of precision. The characteristic of DTR is that it maintains the full degree
of precision for a fixed and finite set of processes, and completely dismisses in-
formation of any other processes. That is, DTR follows spotlight principle [19] by

Non-Interference Properties for Data-Type Reduction 621

focusing on a finite set of processes and abstracting the rest into one summary
process that represents the behaviour of any unfocused process.

The advantage of employing these two extrema of precision is that the abstract
transition relation can be easily computed by a syntactical transformation of
the system [5]. This is in contract to homogeneous abstraction techniques like
predicate abstraction [16] where the computation of the abstraction itself is
the performance bottleneck. However, the disadvantage of entirely abstracting
the behaviour of unfocused processes is a large amount of spurious behaviour,
i.e. runs in the abstracted system that are not present in the original system.
The spurious behaviour stems from invalid interferences of abstracted processes
with concrete processes. [5] suggests to exclude these unwanted interferences by
adding so-called non-interference lemmata which are of the form

“If some process sends something to me, then it is allowed to do so.”

It is however not obvious whether and how concrete instances of this pattern can
automatically be inferred from the system. Furthermore, once they are found,
the validity of these lemmata has to be proven to be correct for the original (and
thus infinite state) system as additional verification tasks.

In this paper, we devise a technique to automatically generate and integrate
non-interference properties into the DTR abstraction. For this purpose, we keep
track of valid interferences of the summary process. Roughly spoken, for each
message m and concrete process ι, we count the number of summarised processes
that currently may send m to ι. To keep this information finite, we count up to
a finite number and fall back to uncertainty only if this number is exceeded, i.e.
we apply a variant of Counter Abstraction [11] to that part of the system that
normally is completely blurred in the DTR approach.

The process counters themselves are updated based on the communication
between concrete processes and the summary process. The reason why this kind
of communication observation gives enough information in order to precisely
update the process counter is that a communicating system usually exhibits a
causal relationship among the messages, e.g. if a car sends a split command to
me, then I have requested a merge from it beforehand, and in between no split
commands have been exchanged. Thus, a concrete car sending a merge message
to the summary process will increase the counter for valid split interferences
from the summary, and the reception of a split from the summary process will
decrease this counter again.

This paper makes two contributions. Firstly, as a continuation of our work
in [2], we provide a formal definition of DTR for DCS models. Secondly, our
main contribution is a method to automatically generate and integrate non-
interference properties into the abstraction by combining Data-Type Reduction
with a variant of Counter Abstraction.

Structure. Section 2 introduces a concise modelling language for Dynamic Com-
munication Systems (DCS), based on the concepts defined in [2]. Section 3

622 T. Toben

explains our approach for analysing DCS models in detail. We start in subsec-
tion 3.1 by formally defining the technique of Data-Type Reduction for DCS
models, and motivate the need for further refinement of the abstraction. Sub-
section 3.2 then describes our method to automatically obtain this kind of re-
finement. Section 4 discusses related work, and Sect. 5 concludes.

2 Dynamic Communication Systems

In [2], we introduce DCS protocols as a modelling language for Dynamic Com-
munication Systems, basically as an extension of Communicating Finite State
Machines [3] by dynamic creation of processes and dynamic topologies. Thereby,
DCS provides for an alternative to the well-known π-calculus [13] in which the
important language constructs of DCS only appear in an encoded form and are
not directly accessible for a tailored analysis (cf. [2]). In this paper, we define a
restricted synchronous variant of DCS protocols that still contains the relevant
features for both adequately modelling DCS and explaining our approach.

DCS Overview. A global DCS state, called topology, comprises a set of processes.
Each process is described by its unique identity and its configuration, that is,
its local state and its links to other processes. A topology can be extended by
adding a process in an initial configuration to it. On the other hand, a process
can disappear from a topology if it is in a fragile configuration (see below).

The behaviour of each of the processes is defined in terms of a DCS protocol
and each process operates on a sole copy of this protocol description, similarly
to instances of classes in object-oriented modelling. A DCS protocol defines the
set of states a process can assume, the set of channels by which a process can
link itself to other processes and the set of messages a process can send and
receive. Transitions among the states are annotated by sending and reception
of messages over channels. A sent message always includes the identity of the
sender process, and the receiver process can store the attached identity into one
of its channels. This is the mechanism to establish links between processes. To
remove an existing link to another process, each transition has a boolean reset
flag indicating whether the corresponding channel is cleared after taking this
transition. To bootstrap the linking procedure as sketched above, a process can
receive a so-called external message that carries some identity from the set of
currently existing processes.

Definition 1 (DCS Protocol). A DCS Protocol is a tuple

P = (Q,A,Ω, χ,Σ,ΣX , succ)

where

– Q is a finite set of states,
– A ⊆ Q is the set of initial states,
– Ω ⊆ Q is the set of fragile states,

Non-Interference Properties for Data-Type Reduction 623

– χ is a finite set of channel names,
– Σ is a finite set of message names,
– ΣX ⊆ Σ is the set of external message names, and
– succ ⊆ Q× χ× {!, ?} ×Σ × B ×Q is the successor relation. ♦

For a transition tr = (q, c, sr,m, r, q′) ∈ succ, we use q(tr), c(tr), sr(tr), m(tr),
r(tr), and q′(tr) to denote the respective components of tr. The transition tr is
called a send transition if sr = ! and a receive transition if sr = ?. The effect of a
send transition is to send the message m to the process stored in channel c. The
effect of a receive transition is to store the identity of the sender of message m
in channel c. In both cases, the process then moves from state q to q′ and clears
the channel c iff the reset flag r is true (cf. Def. 2 below for a formal definition).

free head

fca hca

last mid

?cahead(fc)

fc!merge

?split(fc), ∅

?cahead(fc)

fc!merge

?split(fc), ∅

?merge(bc)

bc!split, ∅

?merge(bc)

Fig. 2. DCS Protocol for platoon merge and split. For channel c and message
m, a send transition is written in the form ‘c!m’ and a receive transition as ‘?m(c)’. If
the reset flag r is set for a transition, this is indicated by the ‘∅’ symbol.

The Running Example. Figure 2 shows the DCS protocol ‘platoon’ implementing
the merge and split manoeuvres. It comprises six states, two channels and three
messages where free is the single initial state and the (gray marked) states free and
fca are fragile states. The (underlined) message cahead is an external message.

The merge manoeuvre starts when a process in state free (a car not involved in
a platoon) or in state head (the head of a platoon) receives the external message
cahead (car ahead). It stores the attached identity in its channel fc (front car).
The process then proceeds to state last (the last car in a platoon) resp. state
mid (in the middle of a platoon) if it can synchronise with the process denoted
by its fc channel on message merge. The process receiving the merge message
proceeds from state free to head resp. from last to mid , thereby storing the
received identity in its channel bc (back car). Repeating these protocol steps
allows to build platoons of arbitrary lengths.

624 T. Toben

The split manoeuvre is initiated the head of the platoon by synchronising on
split with its back car on the transition from head to free. It thereby removes
the process from its bc-channel. The back car clears its fc-channel on reception
of split. If it is in state last, it moves to state free and the platoon is completely
split. If it is in state mid, it becomes the new head of the platoon and itself
initiates the splitting of the remaining platoon.

DCS Configurations. For the rest of this paper, let Id be a countably infinite
set of process identities. Given a DCS protocol P = (Q,A,Ω, χ,Σ,ΣX , succ), a
configuration of P is a tuple

(q, C)

where q ∈ Q is a state and C : χ ⇀ Id is a partial evaluation of the channels.
A configuration is called initial if q ∈ A and C(c) is undefined for all c ∈ χ.
A configuration is called fragile if q ∈ Ω. The set of all configurations of P is
denoted by L(P).

Having defined a (local) configuration of a DCS protocol, a global configu-
ration, called topology, of P is a partial function T : Id ⇀ L(P). The idea is
that the domain of T , written dom(T), describes the set of processes existing in
T , and T (ι) yields the (local) configuration of each ι ∈ dom(T). The set of all
topologies of P is denoted by TId(P).

The Running Example. The snapshot presented in Fig. 1 corresponds to the
following topology

TS = [ι1 �→ (free, []), ι2 �→ (last, [fc �→ ι3]),
ι3 �→ (mid, [fc �→ ι4, bc �→ ι2]), ι4 �→ (head, [bc �→ ι3])]

(1)

with dom(TS) = {ι1, ι2, ι3, ι4} ⊂ Id.

DCS Semantics. We now specify under which conditions a DCS topology can
evolve. As already sketched, a topology can be extended by a new process, an
existing process can disappear, a process can receive an external message and
processes can communicate among each other.

Definition 2 (Topology Evolution). Let P = (Q,A,Ω, χ,Σ,ΣX , succ) be a
DCS protocol. Two topologies T, T ′ ∈ TId(P) evolve, written T → T ′, if exactly
one of the following four conditions is satisfied:

Process Appearance (PA). A process ι ∈ Id freshly appears, i.e. dom(T ′) =
dom(T)∪̇{ι} and T ′(ι) is initial.

External Message (EM). A process ι ∈ dom(T) in configuration T (ι) =
(q, C) receives an external message on transition (q, c, ?,m, r, q′) ∈ succ with
m ∈ ΣX , i.e. T ′(ι) = (q′, C′) with

C′ =

{
C|dom(C)\{c} if r = true
C[c �→ ι′] if r = false

for some ι′ ∈ dom(T) with ι′ 	= ι.

Non-Interference Properties for Data-Type Reduction 625

Process Synchronisation (PS). Two processes ιs, ιr ∈ dom(T) with T (ιs) =
(qs, Cs) and T (ιr) = (qr, Cr) with Cs(cs) = ιr synchronise on transitions
(qs, cs, !,m, rs, q′s), (qr, cr, ?,m, rr, q′r) ∈ succ, i.e. T ′(ιs) = (q′s, C′

s) and T ′(ιr) =
(q′r, C

′
r) with

C′
s =

{
Cs|dom(Cs)\{cs} if rs = true
Cs if rs = false

and

C′
r =

{
Cr|dom(Cr)\{cr} if rr = true
Cr[cr �→ ιs] if rr = false.

Process Disappearance (PD). A process ι ∈ dom(T) disappears, i.e. T ′ =
T |dom(T)\{ι} and T (ι) is fragile.

In each of the four cases, all processes not involved in the current topology evo-
lution are required to remain the same. ♦

A sequence of topologies (Ti)i∈N0 with Ti → Ti+1 for all i ∈ N0 and T0 being
the initial topology, i.e. dom(T0) = ∅, is called a run of P. The semantics of
P, denoted �P�Id, is the set of all runs of P. We explicitly use the subscript
Id to denote the concrete semantics which employs an infinite set of available
identities in contrast to modifications of the semantics in later sections.

The Running Example. In Fig. 3, we exemplarily sketch a run of the DCS proto-
col platoon from Fig. 2. Starting at the initial topology, two processes enter the
scene. The first one then receives an external message carrying the identity of
the second one. Both then agree on the merge transition and become a platoon
of size two. The head of the platoon then decides to split again, and disappears
from the scene afterwards.

3 Analysis of Dynamic Communication Systems

We are interested in the formal verification of properties of DCS that can be
expressed as universally quantified first-order formulae in prenex form, i.e.

∀ p1, . . . , pn . φ

where φ is some temporal formula using variables p1 to pn, but with no further
quantification. For example, a desirable property of the platooning system is

∀ p1, p2 . G (p1.bc=p2 → p2.fc=p1) (2)

that is, for all two processes p1 and p2, it is always the case that when process
p1 has p2 as its back car, then p2 has p1 as its front car. For lack of space, we
have to refer the reader to [2] for a detailed description of the DCS property
language called Mett.

626 T. Toben

T0

(PA)

T1

(PA)

ι1
→ (free, []) free
ι1

T2

(EM)

ι1
→ (free, []),
ι2
→ (free, [])

free
ι1

free
ι2

T3

(PS)

ι1
→ (fca, [fc
→ ι2]),
ι2
→ (free, [])

fca
ι1

free
ι2

fc

T4

(PS)

ι1
→ (last, [fc
→ ι2]),
ι2
→ (head, [bc
→ ι1])

last
ι1

head
ι2

fc

bc
T5

(PD)

ι1
→ (free, []),
ι2
→ (free, [])

free
ι1

free
ι2

T6 ι1
→ (free, []) free
ι1

Fig. 3. Concrete run of platoon. The first column names the topology and the kind
of evolution (cf. Def. 2) to the next topology. The second column shows the topology
in a formal notation and the third column visualises it in a graph notation.

However, formal analysis of DCS protocols faces the problem that the seman-
tics of a DCS protocol is an infinite set of runs, due to the infinite set of available
identities. A straight-forward approach to enable automated verification is the
restriction to a finite subset of identities. In general, considering only a subset
of identities Id′ ⊆ Id for a DCS protocol P means that the Process Appearance
condition in Def. 2 only picks identities from Id′. We thereby obtain the under-
approximated semantics, denoted �P�Id′ . As every run with identities Id′ is also
a run with identities Id, we have

�P�Id′ ⊆ �P�Id
for any Id′ ⊆ Id (especially if Id′ is a finite subset of Id). Thus the technique
of underapproximation is good for finding errors in the protocol by limiting the
analysis to a finite set of processes, e.g. check if two cars in isolation adhere
to property (2). However, as any influences from processes from Id \ Id′ are
disregarded, the absence of unwanted behaviour in general can not be guaranteed
by considering only finitely many processes. For example, to show that a car
platoon behaves correctly under any influence of arbitrarily many other cars, we
need something stronger.

3.1 Data-Type Reduction for DCS

Data-Type Reduction yields a finite state representation of an infinite state
system by applying the spotlight principle [19], that is, focus on a finite set of
processes and represent these processes precisely. Any information about the
rest, i.e. the processes “in the shadows”, is completely dismissed. To provide a

Non-Interference Properties for Data-Type Reduction 627

sound overapproximation of the system, a special identity ⊥ is introduced to
summarise the behaviour of any process that is not in the focus of the spotlight.
Concrete processes will still be able to communicate with ⊥, but no information
about ⊥ will be stored. DTR was originally introduced for the verification of
parameterised systems [12], and has been demonstrated to be suitable for systems
with unbounded dynamic creation and destruction in [5]. In the following, we
formally describe how DTR applies to Dynamic Communication Systems as
defined in the previous section.

Abstract DCS Configurations. For the rest of the paper, let Id′ ⊂ Id be a finite
subset of identities. Given a protocol P = (Q,A,Ω, χ,Σ,ΣX , succ), an abstract
configuration of P is a tuple (q, C�) where q ∈ Q is a state and C� : χ ⇀ Id′∪{⊥}
is a partial evaluation of the channels. The set of all abstract configurations of P
is denoted by L�(P). An abstract topology of P is a partial function T � : Id′ ⇀
L�(P), and the set of all abstract topologies of P is denoted by T �

Id′(P).
The DTR abstraction of a topology T ∈ TId(P) with respect to Id′, denoted

αId′(T), is basically a restriction of the domain of T to Id′. Additionally, all
remaining local configurations (q, C) in ran(T |Id′) are modified such that each
channel c ∈ χ with C(c) ∈ Id \ Id′ is set to C(c) = ⊥.

The Running Example. The DTR abstraction of the topology (1) of Fig. 1 with
respect to {ι1, ι2, ι3} yields the abstract topology

[ι1 �→ (free, []), ι2 �→ (last, [fc �→ ι3]), ι3 �→ (mid, [fc �→ ⊥, bc �→ ι2])], (3)

that is, ι4 has disappeared from the domain and the fc link of ι3 is set to ⊥.

DTR Semantics of DCS. The evolution of abstract topologies is based on the
evolution of concrete topologies as defined in Def. 2 as follows. Firstly, two mod-
ification are to be made, namely that Process Appearance only creates processes
from the finite set Id′, and External Messages can also carry the abstract identity
⊥. Secondly, the possibility to synchronise a concrete process with ⊥ is added,
such that messages can be send to and received from the abstract process.

Definition 3 (DTR Topology Evolution). Let P = (Q,A,Ω, χ,Σ,ΣX , succ)
be a DCS protocol. Two topologies T �

1 , T
�
2 ∈ T �

Id′(P) evolve under DTR, written
T �

1 � T �
2 , if T �

1 = T �
2 , or T �

1 → T �
2 by (PS) or (PD) as defined in Def. 2, or if

exactly one of the following conditions is satisfied:

Process Appearance (PA). A process ι ∈ Id′ freshly appears, i.e. dom(T �
2) =

dom(T �
1)∪̇{ι} and T �

2(ι) is initial.
External Message (EM). A process ι ∈ dom(T �

1) in configuration T �
1(ι) =

(q, C�
1) receives an external message on transition (q, c, ?,m, r, q′) ∈ succ

with m ∈ ΣX , i.e. e T �
2(ι) = (q′, C�

2) with

C�
2 =

{
C�

1|dom(C�
1)\{c} if r = true

C�
1[c �→ ι′] if r = false

for some ι′ ∈ dom(T �) ∪ {⊥} with ι′ 	= ι.

628 T. Toben

Send to Summary (SS). A process ι ∈ dom(T �
1) in configuration T �

1(ι) =
(qs, C

�
1) with C�

1(cs) = ⊥ synchronises with ⊥ on transitions

trs = (qs, cs, !,m, rs, q′s) ∈ succ
trr = (qr , cr, ?,m, rr, q′r) ∈ succ

i.e. T �
2(ι) = (q′s, C

�
2) with

C�
2 =

{
C�

1|dom(C�
1)\{cs} if rs = true

C�
1 if rs = false.

Receive from Summary (RS). A process ι ∈ dom(T �
1) in configuration T �

1(ι) =
(qr, C

�
1) synchronises with ⊥ on transitions

trs = (qs, cs, !,m, rs, q′s) ∈ succ
trr = (qr , cr, ?,m, rr, q′r) ∈ succ

i.e. T �
2(ι) = (q′r, C

�
2) with

C�
2 =

{
C�

1|dom(C�
1)\{cr} if rr = true

C�
1[cr �→ ⊥] if rr = false.

In each case, all processes not involved in the current topology evolution are
required to remain the same. ♦

A sequence of abstract topologies (T �
i)i∈N0 with T �

i � T �
i+1 for all i ∈ N0 and

T �
0 being the initial topology, i.e. T �

0 = T0, is called an abstract run of P. The
abstract semantics of P, denoted �P��

Id′ , is the set of all abstract runs of P.

The Running Example. An abstract run of platoon with a single identity ι1 is
shown in Fig. 4. Clearly, the underapproximated semantics with a single identity
does not comprise a topology where the single process reaches the state last as
there is no other process to merge with.

Note that Def. 3.(RS) reveals the very coarse abstraction employed by the
DTR approach, as no constraints about the relation between ⊥ and the receiver
process ι are required. The summary process ⊥ can send any message, as long
there is a corresponding sending transition trs somewhere in the DCS protocol.
However, the benefit of DTR is that computing the abstract system is as easy
as computing the underapproximated system, as Def. 3 only considers the local
information of finitely many processes.

DTR provides a sound abstraction for DCS as follows. The abstraction of a
concrete run σ = (Ti)i∈N0 ∈ �P�Id, denoted αId′(σ), is the sequence of abstracted
topologies (αId′(Ti))i∈N0 . Then we have:

Non-Interference Properties for Data-Type Reduction 629

T 	
0

(PA)
* ⊥

T 	
1

(EM)

ι1
→ (free, []) free
ι1

* ⊥
T 	

2
(SS)

ι1
→ (fca, [fc
→ ⊥]) fca
ι1

* ⊥
fc

T 	
3

(RS)

ι1
→ (last, [fc
→ ⊥])
last

ι1
* ⊥

fc

T 	
4 ι1
→ (free, []) free

ι1
* ⊥

Fig. 4. Abstract run of platoon. The first column names the topology and the kind
of evolution (cf. Def. 3) to the next topology. The second column shows the topology
in a formal notation and the third column visualises it in a graph notation.

Theorem 1 (Soundness of DTR abstraction). Let P be a DCS protocol.
The abstraction of each concrete run of P is an abstract run of P, i.e.

σ ∈ �P�Id =⇒ αId′(σ) ∈ �P��
Id′ ♦

Proof. For any T1, T2 ∈ TId(P), we can show T1 → T2 =⇒ αId′(T1) � αId′(T2)
by close examination of the four cases from Def. 2. It is straight-forward to see
that the abstract evolution to αId′(T2) according to Def. 3 preserves the same
information concerning the summary process ⊥ as the abstraction of the concrete
topology T2 does, namely links to ⊥ but no information about ⊥ itself. !*
Theorem 1 states any behaviour of a finite subset of identities Id′ that is possible
in the concrete semantics, is also possible in the abstract semantics. Note that
this kind of behaviour preservation is best suited to analyse universally quan-
tified DCS properties of the form ∀ p1, . . . , pn . φ, as these properties express
relationships among finitely many processes. In fact, the heuristic of the DTR
approach to determine the set of concretely represented processes is to choose
Id′ ⊂ Id such that |Id′| = n. If φ can be proven correct for a concrete binding
of pi to Id′, symmetry arguments allow to conclude the correctness of the whole
first-order formula for the original system. This concluding step is known under
the term Query Reduction [21].

However, DTR abstraction is not complete, i.e. in general there are abstract
runs σ� in �P��

Id′ for which no concrete run σ ∈ �P�Id with αId′(σ) = σ� exists.
Moreover, the maximal coarse abstraction of unfocused processes allows for a
large amount of spurious behaviour, that in practice often prevents to success-
fully prove relevant properties of the systems via DTR (cf. [2]).

The Running Example. To see an example of such spurious behaviour, consider
the topology T4 as shown in Fig. 3. The abstract evolution according to Def. 3
allows the abstract process to send a split message to process ι1, i.e. the topology

[ι1 �→ (last, [fc �→ ι2]), ι2 �→ (head, [bc �→ ι1])] (4)

630 T. Toben

may evolve under DTR by Def. 3.(RS) to the topology

[ι1 �→ (free, []), ι2 �→ (head, [bc �→ ι1])], (5)

that is, ι1 has “stealthily” split from his front car ι2. Note that we thereby have
reached a topology violating property (2), but we do not a priori know whether
we encountered spurious or valid behaviour in order to reach this topology. By
manually investigation of the platoon protocol, we can identify the interference
of the summary as spurious as only the front car is supposed to initiate the
splitting from its back car. In the setting above however, some car completely
unrelated to car ι1 has requested the split.

Wrapping Up. Intuitively, DTR turns the falsification capabilities of the un-
derapproximated semantics into a proper verification techniques by putting the
isolated finite set of identities into an environment that summarises an arbitrary
number of other processes. However, this summary process shows in general
more behaviour than the processes it summarises. Thus to be effective for ver-
ification, DTR abstraction needs a sound refinement of the summary process’
behaviour. As sketched in the introduction, the integration of non-interference
lemmata gives a good intuition of “what to do”, but it does not provide a method
of “how to do so”. In the next section, we show how to automatically generate
non-interference properties that effectively eliminate spurious behaviour from
DTR abstractions, thus turning the manual investigation sketched above into
an automatic procedure.

3.2 Refining Data-Type Reduction by Process Counting

The spurious example from the last section shows that the DTR abstraction
allows for message interferences of completely unrelated processes. Intuitively,
the reason for this artifact of the abstraction is that no information about the
relation from summarised processes to concrete processes, i.e. no links from ⊥
to processes from Id′, is maintained.

However, a characteristic of DCS is that links are established via message
communication, thus the validity of a message interference from ⊥ to some ι′ ∈
Id′ depends on prior communication among ι′ and ⊥. We exploit this fact by
maintaining information about the summary process in terms of messages that
have been “enabled” by prior communication between ⊥ and processes from Id′.

For this, note that we can (statically) derive from a DCS protocol which
messages are next to be send over some channel c if a process is in state q.
Consider the DCS example depicted in Fig. 5. The next messages a process in
state q2 can send over channel c1 are ma and mb. From state q5, the next enabled
message for channel c1 is only mb. Thus a concrete process ι′ sending m1 to ⊥
enables the set {ma,mb}, and sending m2 enable the set {mb}. Note that both
sets can be enabled in one topology (although one process cannot be in state
q2 and q5 simultaneously) as ⊥ represents multiple processes. In addition to
communication from ι′ to ⊥, also ⊥ sending a message that has been enabled

Non-Interference Properties for Data-Type Reduction 631

q3

q2

q1 q4

q5

q6

?m1(c1)

?m2(c1)

c1!ma

c1!mb

c1!mb

?m3(c2), ∅

c1!mc

c2!md

Fig. 5. Artificial DCS Protocol to demonstrate the concept of enabled messages

before alters the set of enabled messages. Clearly, sending back ma to ι′ will
disable the complete set {ma,mb}. The consequence of sending back mb to ι′

is more difficult to see, as we cannot decide whether this particular sending of
mb has been enabled by itself upon reception of m2, or together with ma by
reception of m1. Thus both alternatives have to be considered, i.e. one possible
update of enabled message is to disable the set {mb}, the other to disable the
set {ma,mb}. Sending messages from ⊥ to Id may also enable new message
sending, e.g. sending message ma will enable the set {mc}. As a final remark,
note that sending m3 to ⊥ must no enable {md} as the channel c2 is cleared
upon reception of m3.

Unfortunately, we cannot maintain the complete information of enabled mes-
sage sets as described above, as one set can be enabled many times at once.
For example, process ι′ sending m2 twice enables the set {mb} twice, namely
for two different processes represented by ⊥. A natural solution to avoid infinite
counting is to do finite counting up to some K and fall back to uncertainty if
the counter exceeds K, i.e. to apply Counter Abstraction [11].

Formalising the approach. In the following, let P = (Q,A,Ω, χ,Σ,ΣX , succ) be
a DCS protocol. A sequence of transitions tr0tr1 . . . trn is called a transition path
of P if q′(tri) = q(tri+1) for all 0 ≤ i < n. The set of all paths of P is denoted by
Paths(P). The set EP(q, c) determines the set of messages which are the next to
be send over channel c if a process is in state q, according to succ.

EP(q, c) = {m ∈ Msgs | ∃tr0tr1 . . . trn ∈ Paths(P) : q(tr0) = q ∧ c(trn) = c∧
m(trn) = m ∧ sr(trn) = ! ∧ ∀ 0 ≤ i < n : c(tri) 	= c}

For each concretely represented process ι′ ∈ Id′ and set of messages M ⊆ Σ,
we keep track of those processes from Id \ Id′ that are able to send some m ∈M
to ι′. That is, given a concrete topology T ∈ TId(P), we define the set of potential
communication partners (CP) for ι′ ∈ Id and M ⊆ Σ as

CPT (ι′,M) := {ι ∈ Id \ Id′ | T (ι) = (q, C) ∧ ∃c ∈ χ : C(c) = ι′ ∧M = EP(q, c)}.
The keep the information finite, we do not keep track of the process identi-

ties themselves, but rather we only count the number of processes in each set

632 T. Toben

CPT (ι′,M) up to a finite number K as follows. Let NK := {0, 1, . . . ,K,∞}. The
order ≤K is defined on NK as n1 ≤K n2 iff n2 = ∞ or n1 ≤ n2 ≤ K. Addition
and subtraction in NK are defined as follows:

n1 ⊕K n2 :=

{
∞ if n1 = ∞∨ n2 = ∞∨ n1 + n2 > K

n1 + n2 else

n1 9K n2 :=

⎧
⎪⎨

⎪⎩

∞ if n1 = ∞
0 if n1 	= ∞∧ n2 = ∞∨ n1 − n2 < 0
n1 − n2 else

A process counter of P assigns a value to a pair of identity and set of messages,
i.e. it is a function Π : (Id × 2Σ) → NK . The set of all process counters of P is
denoted PC(P). Given two process counters Π1, Π2 ∈ PC(P), we say that the
counter Π1 is smaller than Π2, written Π1 "K Π2, if Π1((ι,M)) ≤K Π2((ι,M))
for all ι ∈ Id′ and M ⊆ Σ. The addition of Π1 and Π2, denoted Π1 ⊕K Π2, is
defined pointwise as (Π1 ⊕K Π2)((ι,M)) := Π1((ι,M)) ⊕K Π2((ι,M)) for all
ι ∈ Id′ and M ⊆ Σ.

For a given concrete topology T ∈ TId(P), we compute the derived process
counter with respect to Id′, written πId′(T), for ι′ ∈ Id′ and M ⊆ Σ as

πId′(T)((ι′,M)) =

{
∞ if |CP(ι′,M)| > K

|CP(ι′,M)| else.

Figure 6 depicts a topology with two sets of communication partners. We
assume that the processes ι3, ι4, ι6, ι7 are in a situation that allows them to send
some message from M1 to ι1 in the future. For ι2, the processes ι7 and ι8 may
send some message from M2. When abstracting this topology, only the process
counter will be maintained, e.g. for K = 3 we obtain Π((ι1,M1)) = ∞ and
Π((ι2,M2)) = 2.

Using process counters. The derived process counter represents the most precise
information we can get from a topology T in terms of process counting. Unfor-
tunately, when performing the abstract evolution according to Def. 3 we cannot
compute the derived process counter directly as we have no information about
the configurations of processes from Id\ Id′. Thus the main problem to be solved
is how to (precisely) update the process counter based on the information that
is present in the abstract topology evolution. As sketched in the beginning of
the section, a concretely represented process sending a messages to ⊥, i.e. to
some process Id \ Id′ in the original system, will enable ⊥ to communicate with
ι′ afterwards, as it can store the identity Id′ in one of its channel. That is, the
corresponding counters for the enabled messages have to be increased.

On the other hand, a counter for a pair of process ι′ and set of messages M
has to be decreased after ⊥ has sent a message m ∈ M to ι′. However, if the
channel is not cleared when sending m, then other messages may now be enabled
which are next to be send according to the DCS protocol.

Non-Interference Properties for Data-Type Reduction 633

ι1

ι2

ι3 ι4 ι5

ι6 ι7 ι8

ι9

. . . ⊥

CP(ι1, M1)

CP(ι2, M2)

Fig. 6. Communication Partners in a concrete topology. After abstracting with
respect to ι1 and ι2, only the process counter will be preserved in order to provide a
finite characterisation of the summary process ⊥.

Maintaining a precise process counter allows to eliminate spurious interfer-
ences as ⊥ is now only allowed to send message m to ι′ if there is a set of
messages M with m ∈M for which the counter of the pair ι′ and M is not zero.

Formalising the ideas sketched above, we define the refined DTR topology
evolution that modifies and respects the status of the process counter as follows.

Definition 4 (Refined DTR Topology Evolution). Let P be a DCS proto-
col. Two topologies T �

1 , T
�
2 ∈ T �

Id′(P) and two process counters Π1, Π2 ∈ PC(P)
evolve under DTR, written (T �

1 , Π1) � (T �
2 , Π2), if (T �

1 , Π1) = (T �
2 , Π2), or

T �
1 � T �

2 by (PA), (EM), (PS), or (PD) as defined in Def. 3 and Π1 = Π2, or
if exactly one of the following conditions is satisfied:

Refined Send to Summary (rSS). A process ι ∈ dom(T) synchronises with
⊥ on transitions trs, trr as defined in Def. 3.(SS) and

Π2 =

{
Π1 if r(trr) = true
Π1[(ι, E) �→ Π1((ι, E)) ⊕K 1] if r(trr) = false

where E = EP(q′(trr), c(trr)).
Refined Receive from Summary (rRS). A process ι ∈ dom(T) synchro-

nises with ⊥ on transitions trs, trr as defined in Def. 3.(RS) if there exists
a set of messages M with m(trs) ∈M such that

Π1((ι,M)) ≥ 1

and

Π2 =

{
Π1[(ι,M) �→ Π1((ι,M)) 9K 1] if r(trs) = true
Π1[(ι,M) �→ Π1((ι,M)) 9K 1][(ι, E) �→ Π1((ι, E)) ⊕K 1] else

where E = EP(q′(trs), c(trs)).

634 T. Toben

In each case, all processes not involved in the current topology evolution are
required to remain the same. ♦

To explain a run of P under refined DTR evolution, we have to specify the initial
process counter corresponding to the initial topology. Note that the initial pro-
cess counter may not be zero for all pairs of processes and messages, although
the initial topology does not comprise any processes. The reason is that, at any
time, processes summarised by ⊥ may receive an external message carrying a
process identity from Id′ and thus may communicate with ι′ afterwards. Un-
fortunately, external messages to ⊥ are not visible under DTR evolution, thus
the initial process counter has to cater for this communication possibilities by
enabling an arbitrary number of those messages that follow the reception of ex-
ternal messages in the DCS protocol. In the running example, sending merge
messages from ⊥ to some concrete process ι′ must always be possible, as a pro-
cess summarised by ⊥ may always receive an external message cahead carrying
the identity ι′. Thus we define the initial process counter of P as

Π0((ι′,M)) :=

{
∞ if ∃tr ∈ succ : m(tr) ∈ ΣX ∧ r(tr) = false ∧
0 else M = EP(q′(tr), c(tr))

for all ι′ ∈ Id′ and M ⊆ Σ.

A sequence of abstract topologies and observers ((T �
i , Πi))i∈N0 with (T �

i , Πi) �
(T �

i+1, Πi+1) for all i ∈ N0 and T �
0 being the initial topology, i.e. T �

0 = T0, and
Π0 being the initial observer, is called a refined abstract run of P. The refined
abstract semantics of P, denoted �P��R

Id , is the set of all its refined abstract runs.

The Running Example. Two examples of process counter updating can be ob-
tained by “replaying” the abstract runs from the previous section under the re-
fined abstract evolution. Figure 7 shows the refined abstract run corresponding
to Fig. 4. The important observation is that the (rSS) evolution to topology T3

increase the counter for the pair ι1 and {split} to one, as split is in EP(head, bc).
The subsequent sending of split to ι1 is thereby enabled in (rRS). For the spu-
rious run from the last section however, we expect the refinement via process
counting to obey the evolution from topology (4) to (5). As up to topology (4)
no communication with the summary has taken place, the process counter is still
the initial one. Especially the counter for the pair ι1 and {split} is zero, thus the
summary is not allowed to take this1 transition to reach topology (5).

We observe from Def. 4 that if the evolution (rRS) is possible with some
process counter Π , it is also possible with all process countersΠ ′ with Π "K Π ′.
This motivates the following lemma.

Lemma 1. Let T �
1 , T

�
2 ∈ T �

Id′(P) and Π1, Π2 ∈ PC(P). If (T �
1 , Π1) � (T �

2 , Π2),
then for all Π ′

1 ∈ PC(P) with Π1 "K Π ′
1 there exists Π ′

2 ∈ PC(P) such that
(T �

1 , Π
′
1) � (T �

2 , Π
′
2) and Π2 "K Π ′

2. ♦
1 Actually, the refinement blocks all spurious interferences leading to a violation of (2)

such that (2) can be proven to be correct for the platooning system by our method.

Non-Interference Properties for Data-Type Reduction 635

T 	
0

(PA)

Π0((ι1, {merge})) = ∞

T 	
1

(EM)

ι1
→ (free, []) Π1((ι1, {merge})) = ∞

T 	
2

(rSS)

ι1
→ (fca, [fc
→ ⊥]) Π2((ι1, {merge})) = ∞

T 	
3

(rRS)

ι1
→ (last, [fc
→ ⊥]) Π3((ι1, {merge})) = ∞
Π3((ι1, {split})) = 1

T 	
4 ι1
→ (free, []) Π4((ι1, {merge})) = ∞

Fig. 7. Refined abstract run of platoon. The first column names the topology and
the kind of evolution (cf. Def. 4) to the next topology. The second column shows the
topology in a formal notation and the third column shown the process counter for those
entries that are not zero.

We are now ready to prove the soundness of the refined DTR abstraction.
The crucial point is to see that the process counter is updated in such a manner
that it does not block any valid message sendings from the summarised process.

Theorem 2 (Soundness of Refined DTR abstraction). Let P be a DCS
protocol. Each concrete run of P has an abstract counterpart in the refined ab-
stract semantics of P, i.e. there exist process counters Πi such that

(Ti)i∈N0 ∈ �P�Id =⇒ ((αId′(Ti), Πi))i∈N0 ∈ �P��R

Id′ ♦

Proof. We show that H ⊆ TId(P) × (T �
Id′(P) × PC(P)) with

(T, (T �, Π)) ∈ H ⇐⇒ αId′(T) = T � ∧ (πId′(T) ⊕K Π0) "K Π

is a simulation relation, that is, for all T1 ∈ TId(P) and (T �
1 , Π1) ∈ (T �

Id′(P) ×
PC(P)) with H((T1, (T

�
1 , Π1))) we have

∀T2 ∈ TId(P) : T1 → T2 ∃(T �
2 , Π2) ∈ (T �

Id′(P) × PC(P)) :

(T �
1 , Π1) � (T �

2 , Π2) ∧H((T2, (T
�
2 , Π2)).

Let T1, T2 ∈ TId(P) with T1 → T2. By lemma 1 we are left to show the
existence of a process counter Π2 ∈ PC(P) with (πId′(T2) ⊕K Π0) "K Π2 such
that

(αId′(T1), πId′(T1) ⊕K Π0) � (αId′(T2), Π2).

We distinguish between the four cases (PA), (EM), (PS), (PD) of concrete topol-
ogy evolution of Def. 2. In Def. 3, the refined abstract evolution for the cases
(PA), (PD), (EM) do not evaluate the current status of process counter but re-
quires it to remain the same. We thus setΠ2 = πId′(T1)⊕KΠ0 in these cases. The
same applies to the (PS) case when either {ιs, ιr} ⊆ Id′ or {ιs, ιr} ⊆ Id \ Id′, i.e.
communication is only among concrete resp. summarised processes. Two cases
for (PS) are left:

636 T. Toben

(1) ιs ∈ Id′, ιr ∈ Id \ Id′, i.e. a concrete process sends m(trs) to the summary
process. The case for r(trr) = true is trivial as neither a change in the derived
process counter nor in the evolution of πId′(T1) happens. If r(trr) = false, we set
Π2 := (πId′(T1) ⊕K Π0)[(ι, E) �→ Π((ι, E)) ⊕K 1] with E = EP(q′(trr), c(trr))
according to Def. 3.(rSS). In T2, the effect of ιs sending the message m(trs) to
ιr is that the communication partner sets CPT2(ι,M) with m(trr) ∈M may be
extended by process ιr . By definition of the derived process counter, this ensures
(πId′(T2) ⊕K Π0) "K Π2.
(2) ιs ∈ Id \ Id′, ιr ∈ Id′, i.e. the summary process sends m(trs) to the concrete
process ιr. As T1 → T2, there exists a message set M ⊆ Σ with m(trs) ∈ M
such that the set of communication partners CPT1(ιr ,M) is not the empty set.
Thus (πId′(T1) ⊕K Π0)((ιr ,M)) ≥ 1, and we have αId′(T1) � αId′(T2).

For showing the existence of Π2, we set Π2 according to Def. 3.(rRS). Again,
the derived process counter πId′(T2) is changed in the same manner as Π2.
Especially the reduction of the process counter for the pair ιr and m is safe as
ιs disappears from the corresponding partner sets CPT2(ιr,M) for m(trs) ∈ M
when computing the derived process counter for T2.

To conclude the proof, we have to show that there exists an abstract topology
T � and a process counter Π for the initial topology T0 such that (T0, (T �, Π)) ∈
H . As αId′(T0) = T0 and πId′(T0)((ι,M)) = 0 for all ι ∈ Id′ and M ⊆ Σ, we set
T � = T0 and Π = Π0. This setting implies H(T0, (T �, Π)). !*

Tool support. Note that the integration of process counting into the DTR ab-
straction can be conducted fully automatically. For a given DCS protocol P, we
calculate the sets EP(q, c) and adjust the abstract transition relation accord-
ing to Def. 4. Recently, we have extended the DCS verification framework of
Rakow [15] by our method and were able to establish properties like (2) for the
car platooning example using standard tools like the SPIN model-checker [8].

Assessment. This section has shown that the observation of communication
sequences allows us to derive information about the existence of communication
partners in the abstracted part of the system. By our method, we are able to
automatically establish properties that DTR alone is not able to prove.

However, the demonstrated approach is not able to eliminated all spurious
message interferences. Firstly, the sets of communication partners only denote a
potential communication. It is possible that a message sending that is enabled by
prior communication is in fact not executable in the original system, e.g. if the
process always gets blocked before. Nevertheless, the summary process is always
allowed to send a message that has been enabled. Secondly, the process counter
falls back to uncertainty if the counter exceeds K. The scenario is possible when
there is a source of unrestricted sendings in the system, e.g. a concrete process
sending perpetually messages without waiting for any answers. We however ex-
pect that such kind of polling only occurs in the low-level physical layer, but not
on the high-level negotiation protocols addressed by DCS protocols. We thus
conjecture that counting up to K = 1 is already sufficient for reasonable DCS
protocols.

Non-Interference Properties for Data-Type Reduction 637

4 Related Work

In the literature, analyses of systems that comprise an unbounded number of
processes are mainly developed in terms of a parameterised system S(N), that
is, a parallel composition of N identical finite processes. The task is to prove
properties of S(N) for every N > 1. Various verification approaches have been
proposed, e.g. based an network invariants [10], counter abstraction [14], environ-
ment abstraction [4], or symmetry reduction [7]. However, parametrised systems
have no means of changing the connection topology and basically communicate
via a global shared memory. The problem of a changing link structures is mainly
addressed in the area of shape analysis [17]. However, the links are only among
data cells, i.e. the connected nodes do not exhibit a local behaviour. Dynamic
Communication Systems (DCS) combine the two difficulties of unbounded pro-
cesses and dynamic connections and hence require new verification techniques.
The verification of Java programs with dynamic thread creation is addressed
in [23], based on a 3-valued logic framework. This approach is restricted to
safety properties, while Data-Type Reduction is able to preserve liveness prop-
erties on the concrete part of the system. We have sketched the verification
of DCS already in [2] by combining Data-Type Reduction with global system
invariants that denote all possible communication topologies. These invariants
are computed by a new form of abstract interpretation of graph transformation
rules [1]. This approach is currently worked out in more detail. The ideas pre-
sented in this paper present an alternative approach and we have to investigate
how both relate to each other in terms of effectiveness and performance.

5 Conclusion

Reducing the number of message interferences substantially increases the ap-
plicability of Data-Type Reduction for communicating systems of systems. We
demonstrate that the observation of communication sequences allows us to ob-
tain valuable information about valid communication partners that is normally
dismissed by the abstraction. We thereby extend the idea of manually inferring
and adding non-interference lemmata for DTR refinement to a fully automatic
procedure. The extension itself is based on a variant of Counter Abstraction.

Future work has to evaluate the approach in terms of effectiveness and per-
formance for larger systems. We furthermore work on a formal characterisation
of the “degree of improvement” of DTR by our method, and identify subclasses
of DCS where the refinement leads to a complete abstraction technique.

References

1. Bauer, J.: Analysis of Communication Topologies by Partner Abstraction. PhD
thesis, Universität des Saarlandes (2006)

2. Bauer, J., Schaefer, I., Toben, T., Westphal, B.: Specification and Verification
of Dynamic Communication Systems. In: Goossens, K., Petrucci, L. (eds.) Proc.
ACSD 2006, Turku, Finland, June 2006, IEEE, New York (2006)

638 T. Toben

3. Brand, D., Zafiropulo, P.: On Communicating Finite-State Machines. Journal of
the Association for Computing Machinery 30(2), 323–342 (1983)

4. Clarke, E.M., Talupur, M., Veith, H.: Environment Abstraction for Parameter-
ized Verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,
vol. 3855, pp. 126–141. Springer, Heidelberg (2005)

5. Damm, W., Westphal, B.: Live and let die: LSC-based verification of UML-models.
Science of Computer Programming 55(1–3), 117–159 (2005)

6. Frodigh, M., Johansson, P., Larsson, P.: Wireless Ad Hoc Networking: The Art of
Networking without a Network. Ericsson Review, 4 (2000)

7. Gyuris, V., Sistla, A.P.: On-the-Fly Model Checking Under Fairness that Exploits
Symmetry. Formal Methods in System Design 15(3), 217–238 (1999)

8. Holzmann, G.J.: The SPIN model checker: Primer and reference manual. Addison
Wesley, Reading, MA (2004) HOL g 03:1 1.Ex

9. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: The Design of Platoon Maneuver Proto-
cols for IVHS. PATH Research Report UCB-ITS-PRR-91-6, Inst. of Transportation
Studies, University of California (April 1991) ISSN 1055-1425

10. Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Network Invariants in Action. In:
Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 101–115. Springer, Heidelberg (2002)

11. Lubachevsky, B.D.: An Approach to Automating the Verification of Compact Par-
allel Coordination Programs I. Acta Inf. 21, 125–169 (1984)

12. McMillan, K.L.: A methodology for hardware verification using compositional
model checking. Science of Computer Programming 37, 279–309 (2000)

13. Milner, R.: Communicating and Mobile Systems: The Pi Calculus. CU Press, Cam-
bridge, MA (1999)

14. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1,infty)-Counter Abstraction. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 107–133. Springer,
Heidelberg (2003)

15. Rakow, J.: Verification of Dynamic Communication Systems. Master’s thesis, Carl
von Ossietzky Universität Oldenburg (April 2006)

16. Graf, S., Saidi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

17. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric Shape Analysis via 3-Valued Logic.
ACM Transactions on Programming Languages and Systems, 22 (2001)

18. UNISIG. SUBSET 026-Chapter 3; Version 2.2.2 (SRS) (March 2002)
http://www.aeif.org/ccm/default.asp

19. Wachter, B., Westphal, B.: The Spotlight Principle. On Combining Process-
Summarising State Abstractions. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 182–198. Springer, Heidelberg (2007)

20. Westphal, B.: LSC Verification for UML Models with Unbounded Creation and
Destruction. In: Visser, W., Cook, B., Stoller, S. (eds.) Proc. SoftMC 2005, July
2005. ENTCS, vol. 144(3), pp. 133–145. Elsevier B.V, Amsterdam (2005)

21. Xie, F., Browne, J.C.: Integrated State Space Reduction for Model Checking Ex-
ecutable Object-oriented Software System Designs. In: Kutsche, R.-D., Weber, H.
(eds.) ETAPS 2002 and FASE 2002. LNCS, vol. 2306, pp. 64–79. Springer, Heidel-
berg (2002)

22. Yahav, E., Ramalingam, G.: Verifying safety properties using separation and hetero-
geneous abstractions. In: Proc. of the ACM SIGPLAN 2004 conference on Program-
ming language design and implementation, pp. 25–34. ACM Press, New York (2004)

23. Yahav, E.: Verifying safety properties of concurrent Java programs using 3-valued
logic. ACM SIGPLAN Notices 36(3), 27–40 (2001)

http://www.aeif.org/ccm/default.asp

Co-simulation of Distributed Embedded

Real-Time Control Systems�

Marcel Verhoef 1, Peter Visser 2, Jozef Hooman 3, and Jan Broenink 2

1 Chess, P.O. Box 5021, 2000 CA Haarlem and Radboud University Nijmegen,
Institute of Computing and Information Sciences, P.O. Box 9010,

6500 GL Nijmegen, The Netherlands
Marcel.Verhoef@chess.nl

2 University of Twente, Control Engineering, Department of Electrical Engineering,
Mathematics and Computer Science, P.O. Box 217, 7500 AE Enschede,

The Netherlands
P.M.Visser@utwente.nl, J.F.Broenink@utwente.nl

3 Embedded Systems Institute, P.O. Box 513, 5600 MB Eindhoven and
Radboud University Nijmegen, Institute of Computing and

Information Sciences
hooman@cs.ru.nl

Abstract. Development of computerized embedded control systems is
difficult because it brings together systems theory, electrical engineering
and computer science. The engineering and analysis approaches advo-
cated by these disciplines are fundamentally different which complicates
reasoning about e.g. performance at the system level. We propose a light-
weight approach that alleviates this problem to some extent. An existing
formal semantic framework for discrete event models is extended to al-
low for consistent co-simulation of continuous time models from within
this framework. It enables integrated models that can be checked by
simulation in addition to the verification and validation techniques al-
ready offered by each discipline individually. The level of confidence in
the design can now be raised in the very early stages of the system de-
sign life-cycle instead of postponing system-level design issues until the
integration and test phase is reached. We demonstrate the extended se-
mantic framework by co-simulation of VDM++ and bond-graph models
on a case study, the level control of a water tank.

Keywords: simulation, continuous time, discrete event, VDM++, bond
graphs.

1 Introduction

Computers that are intimately coupled to the environment which they monitor
and control are commonly referred to as embedded systems. We focus on the class
� This work has been carried out as part of the Boderc project under the responsibility

of the Embedded Systems Institute. This project was partially supported by the
Dutch Ministry of Economic Affairs under the Senter TS program.

J. Davies and J. Gibbons (Eds.): IFM 2007, LNCS 4591, pp. 639–658, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

640 M. Verhoef et al.

of embedded systems that control a physical process in the real world. We refer
to these systems as embedded control systems. Examples are the control unit
of a washing machine and the fuel injection system in a private car. Embedded
control systems execute an algorithm that ensures the correct behavior of the
system as a whole. The common element of all these systems is that timeliness is
of concern. Control actions have to be taken on time to keep the physical process
in the required state. I.e., embedded control systems are real-time systems.

This is in particular true for the class of high-tech systems such as for instance
wafer steppers and high-volume printers and copiers. The productivity of these
machines, which is often their most important selling point, depends on the
performance of the embedded control system. Typically, these complex machines
are composed of several subsystems that need to work together to get the job
done, which may require multi-layer and distributed control. For example, each
subsystem may have its own embedded control system to perform its specific
function while another, dedicated, subsystem coordinates the system as a whole
by telling the other subsystems what to do and when. It is not hard to imagine
that the design of the control strategy for these systems is challenging.

This is complicated by the fact that systems are often developed out-of-phase.
Typically, mechanical design precedes electronics design which precedes software
design. Although there is a trend towards concurrent engineering to reduce de-
velopment time, the lead times for mechanical design and engineering typically
still exceed those of electronics and software. System level design considerations
are validated during the test and integration phase, which may cause significant
delays in the project if an important issue was overlooked. Software is often
the only part of the system that can be changed at this late stage. These late
changes can cause a significant increase in the complexity of the software, espe-
cially when a carefully designed software architecture is violated to compensate
for some unforeseen problems in the hardware. Hence, it is important to get as
much feedback as possible in the earliest stages of the system design life-cycle,
to prevent this situation.

Model-based design addresses this challenge. Reasoning about system-level
properties is enabled by creating abstract, high-level and multidisciplinary mod-
els of the system under construction. Mono-disciplinary models typically allow
optimization of single aspects of the design, while multidisciplinary models allow
reasoning about fitness for purpose across multiple system aspects. Suppose, for
instance, that the position of a sheet of paper in the paper path of a printer is
measured with a sensor that generates an interrupt when the edge of the sheet
is observed. High interrupt loads can occur on the embedded control system if
these sensors are placed physically close together, because they are triggered
right after one another. A very powerful processor may be required in order to
deal with this sudden peak load, in particular when a short response time must
be guaranteed for each event. There is a clear trade-off between spatial layout
and performance in this example. Analysis of multidisciplinary models provides
valuable insight into the design such that these trade-offs can be made in a
structured way, earlier, and with more confidence.

Co-simulation of Distributed Embedded Real-Time Control Systems 641

This approach was studied in the Boderc project [1] in which the authors par-
ticipated. We observed that creating multidisciplinary models is far from trivial.
The notations and the engineering and analysis approaches that are advocated
by the involved disciplines are different and the resulting models are typically
not at the same level of abstraction. Henzinger and Sifakis [2] even claim that
these are fundamental problems and that a new mathematical foundation is re-
quired to reason about these integrated multidisciplinary models. The approach
taken in this paper is different. We would like to be able to combine the state
of the art in each discipline in a useful and consistent way. In other words, we
want to construct multidisciplinary models from mono-disciplinary models. We
are certainly not the first to propose this idea but we believe that our solution
to this problem is novel.

Contribution of this paper. We have reconciled the semantics of two existing
formal notations such that system models, which are composed of sub-models
written in either language, can be conveniently studied in combination. We also
demonstrate how this is achieved in practice by tool coupling. The result is a
light-weight modeling approach that enables construction of multidisciplinary
models that can be simulated, in addition to the analysis techniques already
available for each sub-model individually. Moreover, the reconciled semantics
ensures reliable simulation results which can be obtained with little effort.

Structure of this paper. An overview of the current state of practice is pre-
sented in Section 2. Modeling and analysis of embedded control systems is dis-
cussed by introducing a motivating case study in Section 3. The results of the
simulation using the tool coupling are shown in Section 4. The semantic inte-
gration is presented from a formal perspective in Section 5. Finally, we look at
related and future work and we draw conclusions in Section 6.

2 Current State of Practice in Academia and Industry

The importance of model-based design is widely recognized and we observe that
many contenders, typically originating from a specific discipline, are extending
their techniques to cater for this wider audience. Matlab/Simulink is an example
of this trend. In combination with their Stateflow and Real-time Workshop add-on
products, they provide a tool chain for embedded systems design and engineering.
It is particularly well-suited for fine grained controller design. This is not surpris-
ing because the roots of the tools are firmly based in systems theory. Stateflow
can be used to model the control software using finite state machines. However,
this technique is not very convenient for specifying complex algorithms. One has
to write so-called S-functions or provide a piece of C-code in order to execute the
Stateflow model. Timing is idealized by the assumption that all transitions take
a fixed amount of timer ticks. Scheduling and deployment of software on a dis-
tributed system cannot easily be described and analyzed. Henriksson [3] designed
and implemented the TrueTime toolkit on top of Simulink which provides a so-
lution for describing scheduling and deployment, but the software models remain

642 M. Verhoef et al.

at a low abstraction level. We believe that these tools are not acceptable to the
embedded software engineer at large, because insufficient support is provided for
modern software engineering approaches to design and implement complex real-
time software.

A similar situation arises from IBM Rational Technical Developer (formerly
known as Rational Rose Real-time) and I-Logix Rhapsody. These software de-
velopment environments are increasingly used in real-time embedded systems
development [4]. They provide modeling capabilities based on the Unified Mod-
eling Language (UML) and the System Modeling Language (SysML) and are
supported by mature development processes (RUP and Harmony respectively).
Both tools aim to develop executable models that are deployed on the target
system as soon as possible to close the design loop. This requires the model to
evolve to a low level of abstraction early in the design process in order to achieve
that goal. Actions are coded directly in the target (programming) language and
timing can be specified by using so-called timer objects provided by the modeling
framework. However, their resolution and accuracy is determined by the services
of the operating system running on the target platform, they are not part of
the modeling language. Moving code from one platform to another might lead
to completely different timing behavior. Similarly, task priorities and schedul-
ing are implementation specific. We believe that these tools are not acceptable
to the control engineer at large, because no support is provided to design and
analyze the control laws that the system should implement.

Is it possible to support control and software engineers using a single method
or tool? Several attempts have been made to unify both worlds. For example,
Hooman, Mulyar and Posta [5] have co-simulated Rose Real-time software mod-
els with control laws specified in Matlab/Simulink. They removed the platform
dependent notion of time in Rose Real-time by providing a platform neutral
notion of time instead. This is achieved by development of an interface that sits
in between Rose Real-time and Simulink, which exposes the software simulator
of Rose Real-time to the Simulink internal clock. While this is a step forward,
it also shows that Rose Real-time is not very suitable for the co-simulation of
control systems, because it lacks a suitable notion of simulation time and the
run-to-completion semantics does not allow interrupts due to relevant events of
the physical system under control. I-Logix has recently announced integration
of Rhapsody with Simulink but the technical details have not yet been unveiled.

Lee et al [6] propose a component based, actor oriented approach. They de-
fine a framework in which all components are concurrent and interact by sending
messages according to some communication protocol. The communication pro-
tocol and the concurrency policies together are called the model of computation.
Ptolemy-II [6] is a system-level design environment that supports heterogeneous
modeling and design using this approach. It supports several domains, each of
which is based on a particular model of computation, such as for example dis-
crete event, synchronous data flow, process networks, finite state machines and
communicating sequential processes. They can be combined at liberty to de-
scribe the system under investigation. This approach seems to be a major step

Co-simulation of Distributed Embedded Real-Time Control Systems 643

forward for model based design of real-time embedded systems, but paradoxi-
cally, it does not appeal to either control engineers or software engineers. Perhaps
the approach proposed by Ptolemy-II upsets the current way of working so much
that it is considered too high a risk to use in an industrial environment. Cur-
rently, only simulation is offered as a means of model validation and synthesis is
under development for some domains. Verification of Ptolemy-II models is not
yet possible because the semantics of actors has not been formally defined.

3 Modeling and Analysis of Embedded Control Systems

The complexity of embedded control design and analysis is probably best ex-
plained by means of a motivating example. We use the level control of a water
tank in this paper. This example is small and simple, but it contains all the basic
elements of an embedded control system. These elements are presented in detail
in this section. An overview of the case study is presented in Figure 1. The case
study concerns a water tank that is filled by a constant input flow fI and can be
emptied by opening a valve resulting in an output flow fO. The volume change
is described by equations (1) and (2), where A is the surface area of the tank
bottom, V is the volume, g is the gravitation constant, ρ is the density of liquid
and R is the resistance of the valve exit.

From the system theoretic point of view, we distinguish the plant and the
controller of an embedded control system, as shown in Fig. 2. The plant is the
physical entity in the real world that is observed and actuated by the controller.
More accurately, we study feedback control in this paper. Feedback controllers
compute and generate a control action that keeps the difference between the
observed plant state and its desired value, the so-called set-point, within a certain
allowed margin of error at all times. The plant is a dynamic system that is usually
described by differential equations if in the continuous time (ct) domain or by
difference equations if it is described in the discrete time (dt) domain.

The water tank case study is an example of a continuous time system, de-
scribed by differential equation (1). Controllers observe some property of the
plant and they change the state of the plant by performing a control action,
according to some control law. This control law keeps the system as a whole
in some desired state. In our case study, the water level is observed by three

dV

dt
= fI − fO (1)

fO =

{
ρ·g
A·R · V if valve = open

0 if valve = closed
(2)

Fig. 1. The water tank level control case study

644 M. Verhoef et al.

Fig. 2. System theoretic view of a control system

sensors: a pressure sensor at the bottom of the tank which measures the current
water level continuously and two discrete sensors that raise an alarm if a certain
situation occurs. The top sensor informs us when the water level exceeds the
high water mark and the bottom sensor fires if the water level drops below the
low water mark. The aim of the controller is to keep the water level between
the low and high watermark. The controller can influence the water level by
opening or closing a valve at the bottom of the tank. We assume that the valve
is either fully open or fully closed. Plant modeling and controller descriptions
are discussed in more detail in the following sections.

3.1 Plant Modeling

For modeling the plant of the embedded control system, we use so-called bond
graphs [7,8] in this paper. Bond graphs are directed graphs, showing the rele-
vant dynamic behavior of the system. Vertices are the sub-models and the edges,
which are called bonds, denote the ideal (or idealized) exchange of energy. En-
try points of the sub-models are the so-called ports. The exchange of energy
through a port (p) is always described by two implicit variables, effort (p.e) and
flow (p.f). The product of these variables is the amount of energy that flows
through the port. For each physical domain, such a pair of variables can be
specified, for example: voltage and current, force and velocity. The half arrow on
the vertex at the bonds shows the positive direction of the flow of energy, and the
perpendicular stroke indicates the computational direction of the two variables
involved. They connect the energy flows to the two variables of the bond. The
equations that define the relationship between the variables are specified as real
equalities, not as assignments. Port variables obtain a computational direction
(one as input, the other as output) by means of computational causal analysis on
the graph. This efficient algorithm ensures that the underlying set of differential
equations can be solved deterministically by rewriting the equations as assign-
ment statements such that a consistent evaluation order is enforced whenever
a solution is calculated. Bond graphs are physical-domain independent, due to
analogies between the different domains on the level of physics. Mechanical, elec-
trical, hydraulic and other system parts can all be modeled with bond graphs.
Bond graphs may be mixed with block diagrams in a natural way to cover
the information domain. Control laws are usually specified with block diagrams
and the plant is specified with bond graphs to model a controlled mechatronic

Co-simulation of Distributed Embedded Real-Time Control Systems 645

1 = open

waterlevel

valve control

f
I

f
O

0 = close

Tank

Valve

Drain

Input

R

C 0

X0

Sf
01 variables
02 real volume, level;
03 parameters
04 real area = 1.0;
05 real gravity = 9.81;
06 real density = 1.0;
07 equations
08 // p.e = pressure, p.f = flow rate
09 // integrate flow to obtain volume
10 volume = int(p.f);
11 level = volume / area;
12 p.e = gravity * level * density;

Fig. 3. The bond graph plant model of the water tank case study

system. Figure 3 shows the bond graph plant model of the water tank case study.
The Sf element is the input flow fI. The C element describes the water tank,
the equations are next to the figure. The R element describes the drain. The X0
element is a so-called switching junction which describes the valve. When the
valve is opened, a flow fO will be drained from C. There is no flow from C when
the valve is closed.

Differential equations are the general format for representing dynamic systems
mathematically. For specifying a plant model many continuous-time representa-
tions exist, e.g., bond graph models, ideal physical models, block and flow dia-
grams and so on. A common property is that all these model types are directly
related to a set of differential equations. For the subset of linear time-invariant
plant models, alternative description techniques exist, such as the s-plane, fre-
quency response and state-space formats [9].

System theory has provided many analysis techniques for time-invariant linear
models and design techniques for their associated controllers, for which certain
properties can be proven to hold. However, real world systems often tend to be
nonlinear and time varying. The task of the control engineer is to find a suitable
linearization such that system theory can still be applied to design a controller.
Alternatively, simulation can be used if the dynamic system can be described
by a collection of so-called ordinary differential equations. This includes the
linear time-invariant models mentioned earlier, as well as non-linear and time
varying differential equations. Partial differential equations can be approximated
by lumped parameter models in ordinary differential equations and also non-
deterministic (or stochastic) models can be simulated. Although simulation can
never provide hard answers, it is often used because it can address a much larger
class of problems than linear analysis. For example, it can be used to determine
whether a linearized model is a good abstraction of the original non-linear model,
since both models can be simulated.

The basic method used in simulation is to solve a differential equation numer-
ically instead of analytically. Approximations of the solution are computed by
means of integration of the differential equations. These numerical integration

646 M. Verhoef et al.

techniques are commonly referred to as “solvers” and they exist in many flavors.
Examples of well-known solvers are Euler, Runge-Kutta and Adams-Bashforth
[10,11]. These solvers belong to the class of fixed step size integration algorithms.
Also many variable step size algorithms exist and selection of the right solver is
non-trivial and requires a good understanding of the model itself. For example,
variable step size solvers are typically required when the dynamic system is de-
scribed by (combined CT and) DT models. In addition, since an approximation
of the solution is computed, an integration error is introduced. This error might
lead to instability if the solver, and its parameters, are not carefully selected.

3.2 Controller Description

According to Cassandras and Lafortune [12], a system belongs to the class of
discrete event systems if the state can be described by a set of discrete values and
state transitions are observed at discrete points in time. We adopt this definition
here. Discrete event models can be used to describe the behavior of digital com-
puters, which implement certain control laws. Computers execute instructions
based on a discrete clock. The result of an instruction becomes available after
a certain number of clock ticks has elapsed. Sensor input samples and actuator
output values are seen as discrete events in this model of computation.

In order to bridge the gap between continuous time and discrete event sim-
ulation, we obviously need to introduce the notion of events in the continuous
time solver. Here, we distinguish two different event types: a) state events and
b) time events. State events occur when the solution of a differential equation
reaches some value p. Time events occur when the solver has reached some time
t. Consider a solver that produces a sequence of time steps time and a sequence
of solutions state for variable x then we can declare events as follows

ree (x, p) def= state (x, n− 1) − p < 0 ∧ state (x, n) − p ≥ 0 (3)

fee (x, p)
def
= state (x, n− 1) − p > 0 ∧ state (x, n) − p ≤ 0 (4)

te (t)
def
= time (n− 1) < t ∧ time (n) = t (5)

whereby n is the index used in both sequences. The event ree is the so-called
rising edge zero crossing and fee is the falling edge zero crossing. The zero
crossing functions of the solver ensure that time(n) is an accurate approximation
within user-defined bounds. The time event te is generated as soon as the solver
has exactly reached time t, whereby the solver ensures that the solution x in
state(x, n) at time(n) = t is an accurate approximation. For our case study, we
define two edge triggered events: ree (level, 3.0) and fee (level, 2.0), whereby
level is a shared continuous time variable that represents the height of the water
level in the tank. This variable is declared on line 2 of Fig. 3 and line 4 of Fig. 5.
An event is declared as a normal equation in 20-sim [13] as shown in Fig. 4. In
this example, we increment a simple event counter eue and inform the CT solver
that the DE model needs to be updated, by setting the variable fireDES.

We use VDM++ [14] in this paper to describe the controller. We extended
this notation in earlier work [15] such that the behavior of distributed embedded

Co-simulation of Distributed Embedded Real-Time Control Systems 647

// check for the upper water level limit
if (eventup(level - 3.0)) then

eue = eue + 1;
fireDES = true;

end;

Fig. 4. The ree (level, 3.0) event in 20-sim

real-time systems can be analyzed by means of discrete event simulation. Here
we assume a single processor system cpu1 that executes the controller presented
in Fig. 5. The shared continuous sensor and actuator variables level and valve are
declared on Line 4 and 5. Whenever level is read, it contains the actual value
of the corresponding continuous time variable on line 11 of Fig. 3. Similarly,
whenever valve is assigned a value, it changes the state of X0 in Fig. 3.

We demonstrate that two styles of control can be specified: event driven con-
trol and time triggered control. For event driven control, two asynchronous op-
erations, open and close are defined in lines 8 and 11 respectively. The former
will be the handler for the ree (level, 3.0) event and the latter is the handler
for the fee (level, 2.0) event. In other words, these asynchronous operations will
be called automatically whenever the corresponding event fires. This will cause
the creation of a new thread. This thread will die as soon as the operation is
completed. In VDM++, all statements have a default duration, which can be re-
defined using the duration and cycles statements. The duration statement on
line 9 states that opening the valve in this case takes 50msec. The cycles state-
ment on line 12 denotes that closing the valve takes 1000 cycles. Assuming this

01 class Controller
02
03 instance variables
04 static public level : real;
05 static public valve : bool := false -- default is closed
06
07 operations
08 static public async open: () ==> ()
09 open () == duration(0.05) valve := true;
10
11 static public async close: () ==> ()
12 close () == cycles(1000) valve := false;
13
14 loop: () ==> ()
15 loop () ==
16 if level >= 3 then valve := true -- check high water mark
17 else if level <= 2 then valve := false; -- check low water mark
18
19 threads
20 periodic(1.0,0,0,1.0)(loop)
21
22 sync
23 mutex(open, close, loop)
24
25 end Controller

Fig. 5. The controller description in VDM++

648 M. Verhoef et al.

class is deployed on a processor with a capacity of 100000 cycles per second, then
executing valve := false will take 10msec. Note that the result of the assign-
ment is available after this time has passed. Time triggered control is provided
by the loop operation in line 14-17. The periodic clause in line 20 states that
the operation loop is called periodically, once per second, starting at t = 1 sec.
Note that we use the default statement durations here. Finally, the mutex clause
on line 23 states that the three operations are declared mutually exclusive. This
implies that only one operation call can be active at any time and they cannot
be interrupted by each other. All threads that do not meet this requirement are
blocked until the currently executing operation call is completed.

4 Tool Support

We implemented a discrete event simulator to execute VDM++ models as de-
scribed in the previous section, as a proof of concept. We coupled this tool to
the 20-sim [13] continuous time simulator for dynamic systems. This tool has
the ability to make calls to user-defined libraries from within the simulation.
We implemented a simple DLL in C++ to exchange arbitrary sequences of dou-
ble precision reals over a TCP/IP connection. The same library is used in the
VDM++ simulator to set-up a connection. The progress of time in the simula-
tors on either end of the connection is synchronized by exchanging the current
time, time steps, actuator and sensor values and events, whereby the current
time is always strict monotone increasing. In this section we will focus on the
construction and use of the interface. In the next section we will look at the
semantics in more detail.

The behavior of the interface is shown in the UML sequence diagram in Fig. 7.
We use an XML configuration file to describe the information that is exchanged
over the link, the interface is completely model independent. For brevity, we
use an informal description as presented in Fig. 6. The keywords sensor and
actuator are defined as perceived from the perspective of the discrete event
simulator. Basically, we define a sensor[] array, an actuator[] array and an
event[] array. These arrays provide the bindings for all variables and events.
The abort keyword is used to stop the simulation, in addition to other tool
specific stop criteria that may be defined, and gives control back to the user, for
example to inspect the state of the model.

The XML configuration file is read by both simulations when the interface
is started, indicated by initialize in Fig. 7. When a message is sent from

sensor[1] = cpu1.Controller‘level
actuator[1] = cpu1.Controller‘valve
event[1] = REE(level,3.0) -> cpu1.Controller‘open
event[2] = FEE(level,2.0) -> cpu1.Controller‘close
event[3] = TE(15.0) -> abort

Fig. 6. The interface configuration file

Co-simulation of Distributed Embedded Real-Time Control Systems 649

VDM++ to 20-sim, indicated as updateCT in Fig. 7, the message contains the
current time T , the target time step ts, and the value of each defined actu-
ator variable at T from actuator[]. So, for our case study only three val-
ues are exchanged in this direction for every step. Upon arrival, the operation
updateCTmodel calls the continuous time solver and tries to perform the time
step ts. Either this time was reached or the solver stopped due to an event that
occurred at tr. When a message is sent from 20-sim to VDM++, indicated as
updateDE in Fig. 7, the message contains the current time T , the realized time
step tr ≤ ts, the value of each defined sensor variable at T+tr from sensor[], fol-
lowed by a monotone increasing counter for each declared event[]. This counter
is incremented when the event occurred at T + tr. This allows us to monitor the
integrity of the interface. Several events can be detected at the same time, but
an event can only occur once per iteration. Six values are offered when a mes-
sage is sent from 20-sim to VDM++ in this model. Upon arrival, the operation
updateDEmodel processes all events, updates the shared continuous variables and
performs a simulation step on the discrete event model, after which we iterate.

Figure 8 shows a simulation run for our case study, whereby we have disabled
all state events. In other words, we are studying the periodic control loop behav-
ior (lines 14-17 in Fig. 5). The top screen shows the evolution of the level sensor
variable. The middle screen shows the evolution of the valve actuator variable.
The bottom screen shows when the controller has been active, by means of a
counter which is increased whenever the VDM++ model makes a time step. It
resembles a staircase profile because the execution times of a single instruction
are small compared to the changes in the water level. However, if we zoom in,
we can actually see how much time is spent in the control loop. Notice that the

Fig. 7. Tool interface behavior as a UML sequence diagram

650 M. Verhoef et al.

Fig. 8. Visualization of a co-simulation run of the water tank case study

discrete controller is indeed invoked every second, but the control actions, for
example at t = 4 sec are slightly delayed, as expected. Moreover, observe that
the valve was not opened at t = 8 sec because level was 2.96 at that time. The
overshoot would have been substantially smaller if event based control was used
here. We can change many system parameters in the discrete event simulator
and observe their impact, such as the processor speed, task switch overheads,
and the scheduling policy, without modifying the model shown in Fig. 5. Simi-
larly, we can change parameters in 20-sim, such as the input flow rate, the liquid
density, the resistance of the valve exit, etc.

5 Reconciled Operational Semantics

There are many techniques available from computer science that can be used
to create discrete event models. Two-phase labeled transition systems are com-
monly used, whereby state and time transitions are explicitly distinguished. As-
suming some initial state, in the first phase, the successor state is computed
and then time elapses in the second phase after which the process is repeated.
We have presented an abstract operational semantics for distributed embed-
ded real-time systems in VDM++ in [15] which is also based on this approach.
In this paper, we extend this abstract formal semantics to allow for consistent
co-simulation with continuous time models. The tool support described in the
previous section conforms to the formal operational semantics presented here.
One of the key features of our work is that state modifications computed in
phase one are made visible after the time step in phase two has been completed,

Co-simulation of Distributed Embedded Real-Time Control Systems 651

in order to guarantee consistency in the presence of shared continuous variables
and arbitrary interleaving of multiple, concurrent, labeled transition systems.

The main aim of the operational semantics is to formalize the interaction
between the discrete event simulator, which executes a control program, and a
solver for a continuous time plant model. Hence we have omitted many details
of the VDM++ model such as the links between nodes, message transfer along
these links, the definition of classes, including explicit definitions of synchronous
and asynchronous operations, guards and a concept to define periodic threads.
The operational semantics of these concepts can be found in [15]. In contrast
with this previous work, we will focus in this section on communication by means
of global variables and events, since this is used to model the interaction between
continuous time and discrete event models. In Sect. 5.1 we define the syntax of a
simple imperative language which serves as an illustration of the basic concepts,
without trying to be complete. The operational semantics of this language is
defined in Sect. 5.2.

5.1 Syntax

The distributed architecture of an embedded control program can be represented
by so-called nodes. Let Node be the set of node identities. Nodes are used to
represent computation resources such as processors. On each node a number of
concurrent threads are executed in an interleaved way. In addition, execution is
interleaved with steps of a solver.

Threads can be created dynamically, e.g., to deal with events received from
the solver. Let Thread be the set of thread identities, including dormant threads
that can be made alive when a new thread is created. Function node : Thread →
Node denotes on which node each thread is executing. Each thread executes a
sequential program, that is, a statement expressed in the language of Table 1.

Let Value be a domain of values, such as the real numbers R. Assume given
a set of variables Var = InVar ∪ OutVar ∪ LVar where InVar is the set of in-
put/sensor variables, OutVar is the set of output/actuator variables, and LVar a
set of local variables. The input and output variables are global and shared be-
tween all threads and the continuous model. Hence, they can also be accessed by
the solver, which may read the actuator variables and write the sensor variables.
Let IOVar = InVar ∪ OutVar. Let Time = R be the time domain. The syntax
of our sequential programming language is given in Table 1, with c ∈ Value,
x ∈ Var, and d ∈ Time.

The execution of basic statements such as skip and assignment x := e takes
zero time, except for the duration(d) statement which represents a time step of
d time units. For each thread, any sequence of statements between two successive
duration statements is executed atomically in zero time. However, the execution
of such a sequence might be interleaved with statements of other threads or a
step of the solver. Concerning the shared IO-variables in IOVar this means that
we have to ensure atomicity explicitly. Hence, we introduce a kind of transaction
mechanism to guarantee consistency in the presence of arbitrary interleaving of
steps. Thread thr is only allowed to modify IO-variable x if there is no transaction

652 M. Verhoef et al.

Table 1. Syntax of Statements

Value Expression e ::= c | x | e1 + e2 | e1 − e2 | e1 × e2

Boolean Expression b ::= e1 = e2 | e1 < e2 | ¬b | b1 ∨ b2

Statement S ::= skip | x := e | duration(d) | S1 ; S2 |
if b then S1 else S2 fi | while b do S od

in progress by any other thread. The transaction is committed as soon as the
thread performs a time step. This will be explained in detail in Defs. 2 and 5.

Let SeqProg be the set of sequential programs of the form S ; E, where E is
an auxiliary statement which is used to denote termination of a thread.

The solver may send events to the control program. Let Event be a set of
events. They may be defined by the primitives ree (x, p), fee (x, p), and te (t),
as proposed in Eqs. 3-5. Assume that an event handler has been defined for
each event, i.e., a sequential program, and a node on which this statement has
to be executed (as a new thread), denoted by the function evhdlr : Event →
SeqProg × Node.

5.2 Operational Semantics

To define the operational semantics, we first introduce a configuration C in
Def. 1 to capture the state of affairs at a certain point in the execution of our
model. Next, we define the so-called variant of a configuration in Def. 2. The
notion of a step, denoted by C −→ C′ for configurations C and C′, is defined
in Def. 3, using Defs. 4, 5, and 6. This finally leads to a set of runs of the
form C0 −→ C1 −→ C2 −→ · · · in Def. 7, which provides the abstract formal
operational semantics of simulating a control program in parallel with a solver
of a continuous time model.

Definition 1 (Configuration). A configuration C contains the following fields:

– instr : Thread → SeqProg
the remaining program to be executed by each thread.

– curthr : Node → Thread
yields for each node the currently executing thread.

– status : Thread → {dormant, alive}
thread status; a thread can be created by making a dormant thread alive.

– lval : LVar × Thread → Value
denotes the value of each local variable for each thread.

– ioval : IOVar → Value
denotes the committed value of each sensor and actuator variable.

– modif : IOVar× Thread → Value ∪ {⊥}
to denote the values of sensor and actuator variables that have been modi-
fied by a thread and for which the transaction has not yet been committed
(by executing a duration statement). The symbol ⊥ denotes that the value is

Co-simulation of Distributed Embedded Real-Time Control Systems 653

undefined, i.e., the thread did not modify the variable in a non-committed
transaction.

– now : Time to denote the current time. �

For a configuration C, we use the notation C(f) to obtain its field f , such as
C(instr). We define a few suitable abbreviations:

– cur(C, n) denotes the current thread on node n, i.e. C(curthr)(n)
– exec(C, thr) expresses that thr is executing, i.e., there exists an n ∈ Node

such that cur(C, n) = thr.

We define the notion of a variant to express configuration modifications.

Definition 2 (Variant). The variant of a configuration C with respect to a
field f and a value v, denoted by C [f �→ v], is defined as

(C [f �→ v])(f ′) =

{
v if f ′ = f

C (f ′) if f ′ 	= f
(6)

Similarly for field parts, such as variants of mapping ioval. �

We define the value of an expression e in a configuration C which is evaluated
in the current thread on a node n, denoted by [[e]](C, n). The main point is the
evaluation of a variable:

[[x]](C, n) =

⎧
⎪⎨

⎪⎩

C(modif)(x, cur(C, n)) if x ∈ IOVar, C(modif)(x, cur(C, n)) 	= ⊥
C(ioval)(x) if x ∈ IOVar, C(modif)(x, cur(C, n)) = ⊥
C(lval)(x, cur(C, n)) if x ∈ LVar

The other cases are trivial, e.g., [[e1 × e2]](C, n) = [[e1]](C, n)× [[e2]](C, n) and
[[c]](C, n) = c. It is also straightforward to define when a Boolean expression
b holds in the current thread of a configuration C on a node n, denoted by
[[b]](C, n). For instance, [[e1 < e2]](C, n) iff [[e1]](C, n) < [[e2]](C, n), and
[[¬b]](C, n) iff not [[b]](C, n).

Definition 3 (Step). C −→ C′ is called a step if and only if it corresponds
to the execution of a statement (Def. 4), performing a time step (Def. 5), or a
context switch (Def. 6). �

Definition 4 (Execute Statement). A step C −→ C′ corresponds to the
execution of a statement if and only if there exists at least one executing thread
thr with exec(C, thr) such that C(instr)(thr) = S1 ; S2, allowing S2 = E, and
one of the following clauses holds:

– S1 = skip. The skip statement does not have any effect except that the
statement is removed from the instruction sequence
C′ = C[instr(thr) �→ S2].

– S1 = x := e. We distinguish two cases, depending on the type of variable x.

654 M. Verhoef et al.

• If x ∈ IOVar we require that there is no transaction in progress by any
other thread: for all thr′ with thr′ 	= thr we have C(modif)(x, thr′) = ⊥.
Then the value of e is recorded in the modified field of thr:
C′ = C[instr(thr) �→ S2,modif(x, thr) �→ [[e]](C, n)]
As we will see later, all values belonging to thread thr in C(modif) are
removed and bound to the variables in C(ioval) as soon as thread thr
completes a time step (Def. 5). This corresponds to the intuition that
the result of a computation is available only at the end of the time step
that reflects the execution of a piece of code.

• If x ∈ LVar then we change the value of x in the current thread:
C′ = C[instr(thr) �→ S2, lval(x, thr) �→ [[e]](C, n)]

– S1 = if b then S11 else S12 fi. If [[b]](C, n) then we have
C′ = C[instr(thr) �→ S11 ; S2], otherwise C′ = C[instr(thr) �→ S12 ; S2].

– S1 = while b do S od. If [[b]](C, n) then we have
C′ = C[instr(thr) �→ S ; while b do S od ; S2], otherwise we obtain
C′ = C[instr(thr) �→ S2].

Observe that the execution of these statements does not affect now, that is,
C(now) = C′(now). �

Definition 5 (Time Step). A step C −→ C′ is called a time step only if
all current threads are ready to execute a duration instruction or have termi-
nated. More formally, for all thr with exec(C, thr), C(instr)(thr) is of the form
duration(d) ; S or equals E. Then the definition of a time step consists of three
parts: (1) the definition of the requested duration of the time step, (2) the exe-
cution of this time step by the solver, leading to intermediate configuration Cs

(3) updating all durations of all current threads, dealing with events generated
by the solver, and committing all variables of the current threads.

1. Time may progress with a number of time units which is smaller than or
equal to all durations of all current threads. Hence, the requested length of
the time step is defined by
ts = min{d | ∃ thr, S : exec(C, thr) ∧ C(instr)(thr) = duration(d) ; S}.

2. If ts > 0 the solver tries to execute a time step of length ts in configuration
C. Concerning the variables, the solver will only use the ioval field, ignoring
the lval and modif fields. It will only read the actuator variables in OutVar
and it may write the sensor variables in InVar in field ioval. As soon as the
solver generates one or more events, its execution is stopped. This leads to
a new configuration Cs and a set of generated events EventSet. Since the
solver takes a positive time step, C(now) < Cs(now) ≤ C(now) + ts, and
if Cs(now) < C(now) + ts then EventSet 	= ø. Moreover, Cs(f) = C(f) for
f ∈ {instr, curthr, status, lval,modif}.

If ts = 0 then the solver is not executed and Cs = C, EventSet = ø. This
case is possible because we allow duration(0) to commit variable changes,

Co-simulation of Distributed Embedded Real-Time Control Systems 655

as shown in the next point.

3. Starting from configuration Cs and EventSet, next the durations are de-
creased with the actual time step performed, new threads are created for the
event handlers, and finally for threads with zero durations the transactions
are committed.

Let tr = Cs(now) − C(now) be the time step realized by the solver. For
each event e ∈ EventSet with evhdlr(e) = (Se, ne), let thre be a fresh - not
yet used - thread identity with status dormant and node(thre) = ne.

We define an auxiliary function NewInstr(C, tr) : Thread → SeqProg which
decreases durations, removes zero durations, and installs event handlers:
NewInstr(C, tr)(thr) =⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

duration(d− tr) ; S if exec(C, thr), C(instr)(thr) = duration(d) ; S,
and d > tr

S if exec(C, thr) and C(instr)(thr) = duration(tr) ; S
Se if thr = thre for some e ∈ EventSet

C(instr)(thr) otherwise
Next define a function to awake the new threads for event handlers:

NewStatus(C)(thr) =

{
alive if thr = thre for some e ∈ EventSet

C(status)(thr) otherwise

Let ActDurZero = {thr | exec(C, thr) and C(instr)(thr) = duration(tr) ; S}
be the set of threads which will have a zero duration after this time step. For
these threads the transactions are committed and the values of the modified
variables are finalized. This is defined by two auxiliary functions:
NewIoval(C)(x) ={
v if ∃ thr ∈ ActDurZero and C(modif)(x, thr) = v 	= ⊥
C(ioval)(x) otherwise

Note that at any point in time at most one thread may modify the same
global variable in a transaction. Hence, there exists at most one thread sat-
isfying the first condition of the definition above, for a given variable x.
The next function resets the modified field.

NewModif(C)(x, thr) =

{
⊥ if thr ∈ ActDurZero
C(modif)(x, thr) otherwise

Then C′ = Cs[instr �→ NewInstr(Cs, tr), status �→ NewStatus(Cs),
ioval �→ NewIoval(Cs), modif �→ NewModif(Cs)]

Observe that C′(now) = Cs(now) = C(now) + tr with tr ≤ ts. �
Definition 6 (Context Switch). A step C −→ C′ corresponds to a context
switch iff there exists a thread thr which is alive and not running, and which
has a non-empty program, that is, ¬exec(C, thr), C(status)(thr) = alive , and
C(instr)(thr) = S 	= E. Then thr becomes the current thread and a duration of
δcs time units is added to represent the context switching time:
C′ = C[instr(thr) �→ duration(δcs) ; S, curthr(node(thr)) �→ thr] �

656 M. Verhoef et al.

Note that more than one thread may be eligible as the current thread on a node
at a certain point in time. In that case, a thread is chosen nondeterministically
in our operational semantics. Fairness constraints or a scheduling strategy may
be added to enforce a particular type of node behavior, such as for example rate
monotonic scheduling.

Definition 7 (Operational Semantics). The operational semantics of our
model is the set of execution sequences of the form C0 −→ C1 −→ C2 −→ · · · ,
where each pair Ci −→ Ci+1 is a step (Def. 3) and the initial configuration
C0 all current threads are alive and the modif field is ⊥ everywhere. Finally,
to avoid Zeno behaviour, we require that for any point of time t there exists a
configuration Ci in the sequence with Ci(now) > t. �

6 Concluding Remarks

A multidisciplinary modeling approach shall provide sufficient means of abstrac-
tion to support all mono-disciplinary views in order to be industrially applicable.
A solid semantic foundation of the combination of these views is required to sup-
port meaningful and reliable analysis of the heterogenous model. We believe that
this can be achieved by taking a “best of both worlds” approach whereby the
software discipline uses a formal specification technique. Firstly because it pro-
vides abstraction mechanisms that allow high-level specification and secondly
because its well-defined semantics provides a platform independent description
of the model behavior that can be analyzed properly. Software models as advo-
cated by IBM Rational Technical Developer and I-Logix Rhapsody are, in our
opinion, not suited for this purpose in particular because they lack a suitable
notion of abstraction, time and deployment. We showed how tool integration
can be achieved based on the formal semantics proposed in this paper, which
we applied to a case study. Note however that the approach taken here is not
specific to any tool in particular. Our approach has been applied to a larger case
study: the distributed controller of a paper path of a printer [16].

Nicolescu et al [17] propose a software architecture for the design of contin-
uous time / discrete event co-simulation tools for which they provide an opera-
tional semantics in [18]. Our work is in fact an instantiation of that architecture,
however, with a difference. Their approach is aimed at connecting multiple sim-
ulators on a so-called simulation bus, whereas we connect two simulators using
a point-to-point connection. They use Simulink and SystemC whereas we use
20-sim and VDM++ to demonstrate the concept. The type of information ex-
changed over the interfaces is identical (the state of continuous variables and
events). They have used formal techniques to model properties of the interface,
whereas we have integrated the continuous time interface into the operational
semantics of a discrete event system. We believe that our approach is stronger
because a weak semantics for the discrete event model may still yield unexpected

Co-simulation of Distributed Embedded Real-Time Control Systems 657

simulation results even though the interface is proven to work consistently. An
in-depth comparison of both approaches is subject for further study.

The interface between the continuous time and discrete event models seems
to be convenient when resilience of a system is studied. Early experiments per-
formed in collaboration with Zoe Andrews at the Centre for Software Reliability
at Newcastle University have shown that it is possible to use this interface for
fault injection. Values and events exchanged over this interface can be dropped,
inserted, modified, delayed and so on to represent the failure mode of a sensor
or actuator, such as for example “stuck at x”. The advantage of this approach
is that the failure model can remain orthogonal to the continuous time and the
discrete event models. These system models need no longer be obscured by ex-
plicit failure mode modeling in either plant or controller, which usually clobbers
the specification. We certainly plan to explore this further.

In summary, the approach is to bring realistic time-aware models of software,
executed on a possibly distributed hardware architecture, into the realm of con-
trol engineering without enforcing a certain model of computation a priori. We
propose to use formal specification techniques to provide suitable software mod-
els required for this approach, mainly in order to manage complexity such that
small, abstract and high-level models can be created. This is essential in the
early phases of the system design life-cycle, where changes are likely to occur
while working under severe time pressure. We provide a system level approach
for modeling computation, communication and control with support and flexi-
bility for the decision making during the early phases of the system-design life
cycle, whereby the trade-offs can be investigated by co-simulation.

Acknowledgments. The authors wish to thank Job van Amerongen, Zoe An-
drews, Peter van den Bosch, Erik Gaal, Peter Gorm Larsen, Frits Vaandrager
and the anonymous reviewers for their valuable comments to this paper and
support for this work.

References

1. Boderc: Model-based design of high-tech systems. Final report. Embedded Sys-
tems Institute, P.O. Box 513, 5600 MB Eindhoven, NL (2006) Available on-line at
http://www.esi.nl/boderc

2. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006)

3. Henriksson, D.: Flexible Scheduling Methods and Tools for Real-Time Control Sys-
tems. PhD thesis, Lund Institute of Technology, Department of Automatic Control
(2003) http://www.control.lth.se/truetime/

4. Douglas, B.P.: Real-Time UML Workshop for Embedded Systems. Embedded
Technology. Newnes. Elsevier, Amsterdam (2007)

5. Hooman, J., Mulyar, N., Posta, L.: Coupling Simulink and UML models. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 304–311. Springer, Heidelberg (2004)

http://www.esi.nl/boderc
http://www.control.lth.se/truetime/

658 M. Verhoef et al.

6. Davis, J., Galicia, R., Goel, M., Hylands, C., Lee, E., Liu, J., Liu, X., Muliadi, L.,
Neuendorffer, S., Reekie, J., Smyth, N., Tsay, J., Xiong, Y.: Ptolemy-II: Heteroge-
neous concurrent modeling and design in Java. Technical Memorandum UCB/ERL
No. M99/40, University of California at Berkeley (1999)

7. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: System Dynamics: Modeling and
Simulation of Mechatronic Systems, 3rd edn. Wiley-Interscience, Chichester (2000)

8. Breedveld, P.: Multibond-graph elements in physical systems theory. Journal of
the Franklin Institute 319, 1–36 (1985)

9. Ledin, J.: Simulation Engineering - Build Better Embedded Systems Faster. Em-
bedded Systems Programming. CMP Books (2001)

10. Hairer, E., Nørsett, S.P., Gerhard., W.: Solving ordinary differential equations I:
Nonstiff problems, 2nd edn. Springer, Heidelberg (1993)

11. Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and
differential-algebraic problems, 2nd edn. Springer, Heidelberg (1996)

12. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer
Academic Publishers, Dordrecht (1999)

13. ControlLab Products: 20-sim (2006) http://www.20sim.com
14. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs

for Object-oriented Systems. Springer, Heidelberg (2005)
http://www.vdmbook.com

15. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed em-
bedded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski,
E. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006),
http://dx.doi.org/10.1007/11813040 11

16. Visser, P., Verhoef, M., Broenink, J., Hooman, J.: Co-simulation of continuous-
time/discrete-event systems as vehicle for embedded system design trade-off’s
(Submitted, 2007)

17. Nicolescu, G., Boucheneb, H., Gheorghe, L., Bouchhima, F.: Methodology for ef-
ficient design of continuous/discrete-events co-simulation tools. In: Anderson, J.,
Huntsinger, R. (eds.) High Level Simulation Languages and Applications - HLSLA.
SCS, San Diego, CA, pp. 172–179 (2007)

18. Gheorghe, L., Bouchhima, F., Nicolescu, G., Boucheneb, H.: Formal defini-
tions of simulation interfaces in a continuous/discrete co-simulation tool. In:
Proc. IEEE Workshop on Rapid System Prototyping, pp. 186–192. IEEE Com-
puter Society Press, Los Alamitos (2006) http://doi.ieeecomputersociety.
org/10.1109/RSP.2006.18

http://www.20sim.com
http://www.vdmbook.com
http://dx.doi.org/10.1007/11813040_11
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/5 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/5 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/5 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/5 size@update enc@update http://doi.ieeecomputersociety.org/10.1109/RSP.2006.18
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://doi.ieeecomputersociety.org/10.1109/RSP.2006.18

Author Index

Aguirre, Nazareno 1
Au, Oliver 21

Barone-Adesi, Katerina 37
Braghin, Chiara 37
Broenink, Jan 639
Brückner, Ingo 54
Butterfield, Andrew 75

Calamé, Jens 98
Cavarra, Alessandra 118
Chalin, Patrice 579
Chechik, Marsha 273
Chen, Yifeng 138
Colvin, Robert 156
Cooke, John 21
Couchot, Jean-François 176

Dadeau, Frédéric 176
de Vries, R.G. 538
Derrick, John 195
Dunne, Steve 215

Faber, Johannes 233
Fehnker, Ansgar 253
Futatsugi, Kokichi 393

Galloway, Andy 215
Gheorghiu, Mihaela 273
Gibbons, Jeremy 599
Grandy, Holger 313
Grunske, Lars 156
Gurfinkel, Arie 273

Hallerstede, Stefan 293
Haneberg, Dominik 313
Hasan, Osman 333
Hoang, Thai Son 293
Hooman, Jozef 639

Ioustinova, Natalia 98

Jacobs, Swen 233
Jifeng, He 353

Karkinsky, Damien 373
Khendek, Ferhat 579
Khurshid, Sarfraz 501
Kong, Weiqiang 393
Kramer, Jeff 558
Küchlin, Wolfgang 518

Lang, Frédéric 558
Leuschel, Michael 480

Mader, Angelika 253
Magee, Jeff 558
Maibaum, Tom 1
Marr (née Bolton), Christie 413
Meinicke, Larissa 439
Metzler, Björn 459

Ogata, Kazuhiro 393
Oostdijk, Martijn 538

Perry, Dewayne 501
Plagge, Daniel 480
Podorozhny, Rodion 501
Post, Hendrik 518

Regis, Germán 1
Reif, Wolfgang 313
Rusu, Vlad 538

Salaün, Gwen 558
Schellhorn, Gerhard 195, 313
Schneider, Steve 373
Sharygina, Natasha 37
Sherif, Adnan 75
Sidorova, Natalia 98
Sinnig, Daniel 579
Smith, Graeme 439
Smith, Michael Anthony 599
Sofronie-Stokkermans, Viorica 233
Stone, Roger 21

Tahar, Sofiène 333
Toben, Tobe 619

660 Author Index

Treharne, Helen 373
Tretmans, Jan 538

van de Pol, Jaco 98
van Hoesel, Lodewijk 253
Verhoef, Marcel 639
Visser, Peter 639

Wehrheim, Heike 195
Welch, James 118
Willemse, T.A.C. 538
Winter, Kirsten 156
Woodcock, Jim 75

Zhang, Xiaoqin 501

	Title Page
	Preface
	Organization
	Table of Contents
	Verifying Temporal Properties of CommUnity Designs
	Introduction
	CommUnity Designs
	Component Composition
	Semantics of Architectures
	Semantics for Abstract CommUnity Designs

	Verifying Temporal Properties of Designs
	The SMV System
	Translating CommUnity Designs into SMV
	Modularising the Verification Through Morphisms
	Some Sample Properties

	Conclusions
	References

	Precise Scenarios – A Customer-Friendly Foundation for Formal Specifications
	Introduction
	Ordering Problem and State Space
	NewOrder
	InvoiceOrder
	CancelOrder
	EnterStock
	Validation
	Underspecification
	Overspecification
	Nondeterminism
	Testing
	Tool Support Required

	Conclusions
	References

	Automated Verification of Security Policies in Mobile Code
	Introduction
	Related Work
	Formal Semantics of Mobile Programs
	Mobile Programs
	The ComputationalModel

	Specifying Security Policies of Mobile Programs
	Security and Projection

	A Model Checking Framework for Verification of Security Policies
	Experimental Results

	Conclusion
	References

	Slicing Concurrent Real-Time System Specifications for Verification
	Introduction
	CSP-OZ-DC
	Slicing
	Control Flow Graph
	Program Dependence Graph
	Backward Slice
	Reduced Specification

	Correctness
	Conclusion
	References

	Slotted-Circus A UTP-Family of Reactive Theories
	Introduction
	\Circus\ and Slotted-\Circus
	UTP: General Principles
	Structure and Focus

	Syntax
	Generic Slot-Theory
	Derived Types and Operators

	Healthiness Conditions
	Reactive Healthiness
	CSP Healthiness

	Slotted Semantics
	Laws
	5.2 Links

	Instantiating Slotted-\Circus
	Multiset History Instantiation

	Example Circus Process
	Related Work
	Future Work
	Conclusions
	References

	Bug Hunting with False Negatives
	Introduction
	The Specification Framework
	\altl\ with Data (\eALTL\/)

	Abstraction of Systems and Properties
	Abstraction of a System
	Abstraction of $eALTL$ Formulae

	Classification of Counterexamples
	Bug Hunting with False Negatives
	Constructing a Violation Pattern
	Looking for a Concrete Counterexample
	Correctness of the Framework

	Implementation
	Conclusion
	References

	Behavioural Specifications from Class Models
	Introduction
	UML
	Class Diagrams and OCL
	State Diagrams

	The $Booster$ Language
	The Generation of State Diagrams
	Abstraction
	Transitions
	States
	Validation and Verification

	A Worked Example
	An Example Specification
	Generation

	Discussion
	Related Work
	Further Work

	References

	Inheriting Laws for Processes with States
	Introduction
	Unifying Theories of Programming
	A Meta-theory of Predicative Modelling
	Set-Theoretic Predicate Calculus
	3.2 Predicate Functions
	Semantic Inheritance

	Basic Models
	Partially Correct Relational Model
	Sequential Specifications

	CSP-Z Specifications
	The Model
	CSP Commands and Action System
	Law Inheritance
	Parallelism as Conjunction
	5.5 Binary Compositions
	5.6 CSP

	Conclusions and Future Work
	References

	Probabilistic Timed Behavior Trees
	Introduction
	Preliminaries on Behavior Trees
	Behavior Trees
	Timed Behavior Trees

	Semantics of Timed Behavior Trees
	Operational Semantics
	Concurrent Timed Behavior Trees

	Probabilistic Timed Behavior Trees
	Semantics of Probabilistic Timed Behavior Trees
	Semantics of Concurrent Probabilistic Timed Behavior Trees

	Model Checking Probabilistic Timed Behavior Trees
	Case Study 1 - Lamp Example
	Case Study 2 - Viking Example

	Related Work
	Conclusion and Future Work
	References

	Guiding the Correction of Parameterized Specifications
	Introduction
	Correction of a B Machine
	Translation into Why Language
	Parameter Instantiation
	Sort-Based Instantiation
	Incremental Instantiation

	Reaching the Counter-Example
	Using the ProB Model-Checker
	Symbolic Animation
	Efficiency Keynotes on the BZ-Testing-Tools Animator
	Interpreting the Reachability Result

	Related Work
	Conclusion and Future Work
	References

	Proving Linearizability Via Non-atomic Refinement
	Introduction
	An Abstract and a Concrete Stack
	Background
	Generalised Non-atomic Refinement
	Example

	Linearizability
	Conclusion
	References

	Lifting General Correctness into PartialCorrectness is ok
	Introduction
	Preliminaries
	General Correctness and Abstract Commands
	The Interactive Era
	Abstract Commands
	Normal Form of an Abstract Command
	Indeterminate Assignment

	General Correctness and UTP
	Prescriptions $versus$ Predicate Transformers
	Pseudo-prescriptions

	Lifting a Computation
	Lifting Abstract Commands
	An Example

	Conclusion
	References

	Verifying CSP-OZ-DC Specifications with Complex Data Types and Timing Parameters
	Introduction
	Illustration

	CSP-OZ-DC: A High-Level Specification Language
	Timing Parameters in COD

	Operational Semantics of COD Specifications
	Translation of COD Specifications into PEA
	PEA with Timing Parameters
	Simplifications of PEA

	Verification of COD Specifications
	Translation of PEA to TCS
	Verification of TCS
	Efficient Reasoning in Complex Theories: Locality
	Example: The RBC Case Study

	Conclusions
	References

	Modelling and Verification of the LMAC Protocol for Wireless Sensor Networks
	Introduction
	The LMAC Protocol
	Timed Automata
	Models and Properties
	Model Decomposition
	Properties
	Simplification

	Results
	Safety and Reachability Properties
	Liveness Properties

	Conclusion
	References

	Finding State Solutions to Temporal Logic Queries
	Introduction
	Background
	Query Checking
	State Solutions to Queries
	SolvingMinterm Query Checking
	Implementation
	Exactness of Minterm Approximation

	Approximations
	Case Study
	Conclusions
	References

	Qualitative Probabilistic Modelling in Event-B
	Introduction
	The Event-B Modelling Notation
	Machines
	Machine Refinement

	Qualitative Probabilistic Event-B
	Almost Certain Convergence in Event-B
	The Rejected Alternatives
	Preliminary Study of Refinement

	Example: Contention Resolution in the Firewire Protocol
	Overview of the Firewire Protocol
	Event-B Model of the Contention Problem
	Attempting Nondeterministic Contention Resolution
	Probabilistic Contention Resolution

	Soundness
	Conclusion
	References

	Verifying Smart Card Applications: An ASM Approach
	Introduction
	Concepts of the Application Model
	Modeling the Agents
	The Attacker
	The ASM
	The Attacker
	Regular Agents

	Graphical Notation
	An Electronic Wallet
	Internal State of the Agents
	The Terminal
	Proving Properties
	Main Security Property
	Verification Technique
	Protocols and Their Expected Functionalities

	Related Work
	Conclusion
	References

	Verification of Probabilistic Properties in HOL Using the Cumulative Distribution Function
	Introduction
	Preliminaries
	HOL Theorem Prover
	Verifying Probabilistic Algorithms in HOL

	Formalization of the Standard Uniform Distribution
	Formal Specification of Standard Uniform Random Variable
	Formal Verification of Standard Uniform Random Variable

	Formalization of the Cumulative Distribution Function
	Formal Specification of CDF
	Formal Verification of CDF Properties

	CDF Properties and Probabilistic Analysis
	Determining Interval Probabilities
	Representing PMF in Terms of the CDF
	Representing PDF in Terms of the CDF

	Illustrative Example
	Formal Specification of the Continuous Uniform Distribution
	CDF Verification of the Continuous Uniform Random Variable
	Verification of Probabilistic Properties

	Related Work
	Conclusions
	References

	UTP Semantics for Web Services
	Introduction
	A Model for Fault Handling
	Programming Language
	Link with the Design Calculus
	Rollback
	Compensation
	Conclusion
	References

	Combining Mobility with State
	Introduction
	Notation
	Combining B Machines and π Processes
	Mediators

	Example
	Identifying and Discharging Assertions
	Underlying Semantics

	Discussion
	Related Work
	Future Work

	References

	Algebraic Approaches to Formal Analysis of the Mondex Electronic Purse System
	Introduction
	Overview of the Mondex Electronic Purse System
	The OTS/CafeOBJ Method
	CafeOBJ: Algebraic Specification Language
	Observational Transition Systems (OTSs)
	Specification of OTSs in CafeOBJ
	Verification of Invariants of OTSs

	Formalization of the Mondex System
	Basic Data Types
	OTS Model and Its CafeOBJ Specification

	Verification of the Mondex System
	Formal Definitions of the Properties
	Verification of the Properties

	Falsification of the Mondex System
	Maude Specification of the Mondex System
	Falsification of the Mondex System

	Related Work
	Conclusion
	References

	Capturing Conflict and Confusion in CSP
	Introduction
	PetriNets
	Graphical Representation
	Formal Representation

	Concurrency, Conflict and Confusion
	Purity
	Enabled Transitions and Pre- and Post-Conditions
	Interference
	Concurrency
	Conflict
	Confusion

	CSP
	Syntax
	Semantics
	Refinement

	Capturing Marked Petri Nets as CSP Processes
	Capturing Places
	Eliminating Interference
	Capturing Nets

	Testing for Conflict
	The \emphControl Processes
	The \emph{AfterCheck} Processes
	Processes \LHS and \RHS
	The Test

	Testing for Conflict-Decreasing Confusion
	Processes LHS and RHS
	The\emphControl Processes
	The \emph{AfterCheck Processes}
	The Test

	Testing for Conflict-Increasing Confusion
	Processes LHS and RHS
	The \emphControl Processes
	The \emph{AfterCheck} Processes
	The Test

	Discussion
	References

	A Stepwise Development Process for Reasoning About the Reliability of Real-Time Systems
	Introduction
	ActionSystems
	Semantics

	Probabilistic Action Systems
	Semantics

	Continuous Action Systems
	Semantics

	Combining Probabilistic and Continuous Action Systems
	The Probabilistic Steam Boiler
	Extracting the Non-probabilistic Behaviour
	Introducing Time and Continuous Behaviour
	Refining the Real-Time Steam Boiler

	Conclusion
	References

	Decomposing Integrated Specifications for Verification
	Introduction
	A Specification in CSP-OZ
	Semantics of CSP-OZ: Labelled Kripke Structures
	Syntax and Semantics of Requirements: LTL-X

	Decomposition
	Decomposing a CSP-OZ Specification: Weak Slicing
	Decomposition of the Example

	Verification
	Verification of the Example

	Conclusion
	References

	Validating Z Specifications Using the ProB Animator and Model Checker
	Introduction
	Specifications in Z
	A Brief Description of Z
	Some Differences Between Z and B
	Translating Z to B

	Architecture and the proz Compiler
	Identifying Components of the Specification
	Translating Initialisation and Operations from Z to B
	New Constructs and Operators

	NewTypes
	Schema Types
	Free Types

	Case study
	Route Calculation
	Network Protocol

	Discussion, Related and Future Work
	References

	Verification of Multi-agent Negotiations Using the Alloy Analyzer
	Introduction
	Brief Overview of Alloy
	Subject System Details
	Property Examples Derived from Requirements
	Experiment Design
	Choice of the Analyzed System
	Relation Between Protocol FSMs, Task Structures, Offers and Visitations
	Details of the Task Allocation Problem in the Chosen Design

	Alloy Specification for the Negotiation Model
	Alloy Specification for the Properties
	Specification Difficulties
	Conclusions and Future Work
	References

	Integrated Static Analysis for Linux Device Driver Verification
	Introduction
	On Programs, Specifications, Hazards and Specification Implementations
	Adapting SDV
	Extending SLIC to SLICx
	Verification Engine CBMC
	An Operating System Model for Linux
	Example: RCU-API Checking

	BeyondSDV
	Memory
	Preemption Simulation (PS)
	Sound Locking (AL)
	Complete Locking (LO)
	Race Conditions (UA)
	Additional Techniques

	Empirical Results
	Modularity Issues
	Results on Real Drivers

	Related Work
	Summary
	References

	Integrating Verification, Testing, and Learning for Cryptographic Protocols
	Introduction
	Models
	Syntax of IOSTS
	Semantics of IOSTS
	Parallel Product

	Verification, Testing, and Learning
	Expressing Security Properties Using Observers
	The Intruder
	Modelling the Protocol, Performing the Verification
	Learning by Testing

	Our Approach
	Conclusion and Future Work
	References

	Translating FSP into LOTOS and Networks of Automata
	Introduction
	FSP, LOTOS, and EXP
	Preliminary Definitions
	Environment
	Expressions
	Translation of a Label
	Hiding or Renaming

	Translating FSP Sequential Processes into LOTOS
	Sequence of Labels
	Sequential Processes

	Translating FSP Composite Processes into EXP
	Tool and Validation
	Application
	Concluding Remarks
	References

	Common Semantics for Use Cases and Task Models
	Introduction
	Background
	Use Case Models
	Task Models
	Use Cases vs. Task Models: A Comparison

	Related Work
	Semantics for Use Cases and Task Models
	Intermediate Semantic Domain for Use Cases
	Intermediate Semantic Domain for Task Models
	Common Semantic Domain Based on Sets of Posets
	Satisfiability Between Use Cases and Task Models

	Conclusion and Future Work
	References

	Unifying Theories of Objects
	Introduction
	Designs in Unifying Theories of Programming
	Design Frame and Compilation Notation
	Operational Reduction Rule Notation

	The Object Calculi
	Abadi–Cardelli Untyped Object Calculus
	Core Object Calculus (\langid{O}{c}-Calculus)
	Heap-Extended Object Calculus (\langid{O}{ch}-Calculus)

	The Operand Stack Model (\langid{U}{sh}) of the\langid{O}{ch}-Calculus
	Literal Value Programs
	Modelling Object Values and Method Definitions
	Command Expressions
	Method Updates and Field Assignments
	Method Invocation
	Modelling the Heap Operations

	Consistency of the Operand Stack Model
	Scalar Value Operations
	Method Invocation
	Fresh Heap Locations

	Conclusions and Related Work
	Related Work
	On-Going Work

	References

	Non-interference Properties for Data-Type Reduction of Communicating Systems
	Introduction
	Dynamic Communication Systems
	Analysis of Dynamic Communication Systems
	Data-Type Reduction for DCS
	Refining Data-Type Reduction by Process Counting

	Related Work
	Conclusion
	References

	Co-simulation of Distributed Embedded Real-Time Control Systems
	Introduction
	Current State of Practice in Academia and Industry
	Modeling and Analysis of Embedded Control Systems
	Plant Modeling
	Controller Description

	Tool Support
	Reconciled Operational Semantics
	Syntax
	Operational Semantics

	Concluding Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

